
UniNet: Unified Architecture Search with
Convolution, Transformer, and MLP

Jihao Liu1,2, Xin Huang1, Guanglu Song2, Hongsheng Li1B, and Yu Liu2B

1 CUHK, MMLab
2 SenseTime Research

Abstract. Recently, transformer and multi-layer perceptron (MLP) ar-
chitectures have achieved impressive results on various vision tasks. How-
ever, how to effectively combine those operators to form high-performance
hybrid visual architectures still remains a challenge. In this work, we
study the learnable combination of convolution, transformer, and MLP
by proposing a novel unified architecture search approach. Our approach
contains two key designs to achieve the search for high-performance net-
works. First, we model the very different searchable operators in a unified
form, and thus enable the operators to be characterized with the same
set of configuration parameters. In this way, the overall search space size
is significantly reduced, and the total search cost becomes affordable.
Second, we propose context-aware downsampling modules (DSMs) to
mitigate the gap between the different types of operators. Our proposed
DSMs are able to better adapt features from different types of opera-
tors, which is important for identifying high-performance hybrid archi-
tectures. Finally, we integrate configurable operators and DSMs into a
unified search space and search with a Reinforcement Learning-based
search algorithm to fully explore the optimal combination of the opera-
tors. To this end, we search a baseline network and scale it up to obtain
a family of models, named UniNets, which achieve much better accuracy
and efficiency than previous ConvNets and Transformers. In particular,
our UniNet-B5 achieves 84.9% top-1 accuracy on ImageNet, outperform-
ing EfficientNet-B7 and BoTNet-T7 with 44% and 55% fewer FLOPs re-
spectively. By pretraining on the ImageNet-21K, our UniNet-B6 achieves
87.4%, outperforming Swin-L with 51% fewer FLOPs and 41% fewer pa-
rameters. Code is available at https://github.com/Sense-X/UniNet.

Keywords: Deep learning architectures, neural architecture search

1 Introduction

Convolutional Neural Networks (CNNs) dominate the learning of visual repre-
sentations and show effectiveness on various visual tasks, including image clas-
sification, object detection, semantic segmentation, etc. Recently, convolution-
free backbones show impressive performances on image classification [7]. Vision
Transformer (ViT) [8] demonstrates that pure transformer architecture that is
mainly built on multi-head self-attentions (MSAs) can attain state-of-the-art

https://github.com/Sense-X/UniNet

2 Jihao et al.

performance when trained on large-scale datasets (e.g., ImageNet-21K, JFT-
300M). MLP-Mixer [32] introduced a pure multi-layer perceptron (MLP) ar-
chitecture that can almost match ViT’s performance without using the time-
consuming attention mechanism. The main operators in those networks perform
differently in terms of efficiency and data utilization. On the one hand, convo-
lutions in CNNs are locally connected and their weights are input-independent,
which makes it effective at extracting low-level representations and efficient un-
der the low-data regime. On the other hand, MSAs in the transformer capture
long-range dependency, and the attention weights are dynamically dependent on
the input representations. Hence, it is more data and computation demanding.
The token-mixing in MLP-Mixer performs like a depthwise convolution of a full
receptive field with parameter sharing, which is also data demanding. It is an im-
portant topic to study how to combine them effectively to form high-performance
hybrid visual architectures, which, however, remains a challenge.

There were recent papers on attempting to manually combine the different
types of operators to form hybrid visual networks. In ViT [8], a hybrid architec-
ture using ResNet and transformer is also studied and improves upon pure trans-
formers for smaller model sizes. Besides, many other works [6,5,43,42,13,11,9]
also explored the combination of convolution and transformer to form hybrid
architectures to improve data or computation efficiency. Furthermore, the com-
bination of convolution and MLP is studied in [18], and the combination of
gated MLP and MSA is studied in [19]. Those approaches focus on combining
two distinct operators and can achieve satisfactory performances to some extent.
However, a unified view and a systematical study are missed in prior arts.

Table 1: ImageNet top-1 accu-
racy of different operator com-
binations. T and M refer to
transformer block and MLP-
Mixer block respectively. Differ-
ent block numbers are chosen
so that their computations are
comparable.

Model Configuration
#Params

(M)
#FLOPs

(G)
Top-1
Acc.

ViT 12 T 22 4.6 78.0
MLP-Mixer 18 M 23 4.7 76.8
ViT-MLP 7 T + 7 M 22 4.5 76.5
MLP-ViT 7 M + 7 T 22 4.5 77.8

We identify two key challenges when build-
ing high-performance hybrid architectures: (1)
The operators can be implemented with vari-
ous styles, and it is infeasible to manually ex-
plore all possible implementations and combi-
nations. Although we can automate the explo-
ration with Neural Architecture Search (NAS)
techniques, the search space should be prop-
erly designed so that the search cost is afford-
able. (2) Each operator has its own charac-
teristics, and simply combining them together
does not lead to optimal results. We conduct
a simple pilot study on directly stacking dif-
ferent operators to form hybrid networks. As
shown in Table 1, however, the straightfor-
ward stacking of different operators achieves
even worse performance than the vanilla ViT.

