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Abstract. Vision Transformers have shown state-of-the-art results for
various visual recognition tasks. The dot-product self-attention mecha-
nism that replaces convolution to mix spatial information is commonly
recognized as the indispensable ingredient behind the success of vision
Transformers. In this paper, we thoroughly investigate the key differences
between vision Transformers and recent all-MLP models. Our empirical
results show the superiority of vision Transformers mainly comes from
the data-dependent token mixing strategy and the multi-head scheme in-
stead of query-key interactions. Inspired by this observation, we propose
a computationally and parametrically efficient operation named adap-
tive weight mixing to generate attention weights without token-token
interactions. Based on this operation, we develop a new architecture
named as AMixer to capture both long-term and short-term spatial de-
pendencies without self-attention. Extensive experiments demonstrate
that our adaptive weight mixing is more efficient and effective than pre-
vious weight generation methods and our AMixer can achieve a better
trade-off between accuracy and complexity than vision Transformers and
MLP models on both ImageNet and downstream tasks. Code is available
at https://github.com/raoyongming/AMixer.
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1 Introduction

Recent advances on vision Transformers have pushed the state-of-the-art of vari-
ous visual recognition tasks, including image classification [13, 29, 55, 36], seman-
tic segmentation [56, 29, 9], object detection [29, 4] and action recognition [2, 1].
As a step towards less inductive bias in architecture designs, Vision Transformers
(ViT) [13] and its variants utilize the self-attention mechanism [46] to capture
the interactions between different spatial locations by directly learning from the
raw data, different from conventional CNNs that are largely relied on human
prior knowledge and hand-made choices. More recently, the pure multi-layer
perceptrons (MLP) models [42, 43] are proposed to further simplify the designs
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Fig. 1: The main idea of AMixer. By analyzing the differences between self-
attention and spatial MLP, we propose a new operation named adaptive weight
mixing to efficiently generate data-dependent spatial mixing weights without
token-token interaction. We compare the proposed adaptive weight mixing
with prevalent operations by considering three key factors: the input-dependent
weight (adaptive), global interactions among spatial locations (global) and
weights based on the relative positions (relative)1. Our method combines the
advantages of previous operations.

of vision Transformers. By replacing the self-attention layers with spatial MLPs,
all-MLP models exhibit a simple and more efficient approach to mix spatial
information for visual recognition tasks. However, empirical results suggest all-
MLP models without self-attention usually perform inferiorly compared to vision
Transformers [43, 29].

The self-attention mechanism is commonly recognized as the key ingredient
behind the success of vision Transformers. Self-attention fully considers the re-
lationships among all spatial locations by generating the spatial mixing weights
(i.e., attention weights) using the dot product of two projected versions of the
input (i.e., queries and keys) and applying the weights to another projected
input (i.e., values). Benefiting from the communications among all tokens, vi-
sion Transformers can better model long-range dependencies with fewer blocks
compared to convolutions [13, 52]. Since spatial MLP models also consider all
possible interactions between any two spatial locations with learnable mixing
weights, it is natural to ask: which specific designs make self-attention more
effective? Is there a more efficient way to learn the spatial mixing weights?

In this paper, we thoroughly investigate the key differences between vision
Transformers and recent all-MLP models. Starting from a simple and neat all-
MLP architecture [43], we gradually add the designs in vision Transformers to

1 “–” indicates that only a weak regularization of position-relative weight based on
positional embeddings is imposed to self-attention.
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verify their effects. Our empirical results show the superiority of vision Trans-
formers mainly comes from the data-dependent spatial mixing strategy and the
multi-head scheme instead of the query-key interactions in self-attention. Based
on this observation, we propose a computationally and parametrically efficient
operation called Adaptive Weight Mixing to generate attention weights with-
out token-token interactions. Our operation is inspired by the spatial MLP in
all-MLP models, where the spatial mixing weights are memory-like model pa-
rameters and are learned through standard back-propagation. Different from pre-
vious methods that generate the weights with dot-product (e.g ., self-attention)
or another MLP (e.g ., dynamic convolution [16]), our solution makes the static
memory adaptive to the input by predicting a small weight mixing matrix that
linearly blends a set of static weights from a weight bank. By doing so, we avoid
the heavy computation of dot-product (O(N2D) for N tokens with D-dim fea-
tures) and a large number of parameters for weight generation (O(N2D) for
generating N × N weights from a D-dim feature). Moreover, inspired by the
relative positional embeddings [38, 39, 29], we propose to add the symmetric
regularization to the weight bank, where the weight of two positions is only re-
lated to their relative position instead of their absolute positions. This strategy
can largely reduce the number of parameters in the weight bank since only O(N)
parameters need to be stored. The relative weight also adds the structural priors
to the model and makes the input resolution of our model more flexible. Our
key idea is illustrated in Figure 1. We also summarize the differences between
our method and other prevalent operations in deep vision models.