In this paper, we study the learnable combination of convolution, trans-
former, and MLP by proposing a novel unified architecture search approach. Our
approach has two key designs to address the challenges mentioned above. First,
we model distinct operators in a unified form, and use the same set of searchable

UniNet 3

(a) ConvNet (b) Transformer/Hybrid (c) ImageNet21K Transfer

Fig. 1: ImageNet top-1 accuracy vs. FLOPs. Our UniNet-B5 achieve 84.9%
with ImageNet-1K dataset, outperforming EfficientNet-B7 and BoTNet-T7 with
44% and 55% fewer FLOPs, respectively. Our UniNet-B6 achieve 87.4% on
ImageNet-1K with ImageNet-21K pre-training, outperforming EfficientNetV2-
XL with 46% fewer FLOPs.

configuration parameters (i.e., OP type, expansion, channels, etc) to characterize
each of the different operators. The unified design enables us to greatly reduce
the overall search space, and as a result, the total search cost becomes affordable.
Besides, we propose context-aware downsampling modules (DSMs) to harmonize
the combination of different operators. The proposed DSMs can be instantiated
into three types, i.e., Local-DSM (L-DSM), Local-Global-DSM (LG-DSM), and
Global-DSM (G-DSM), aiming to better adapt the representations from one
operator to another. Based on these designs, we build a unified search space
consisting of a large family of different general operators (GOPs), DSMs, and
network size, and jointly optimize model accuracy and FLOPs for identifying
high-performance hybrid networks. We illustrate the search space and the back-
bone in Figure 2.

The discovered network, named UniNet, exhibits strong performance and
efficiency improvements over common ConvNets, Transformers, or hybrid archi-
tectures on various visual benchmarks. Our experiments show that UniNet has
the following characteristics: (1) placing convolutions in the shallow layers and
transformers in the deep layers, (2) allocating a similar amount of FLOPs for
both convolutions and transformers, and (3) inserting L-DSM to downsample
for convolutions and LG-DSM for transformers. Our analysis shows that the
conclusion is consistent among the top-5 models.

To go even further, we build a family of high-performance UniNet models by
scaling up the searched baseline network, which achieves better accuracy and effi-
ciency in both small and large model sizes. In particular, our UniNet-B5 achieves
comparable accuracy (+0.1%) to EfficientNet-B7 while requires much less com-
putation cost (-44%) (Figure 1 (a)). By pretraining on large-scale ImageNet-
21K, our UniNet-B6 achieves 87.4% accuracy, outperforming Swin-L with fewer
FLOPs (-51%) and parameters (-41%) (Figure 1 (c)).

4 Jihao et al.

×𝑁!×𝑁"
Input
image OutputGOP DSM GOP GOPDSM …

GOPs:
• Convolution
• Transformer
• MLP

DSMs:
• L-DSM
• G-DSM
• LG-DSM

×𝑁#

Size:
• Repeats
• Channels
• Expansion

Unified Search Space:

Fig. 2: Unified Architecture Search. We jointly search different types of op-
erators as well as downsampling modules (DSM) and network size in a unified
search space. We construct UniNet architecture in a multi-stage fashion. Be-
tween two successive stages, one of the DSMs is inserted to change the spatial
dimension or channels.

2 Related Works

Convolution, Transformer, and MLP. A host of ConvNets have been pro-
posed to push forward the state-of-the-art computer vision approaches such
as [14,28,30]. Despite the numerous CNN models, their basic operators, con-
volution, are the same. Recently, [8] proposed a pure transformer-based image
classification model ViT, which achieves impressive performance on the Ima-
geNet benchmark. DeiT [34] shows that well-trained ViT can obtain a better
performance-speed trade-off than ConvNets. PVT [41] and Swin [21] propose
multi-stage vision transformers, which can be easily transferred to other down-
stream tasks. On the other hand, recent papers are attempting to use only MLP
as the building block. MLP-Mixer [32], ResMLP [33], and ViP [15] show that
pure MLP architectures can also achieve near state-of-the-art performance.
Combination of different operators. Another line of work tries to com-
bine different operators to form new networks. CvT [42] propose to incorpo-
rate self-attention and convolution by generating Q, K, and V in self-attention
with convolution. ConViT [6] tries to unify convolution and self-attention with
gated positional self-attention and is more sample-efficient than self-attention.
Many other works [5,13,11,9] also explored the combination of convolution and
transformer to form hybrid architectures to improve the data or computation
efficiency. Besides, ConvMLP [18] studied the combination of convolution and
MLP, and gMLP [19] studied the combination of gated MLP and multi-head
self-attentions (MSA). Instead of requiring manual exploration of the hybrid ar-
chitectures, we propose a unified architecture search approach to automatically
search for high-performance hybrid architecture.

3 Method

3.1 Unified Architecture Search

As discussed in previous works [6], an appropriate combination of convolution
and transformer operators can lead to performance improvements. However, the

UniNet 5

previous approaches [42,43] only adopt convolution in self-attention or feed-
forward network (FFN) sub-layers and stack them repeatedly. Their approaches
did not fully explore the combinations to take advantage of their different char-
acteristics.

Prior arts [40,44] show that the downsampling module plays an important
role in visual tasks. Most previous approaches adopt hand-crafted downsampling
operations, i.e., strided convolution, max-pooling, or avg-pooling, to downsample
the feature map based on only the local context. However, these operations are
specifically designed for ConvNets, and might not be suitable to the transformer
or MLP based architectures, which capture representation globally.

In this paper, we investigate the learnable combination of convolution, trans-
former, and MLP3, trying to assemble them to create high-performance hybrid
visual network architectures. For better transmitting features across different
operator blocks, we proposed context-aware downsampling modules. We jointly
search the operators, downsampling modules, and network size in a unified search
space. In contrast, previous Neural Architecture Search (NAS) works achieved
state-of-the-art performances mainly via searching the network sizes. We show
that the searched hybrid architecture by our unified architecture search approach
can achieve very promising performance.

In the remaining parts of the section, we firstly present how to properly de-
fine different operators into a unified search space and search them jointly. We
then present the challenge of incorporating downsampling modules with differ-
ent operators and present our proposed context-aware downsampling module.
Finally, we will introduce our UniNet architectures and NAS pipeline.

3.2 Modeling Convolution, Transformer, MLP with a Unified
Searchable Form

Recently, transformer and MLP based architectures are able to achieve compa-
rable performance to convolution networks on different visual tasks. To achieve
better performance, it is intuitive to assemble all the types of operators to build
high-performance hybrid networks. Actually, a few works [42,43,6] have been
studied to empirically combine convolution and self-attention. However, manu-
ally searching network architectures is quite time-consuming and cannot ensure
optimal performances with different computational budgets.

We introduce a unified search space that contains General Operators (GOPs,
including convolution, transformer, and MLP), and then search for the optimal
combination of those operators jointly. Compared with prior arts, we propose a
unified form to characterize different operators. Specifically, we use the inverted
residual [24] to model a general block, which first expands the input channel
c to a larger size ec, and then projects the ec channels back to c for residual
connection. The e is defined as the expansion ratio, which is usually a small

3 Here, MLP refers to a MLP-style sub-layer that captures spatial representations
[32,33,15], instead of pure 1 × 1 convolution.

6 Jihao et al.

integer number, e.g., 4. The general operation block is therefore modeled as

y = x+ Operation(x), (1)

where Operation can be convolution, MLP, or transformer, and x, y represent
input and output features, respectively. For convolution, we place the convolution
operation inside the bottleneck [24], which can be expressed as

Operation(x) = Projec→c(Conv(Projc→ec(x))). (2)

The Conv operation can be either regular convolution or depth-wise convolution
(DWConv) [3], and the Proj represents a linear projection. For self-attention in
transformer and token-mixing in MLP, the computation cost on the large bot-
tleneck feature map is quite huge. Following previous works [8,32], we separate
them from the bottleneck for computation efficiency, and the Proj is imple-
mented inside the FFN [37] sub-layer. Each transformer block has a query-key-
value self-attention sub-layer and an FFN sub-layer, and the token-mixing in the
MLP block is implemented by transpose-FFN-transpose as that in [32],

y = y′ + FFN(y′), (3)

y′ = x+ SA(x) or x+ MLP(x), (4)

FFN(y′) = Projec→c(Projc→ec(y
′)), (5)

where SA can be either vanilla self-attention or local self-attention LSA, and MLP

refers to the token-mixing operation.
There are two main advantages of representing the different types of operators

in a unified search space: (1) We can characterize each operator with the same set
of configuration parameters (i.e., OP type, expansion, channels, etc). As a result,
the overall search space is greatly reduced, and the total search cost becomes
affordable. (2) With the unified form, the comparison between operators is fairer,
which is important for NAS [29] to identify the optimal hybrid architecture.

3.3 Context-Aware Downsampling Modules

As discussed in Section 3.1, the downsampling module (DSM) plays an impor-
tant role in visual tasks. In addition to hand-crafted DSM (i.e., max-pooling or
avg-pooling), a few works [23,10,40] tried to preserve more information via down-
sampling with the learnable or dynamic kernel. Most of the approaches utilized
downsampling based on local context, which suits conventional ConvNets well.
However, in our unified search space, operators with different receptive fields
can be assembled unrestrictedly to form a hybrid architecture, where the local
context might be destroyed and therefore the previous downsampling operations
might not be suitable.

In this paper, we propose context-aware DSM, which is instanced with Local-
DSM (L-DSM), Local-Global-DSM (LG-DSM), and Global-DSM (G-DSM). The
main difference between those DSMs is the considered context when performing

UniNet 7

Input

Output

Conv2d, s2

(a) L-DSM

Input

Multi-Head
Attention

Conv2d
s2

Q K V

Output

(b) LG-DSM

Input

Multi-Head
Attention

Conv1d
s2

Q K V

Output

(c) G-DSM

Fig. 3: Structures of the context-aware downsampling modules. The three DSMs
are described in Section 3.3. Shortcuts are omitted for better visualization.

downsampling. For L-DSM, only local context is involved, which fits ConvNets
well as shown in previous works [41,21]. For G-DSM, only global context is used
for downsampling, which may fit other operators, e.g., transformers. The LG-
DSM combines the characteristics of L-DSM and G-DSM. It uses both local
and global context for downsampling. Our intuition is that one of the largest
dissimilarities of different operators is the receptive field. Transformer and MLP
naturally have global receptive filed, while convolution has local receptive field,
e.g., 3 × 3. When combining those operators, there is no single optimal DSM
that satisfies all scenarios.

The proposed DSMs are visualized in Figure 3. To downsample based on
global cues, we utilize the self-attention mechanism to capture global context,
which is missed by the prior art. For G-DSM, we use Conv1D with stride 2 to
downsample the query and use the downsampled query features to aggregate
key features with downsampled output resolution. Note that, there is no local
context preserved after downsampling of G-DSM. For LG-DSM, we first reshape
the flattened token sequences back to the spatial grid and apply Conv2D with
stride 2 to downsample the query, and then flatten the query back to calculate
the attention weights.

Compared with previous works, which mainly try to improve ConvNets, our
proposed DSMs are not designed for a specific architecture. Our motivation is
that different DSMs might be suitable for different operators. For example, the
optimal DSM might be L-DSM for ConvNets, but G-DSM for transformers. As
thousands of operator combinations would be trained in our NAS process, it is
unfeasible to decide which DSM to use by hand. To obtain the optimal archi-
tecture, we jointly search DSMs with other operators. In our searched optimal
architecture, L-DSM is indeed used between operators with the local receptive
field while LG-DSM is favored by operators with a global receptive field. The
results validate the effectiveness of our proposed context-aware DSMs.

3.4 UniNet Architecture

As shown in recent studies, combining different operators [42,43] can bring per-
formance improvements. Most previous approaches only repeatedly stack the

8 Jihao et al.

same operator in the whole architecture and search only different channels in
different stages. These approaches do not allow large architecture diversity in
each block, which we show is crucial for achieving high accuracy for hybrid ar-
chitectures.

On the contrary, in our UniNet, the operators are not fixed but searched
from the unified search space. We construct our UniNet architecture in a multi-
stage fashion, which can be easily transferred to downstream tasks. Between two
successive stages, one of our proposed DSMs is inserted to reduce the spatial
dimension. We jointly search the GOP and DSM for all stages. The GOP could
be different for different stages but repeated multiple times in one stage, which
can greatly reduce the search space size as pointed out before [29]. The overall
architecture and unified search space are illustrated in Figure 2.

Thanks to our unified form of GOPs, the network size of each stage can be
configured with the repeat number r, channel size c, and expansion ratio e. To
obtain better computation-accuracy trade-off, we jointly search the network size
with the GOP and DSM. For GOP, we search for convolution, transformer, MLP,
and their promising variants, i.e., {SA, LSA, Conv, DWConv, MLP}, as defined in
Section 3.2; for e, we search from {2, 3, 4, 5, 6}. The kernel size for convolution
operation is fixed to 3×3. The head dimension in self-attention is fixed to 32.
We start the architecture search with an initial architecture, whose network size
is determined based on a reference architecture, e.g., EfficientNetV2 [31]. The
initial channels and repeats are set according to the reference architecture. For
c and r, we search from the sets {0.5, 0.75, 1.0, 1.25, 1.5} and {-2, -1, 0, 1, 2},
respectively. Channels are set to be divisible by 32 for self-attention. Suppose
we partition the network into K stages, and each stage has a sub-search space
of size S. Then the total search space is SK . In our implementation, K is set
to 5 and S equals 1,875. As a result, our search space size is about 2×1016 and
covers a large set of operators with quite different characteristics.

3.5 Search Algorithm

We use Reinforcement Learning (RL)-based search algorithm to search for high-
performance hybrid architecture in our unified search space by jointly optimizing
the model accuracy and FLOPs. Concretely, we follow previous work [20,29] and
map an architecture in the unified search space to a list of tokens, which are
determined by a sequence of actions generated by a Recurrent Neural Network
(RNN). The RNN is optimized with the PPO algorithm [25] by maximizing the
expected reward. In our implementation, we simultaneously optimize accuracy
and the theoretical computation cost (FLOPs). To handle the multi-objective
optimization problem, we use a weighted product customized as [29] to approxi-
mate Pareto optimal. For a sampled architecture m, the reward is formulated as
r(m) = a(m)× (t

f(m))
α, where function a(m) and f(m) return the accuracy and

the FLOPs of m, t is the target FLOPs, and α is a weight factor that balances
the accuracy and computation cost. We include more details of the RL algorithm
in the supplementary materials.

UniNet 9

During the search process, thousands of combinations of GOPs and DSMs are
trained on a proxy task with the same setting, which gives us a fair comparison
between those combinations. When the search is over, the top-5 architectures
with the highest reward are trained with full epochs, and the top-performing
one is kept for model scaling and transferring to other downstream tasks.

4 Experimental Setup and Implementation

To find the optimal architecture in our search space, we directly search on the
large-scale dataset, ImageNet-1K. We reserve 50k images from the training set
as a validation set. We employ a proxy task setting in the search phase. For each
sampled architecture, we train it for 5 epochs and calculate the reward of the
architecture with its FLOPs and the accuracy on the validation set. We set the
target FLOPs t and weight factor α in the reward function to 550M and 0.07
respectively [30]. During the search process, totally 2K models are trained on the
proxy task. After that, we fully train the top-5 architectures on ImageNet-1K
and preserve the top-performing one for model scaling and transferring to other
downstream tasks.

For full training on the ImageNet-1K dataset, we follow the popular training
recipe in DeiT [34]. We employ AdamW optimizer [17] with an initial learning
rate of 0.001 and weight decay of 0.05 to train UniNet. The total batch size is
set to 1024. We totally train for 300 epochs with a cosine learning rate decay
and 5 epochs of linear warm-up. We follow the augmentation strategy in DeiT
[34] and apply small augmentation for small models and heavy augmentation
for large models as introduced in [35,27]. For training efficiency, UniNet-B5 and
UniNet-B6 are trained with 224 × 224 input size and then finetuned on the
large resolution. We also pre-train UniNet on a larger ImageNet-21K dataset,
which contains 14.2 million images and 21K classes, to further test UniNet. We
pretrain for 90 epochs with AdamW optimizer. We then finetune on ImageNet-
1K for 30 epochs and compare the top-1 accuracy on ImageNet-1K with other
approaches. We list the details of training and finetuning hyper-parameters in
the supplementary materials.

Besides, we also transfer UniNet to downstream tasks, e.g., object detection
and instance segmentation on COCO and semantic segmentation on ADE20K.
For COCO training, we use the various detection frameworks and train UniNet
with the widely-used 1x (12 epochs) and 3x (36 epochs) schedules. For ADE20K
training, we use the UperNet framework and train with the same setting as [21].
The training details are listed in the supplementary materials.

5 Main Results

In this section, we firstly present our searched UniNet architecture. We then
show the performance of the scaled UniNets on classification, object detection,
and semantic segmentation.

10 Jihao et al.

Table 2: UniNet-B0 architecture. GOP
and DSM represent General Operators
and downsampling module respectively.
DWConv and SA are described in Section
3.2.

Stage
Operator Network Size

FLOPs(M)
GOP DSM e c r

0 DWConv L-DSM 4 48 2 68
1 DWConv L-DSM 6 80 4 135
2 DWConv L-DSM 3 128 4 42
3 SA LG-DSM 2 128 4 63
4 SA LG-DSM 5 256 8 187

Table 3: Performance of
Top-5 models after fully
training. D and A are short
for DWConv and SA respec-
tively.

Rank Configuration
Top-1
Acc.

0 DDDAA 79.1
1 DDDAA 78.7
2 DDDAD 77.9
3 DDDAA 78.6
4 DDDAA 78.4

5.1 UniNet Model Family

Table 2 shows our searched UniNet-B0 architecture. Our searched architecture
has the following characteristics: (1) Placing convolution in the shallow layers
and transformers with SA in the deep layers. While the previous work [8] shows
that the early-stage transformer blocks learn to gather local representations,
our searched architecture directly applies convolution at early stages, which is
more efficient. We further compare the top-5 searched models in Table 3, and
find the conclusion is close to consistent. The exception is the 3rd model, which
uses DWConv at the last stage, but with inferior performance. (2) Allocating a
similar amount of computations for both convolutions and transformers. Shown
in Table 2, the DWConv stages consume 245M FLOPs, and SA stages consume
250M FLOPs. While the operator combination has been studied in prior arts,
the computation allocating for different operators is neglected. Our work shed
some light on this question by jointly searching the network size in our unified
search space. (3) Inserting L-DSM to downsample for convolutions and LG-DSM
for transformers. Our search results show that the widely-used downsampling
module is sub-optimal for hybrid architectures. We also notice that the MLP
operator has not been chosen in the searched UniNet. We empirically find that
the MLP-style operation breaks the spatial structure which is important for
visual tasks [16], leading to inferior performance when combined with other
operators. We add the visualization in the supplementary materials.

To go even further, we build a family of high-performance UniNet models
by scaling up the searched UniNet-B0. We utilize the compound scaling [30]
to scale depth, width, and resolution simultaneously. Note that the resolution
is scaled with a smaller coefficient compared to EfficientNet [30] for training
and memory efficiency. We list the details of UniNet-B1 to UniNet-B6 in the
supplementary materials. While most previous transformer-based architectures
outperform convolution-based architectures in large model sizes but underper-
form in small model sizes, UniNet achieves consistently better accuracy and
efficiency across B0 to B6.

UniNet 11

Table 4: UniNet performance on Ima-
geNet. All UniNet models are trained
on the ImageNet-1K dataset with
1.28M images. C, T, and H denote con-
volution, transformer, and hybrid ar-
chitecture respectively.

Model Family
Input
Size

#FLOPs
(G)

#Params
(M)

Top-1
Acc.

EffNet-B0 [30] C 224 0.39 5.3 77.1
EffNetV2-B0 [31] C 240 0.7 7.4 78.7
DeiT-Tiny [34] T 224 1.3 5.7 72.2
PVT-Tiny [41] T 224 1.9 13.2 75.1
ConViT-Ti+ [6] H 224 2 10 76.7
UniNet-B0 H 160 0.56 11.5 79.1

EffNet-B2 [30] C 260 1 9.2 80.1
EffNetV2-B1 [31] C 260 1.2 8.1 79.8
RegNetY-4G [22] C 224 4 20.6 81.9
DeiT-Small [34] T 224 4.3 22 79.8
PVT-Small [41] T 224 3.8 24.5 79.8
UniNet-B1 H 224 1.1 11.5 80.8

EffNet-B3 [30] C 300 1.8 12 81.6
EffNetV2-B3 [31] C 300 3 14 82.1
Swin-T [21] T 224 4.5 29 81.3
CoAtNet-0 [5] H 224 4.2 25 81.6
UniNet-B2 H 256 2.2 16.2 82.5

EffNet-B4 [30] C 380 4.2 19 82.9
NFNet-F0 [1] C 256 12.4 71.5 83.6
Swin-B [21] T 224 15.4 88 83.5
ConViT-B+ [6] H 224 30 152 82.5
CoAtNet-1 [5] H 224 8.4 42 83.3
CvT-21 [42] H 384 24.9 32 83.3
UniNet-B3 H 288 4.3 24 83.5

EffNet-B7 [30] C 600 37 66 84.3
EffNetV2-M [31] C 480 24 54 85.1
NFNet-F2 [1] C 352 62.6 193.8 85.1
BoTNet-T7 [26] T 384 45.8 75.1 84.7
CoAtNet-1 [5] H 384 27.4 42 85.1
UniNet-B4 H 320 9.4 43.8 84.4
UniNet-B5 H 384 20.4 72.9 84.9
UniNet-B6 H 448 51 117 85.6

Table 5: Performance on ImageNet
with ImageNet-21K pre-train. All
models are pre-trained on ImageNet-
21K and finetuned on ImageNet-1K.

Model Family
Input
Size

#FLOPs
(G)

#Params
(M)

Top-1
Acc.

EffNetV2-M [31] C 480 24 55 86.1
ViT-L/16 [8] T 384 190.7 304 85.3
HaloNet-H4 [36] T 384 - 85 85.6
Swin-B [21] T 384 47.1 88 86.4
CvT-21 [42] H 384 25 32 84.9
UniNet-B5 H 384 20.4 72.9 87

EffNetV2-L [31] C 480 53 121 86.8
EffNetV2-XL [31] C 512 94 208 87.3
Swin-L [21] T 384 103.9 197 87.3
CoAtNet-2 [5] H 384 49.8 75 87.1
CoAtNet-2 [5] H 512 96.7 75 87.3
UniNet-B6 H 448 51 117 87.4

Table 6: Comparison with previous ef-
ficient architectures. UniNet is trained
with knowledge distillation for a more
fair comparison.

Model Family #FLOPs (M) Top-1 Acc.

AttentiveNAS [39] C 491 80.1
AlphaNet [38] C 491 80.3
FBNetv3 [4] C 557 80.5
OFA [2] C 595 80.0
LeViT [12] H 658 80.0
UniNet-B0 H 555 80.8

5.2 ImageNet Classification Performance

ImageNet-1K. Table 4 presents the performance comparison of our searched
UniNet with previous proposed architectures. Our searched UniNet has better
accuracy and computation efficiency than previous ConvNets, Transformers, or
hybrid architectures.

As shown in Table 4, under mobile setting, our UniNet-B0 achieves 79.1%
top-1 accuracy with 555M FLOPs, outperforming EfficientNetV2-B0 [31] with
less FLOPs. In the middle FLOPs setting, our UniNet-B3 achieves 83.5% top-
1 accuracy with 4.3G FLOPs, which outperforms the pure convolution-based
EfficientNet-B4, pure transformer-based Swin-B, and hybrid architecture CvT-
21. For larger models, our UniNet-B5 achieves 84.9% with 20G FLOPs, out-
performing EfficientNet-B7 and BoTNet-T7 with 44% and 55% fewer FLOPs,
respectively. Figure 1 (a, b) further visualizes the comparison of UniNet with
other architectures in terms of accuracy and FLOPs.

12 Jihao et al.

Table 7: Object detection, instance segmentation, and semantic segmentation
performance on the COCO val2017 and ADE20K val set. All UniNet models are
pre-trained on the ImageNet-1K dataset.

Backbone
#Params (M)

Det/Seg
#FLOPs (G)

Det/Seg
Mask R-CNN 1x Mask R-CNN 3x UperNet

mIoU (%)AP@box AP@mask AP@box AP@mask

ResNet18 [14] 31/ - 207/885 34.0 31.2 36.9 33.6 -
ResNet50 [14] 44/ - 260/951 38.0 34.4 41.0 37.1 -
PVT-Tiny [41] 33/ - 208/945 36.7 35.1 39.8 37.4 -
UniNet-B1 28/38 211/877 40.5 37.5 44.4 40.1 42.7

ResNet101 [14] 63/86 336/1029 40.4 36.4 42.8 38.5 44.9
PVT-Small [41] 44/ - 245/1039 40.4 37.8 43.0 39.9 -
Swin-T [21] 48/60 267/945 43.7 39.8 46.0 41.6 44.5
UniNet-B3 42/51 270/940 45.2 41.1 47.9 42.9 48.5

Table 8: Performance on the COCO val2017 with various detection frameworks.
The AP@box is reported.

Framework Cascade-Mask-R-CNN ATSS Sparse-R-CNN Mask-R-CNN

ResNet50 [14] 46.3 43.5 44.5 41.0
Swin-T [21] 50.5 47.2 47.9 46.0
UniNet-B3 51.3 49.8 48.9 47.9

We further compare UniNet-B0 to previous searched efficient architectures
in Table 6. Note that for a more fair comparison, we train UniNet-B0 with
knowledge distillation. The details of distillation are listed in the supplementary
materials. Shown in Table 6, UniNet-B0 achieves 80.8% accuracy with 555M
FLOPs, outperforming other efficient convolution-based or hybrid architectures.
ImageNet-21K. Table 5 presents the performance comparison of UniNet and
other architectures with ImageNet-21K pretrain. Notably, UniNet-B5 obtains
87% top-1 accuracy, which outperforms Swin-L with 4× less computation. UniNet-
B6 achieves 87.4% top-1 accuracy, which outperforms CoAtNet-2 [5] with 47%
less computation. We further visualize the comparison in Figure 1 (c).

5.3 Object Detection and Semantic Segmentation Performance

For object detection and semantic segmentation, we pick UniNet-B1 and UniNet-
B3 and use them as the backbone networks for detection and segmentation frame-
works. We compare our UniNet with other convolution or transformer-based ar-
chitectures. For COCO object detection, we use various detection frameworks
and compare the performance under 1× and 3× schedules. For ADE20K se-
mantic segmentation we use the UperNet framework and report mIoU (%) for
different architectures under the same training setting.

As shown in Table 7, our searched UniNet consistently outperforms convolution-
based ResNet [14] and transformer-based PVT [41] or Swin-Transformer [21].
UniNet-B1 achieves 40.5 AP@box, which is 3.8% better than PVT-Tiny but
with 15% fewer parameters. UniNet-B3 achieves 45.2 AP@box with 1× schedule
and 47.9 AP@box with 3× schedule, which is 1.5% and 1.9% better than Swin-T,

UniNet 13

respectively. We further test various detection framework and show the results in
Table 8, and find that UniNet achieves consistently better performance among
others. For ADE20K semantic segmentation, we achieve 48.5% mIoU with 51M
parameters. Compared with transformer-based Swin-T, our UniNet outperforms
4.0% mIoU with a similar parameter size. Besides, compared with convolution-
based ResNet101, we achieve 3.6% higher mIoU with 41% fewer parameters. All
the results show the effectiveness of our searched UniNet.

6 Ablative Studies and Analysis

In this section, we study the impact of joint search of General Operators and
discuss the importance of context-aware downsampling modules (DSMs).

6.1 Single Operator vs. General Operators

Table 9: Performance on ImageNet
with different search settings. One
type of operator is kept for compar-
ison with the hybrid UniNet.

Model
#FLOPs

(G)
#Params

(M)
Top-1
Acc.

UniNet-B0 0.56 11.5 79.1

Convolution-Only 0.59 11.0 77.7
Transformer-Only 1.2 11.2 78.2

MLP-Only 0.95 11.4 76.8

Previous works [29,30] mostly focus on the
network size search, which uses a single
operator, convolution, as the main fea-
ture extractor. In comparison, we jointly
search the combination of different Gen-
eral Operators (GOPs), i.e., convolution,
transformer, MLP, and their promising
variants. To verify the importance of
GOPs, we keep only one type of operator
in the search space and re-run the search
experiments under the same settings. Af-
ter the search, we fully train the top-5
architectures with the highest reward on
ImageNet-1K and report the best perfor-
mance.

As shown in Table 9, our searched hybrid architecture consistently achieves
better accuracy compared to single-operator-based architectures. The result ver-
ifies the effectiveness of our unified architecture search of GOPs, which can take
advantage of the characteristics of different operators.

6.2 Fixed vs. Context-Aware downsampling

When combining different operators into a unified network, the traditional down-
sampling module, such as strided-conv or pooling, could be sub-optimal. To ver-
ify the effectiveness of our proposed context-aware DSMs, we replace the DSMs
of our search UniNet with one fixed DSM and compare their performance under
the same training setting.

As shown in Table 10, our searched UniNet consistently outperforms its vari-
ants that use a single-fixed DSM in all stages. Although we see that using G-DSM

14 Jihao et al.

Table 10: Performance on ImageNet of
UniNet with different DSMs. Note that
the traditional strided-conv downsam-
pling module is shown in row 2.
Model #FLOPs (G) #Params (M) Top-1 Acc.

UniNet 0.56 11.5 79.1
w/ L-DSM 0.54 11.3 78.5
w/ G-DSM 0.77 12.7 76.8
w/ LG-DSM 0.72 14.1 78.9

Table 11: Performance comparison on
ImageNet of different backbones when
equipped with our proposed DSMs.
Model #FLOPs (G) #Params (M) Top-1 Acc.

PVT-Tiny [41] 1.9 13.2 75.1
w/ LG-DSM 3.1 17.3 78.6
w/ L→LG-DSM 2.0 14.3 77.5

Swin-T [21] 4.5 29.0 81.2
w/ LG-DSM 6.4 33.4 81.9
w/ L→LG-DSM 4.7 30.0 81.6

or LG-DSM in all stages brings more computation and parameters, the perfor-
mance does not become better. The result emphasizes the importance of our
joint search of GOPs and DSMs.

Besides, we transfer our proposed DSMs to other popular transformer-based
architectures, Swin-Transformer [21] and PVT [41]. Both Swin and PVT have 4
stages. We compare 2 settings: 1) using LG-DSM for 4 stages, as both PVT and
Swin are pure transformer architectures 2) using L-DSM for the first two stages
while LG-DSM for the latter two stages, which requires less computation. As
shown in Table 11, our proposed LG-DSM improves PVT-Tiny and Swin-T for
3.5% and 0.7%, respectively. Using L-DSM in the first two stages has a similar
computation compared with the baseline, which improves PVT-Tiny and Swin-
T for 2.4% and 0.4%, respectively. To note that, PVT uses a strided-conv for
downsampling. As discussed in Section 3.3, it is harmful to the main operator in
PVT, which has a global receptive field. On the contrary, our proposed DSMs
are able to downsample based on both local and global context, and can greatly
improve the performance.

7 Conclusion

In this paper, we propose a novel unified architecture search approach to jointly
search the combination of convolution, transformer, and MLP. We empirically
identify that the widely-used downsampling modules become the performance
bottlenecks when the operators are combined. To further improve the perfor-
mance, we propose context-aware downsampling modules and jointly search
them with all operators. We scale the search baseline network up and obtain
a family of models, named UniNet, which achieve much better accuracy and
efficiency than previous ConvNets and Transformers.

Acknowledgement Hongsheng Li is also a Principal Investigator of Centre
for Perceptual and Interactive Intelligence Limited (CPII). This work is sup-
ported in part by CPII, in part by the General Research Fund through the Re-
search Grants Council of Hong Kong under Grants (Nos. 14204021, 14207319),
in part by CUHK Strategic Fund.

UniNet 15

References

1. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image
recognition without normalization. arXiv preprint arXiv:2102.06171 (2021)

2. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019)

3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1251–1258 (2017)

4. Dai, X., Wan, A., Zhang, P., Wu, B., He, Z., Wei, Z., Chen, K., Tian, Y., Yu, M.,
Vajda, P., et al.: Fbnetv3: Joint architecture-recipe search using neural acquisition
function (2020)

5. Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: Marrying convolution and attention
for all data sizes. arXiv preprint arXiv:2106.04803 (2021)

6. d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., Sagun, L.: Con-
vit: Improving vision transformers with soft convolutional inductive biases. arXiv
preprint arXiv:2103.10697 (2021)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

9. Gao, P., Lu, J., Li, H., Mottaghi, R., Kembhavi, A.: Container: Context aggregation
network. arXiv preprint arXiv:2106.01401 (2021)

10. Gao, Z., Wang, L., Wu, G.: Lip: Local importance-based pooling. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 3355–3364
(2019)

11. Gong, C., Wang, D., Li, M., Chen, X., Yan, Z., Tian, Y., Chandra, V., et al.: Nasvit:
Neural architecture search for efficient vision transformers with gradient conflict
aware supernet training. In: International Conference on Learning Representations
(2021)

12. Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H., Douze, M.:
Levit: a vision transformer in convnet’s clothing for faster inference. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 12259–12269
(2021)

13. Guo, J., Han, K., Wu, H., Xu, C., Tang, Y., Xu, C., Wang, Y.: Cmt: Convolutional
neural networks meet vision transformers. arXiv preprint arXiv:2107.06263 (2021)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

15. Hou, Q., Jiang, Z., Yuan, L., Cheng, M.M., Yan, S., Feng, J.: Vision permu-
tator: A permutable mlp-like architecture for visual recognition. arXiv preprint
arXiv:2106.12368 (2021)

16. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional
neural networks encode? arXiv preprint arXiv:2001.08248 (2020)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16 Jihao et al.

18. Li, J., Hassani, A., Walton, S., Shi, H.: Convmlp: Hierarchical convolutional mlps
for vision. arXiv preprint arXiv:2109.04454 (2021)

19. Liu, H., Dai, Z., So, D., Le, Q.: Pay attention to mlps. Advances in Neural Infor-
mation Processing Systems 34 (2021)

20. Liu, J., Zhang, M., Sun, Y., Liu, B., Song, G., Liu, Y., Li, H.: Fnas: Uncertainty-
aware fast neural architecture search. arXiv preprint arXiv:2105.11694 (2021)

21. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint
arXiv:2103.14030 (2021)

22. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network
design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 10428–10436 (2020)

23. Saeedan, F., Weber, N., Goesele, M., Roth, S.: Detail-preserving pooling in deep
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 9108–9116 (2018)

24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

25. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

26. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck
transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 16519–16529 (2021)

27. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How
to train your vit? data, augmentation, and regularization in vision transformers.
arXiv preprint arXiv:2106.10270 (2021)

28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)

29. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
2820–2828 (2019)

30. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning. pp. 6105–6114. PMLR
(2019)

31. Tan, M., Le, Q.V.: Efficientnetv2: Smaller models and faster training. arXiv
preprint arXiv:2104.00298 (2021)

32. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., et al.: Mlp-mixer: An all-mlp ar-
chitecture for vision. arXiv preprint arXiv:2105.01601 (2021)

33. Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., Joulin,
A., Synnaeve, G., Verbeek, J., Jégou, H.: Resmlp: Feedforward networks for image
classification with data-efficient training. arXiv preprint arXiv:2105.03404 (2021)

34. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021)

35. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper
with image transformers. arXiv preprint arXiv:2103.17239 (2021)

UniNet 17

36. Vaswani, A., Ramachandran, P., Srinivas, A., Parmar, N., Hechtman, B., Shlens, J.:
Scaling local self-attention for parameter efficient visual backbones. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
12894–12904 (2021)

37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

38. Wang, D., Gong, C., Li, M., Liu, Q., Chandra, V.: Alphanet: Improved training of
supernets with alpha-divergence. In: International Conference on Machine Learn-
ing. pp. 10760–10771. PMLR (2021)

39. Wang, D., Li, M., Gong, C., Chandra, V.: Attentivenas: Improving neural architec-
ture search via attentive sampling. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 6418–6427 (2021)

40. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: Carafe++: Unified content-
aware reassembly of features. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021)

41. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv preprint arXiv:2102.12122 (2021)

42. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Introduc-
ing convolutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

43. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution
designs into visual transformers. arXiv preprint arXiv:2103.11816 (2021)

44. Zhang, R.: Making convolutional networks shift-invariant again. In: ICML (2019)

	UniNet: Unified Architecture Search with Convolution, Transformer, and MLP