Our new adaptive weight mixing operation can serve as a plug-and-play
module to replace the self-attention in vision Transformers or spatial MLP in
all-MLP models. We propose a new architecture AMixer by replacing the self-
attention in various vision Transformers with the new operation, which is able
to adaptively capture both long-term and short-term spatial dependencies like
vision Transformers while having a more efficient weight generation strategy.
Equipped with our adaptive weight mixing operation, the enhanced all-MLP
models ResMLP [43] and Swin-Mixer [29] can surpass their vision Transformers
counterparts DeiT [44] and Swin Transformers [29]. We also scale up AMixer
to obtain a series of hierarchical models with different complexities. Extensive
experiments show that our adaptive weight mixing is more efficient and effective
than previous weight generation methods. AMixer can attain a better trade-off
between accuracy and complexity than vision Transformers and MLP models on
both ImageNet [37] and downstream tasks.

2 Related Work

Vision Transformers. The Transformer architecture that is originally de-
signed for the NLP tasks [46] has shown promising results on various vision
problems since Dosovitskiy et al . [13] introduce it to the image classification
problem with a patch-based design. A large number of works aim to design more
suitable architectures for vision tasks. Some methods are also proposed to im-
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prove the training strategy and inference efficiency. Although quite a few kinds
of powerful models are designed, most of them are still based on the dot-product
self-attention mechanism. In this work, we show that the query-key interaction
in vision Transformer may not be necessary, which may provide a new view to
design more efficient vision Transformers.

MLP-like Models. Recently, there are several works that question the im-
portance of self-attention in the vision Transformers and propose to use spatial
MLP to replace the self-attention layer in the Transformers [42, 43, 28]. Al-
though these models are more efficient than the counterpart vision Transformers
by removing the dot-product self-attention, this simple modification may bring
two drawbacks: (1) the memory-like static spatial MLP usually exhibit weaker
expressive power compared to Transformers [43, 29]; (2) unlike Transformers,
MLP-based models are hard to scale up to a new resolution since the weights
of the spatial MLPs have fixed sizes. Our work aims to resolve the above issues
in MLP-like models by introducing a new weight generation scheme. Since we
store the relative weights instead of the absolute weights in the weight bank, our
model can adapt to different input resolutions by interpolating the weight bank.

Dynamic Weights. The self-attention mechanism [46] can be viewed as one
of the most popular methods to generate dynamic weights. Learning dynamic
weights that are conditioned on the input is also a widely studied problem for
CNN models. Previous efforts based on convolutional networks usually focus on
predicting adaptive convolution kernels that are shared for the different loca-
tions [7, 15, 22]. Some works also propose to generate region or position-specific
weights to better exploit the location information in CNNs [27, 21]. However,
their methods are designed for generating relatively small kernels (e.g ., 3 × 3),
which are widely used in CNN-based models. We argue that their generation
methods are computational and parametrically expensive to generate large ker-
nels, which makes them hard to scale up to the global interactions considered in
this paper. The most related work is Synthesizer [41] which proposes to predict
the attention weights using an MLP for NLP tasks. Different from them, we
propose a new framework to generate weights by linearly blending weights in a
bank, avoiding the large computation and storage cost.

3 Approach

3.1 Vision Transformers and MLP Models: An Unified View

Since vision Transformers [13, 29] start to dominate vision tasks, many Transformer-
style architectures that pursue the same goal of reducing inductive bias emerged [43,
42, 34]. Among those, MLP models [43, 42, 28] replace the self-attention by MLPs
that are applied across spatial locations, which are very efficient on modern ac-
celerators. However, the performances of current all-MLP models lag far behind
their Transformer counterparts, e.g ., 76.6% (ResMLP-12 [43]) vs. 79.8% (Deit-
S [44]) on ImageNet. To examine where the performance drop comes from, we
aim to provide an in-depth analysis of the two families of models from a uni-
fied perspective. Both vision Transformers and MLP models are built with the
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following basic block (X ∈ RN×D is the input, N = NHNW ):

X← X+Mixer(X), (1)

X← X+MLP(X), (2)

where the Mixer and the MLP perform spatial mixing and channel mixing,
respectively. Generally, the Mixer function can be written in the following form:

Mixer(X) = Concat
1≤h≤H

(Mh(X)Vh(X))C,

Mh ∈ RN×N ,Vh ∈ RN×Dh ,C ∈ RD×D.
(3)

We consider the multi-head occasion in the above formula. For the h-th head,
the Mh matrix characterizes the interactions among the tokens, and the Vh

projects input to Dh = D/H dimension as the value. The {Vh}Hh=1 weighted
by the {Mh}Hh=1 are then concatenated and projected by another matrix C.
For vision Transformers [13, 44, 29], the widely used multi-head self-attention
(MHSA) can be derived from Equation (3) by settingVh(X) = XWV

h ,C = WO,
and

Mh(X) = Softmax

(
Qh(X)Kh(X)⊤√

Dh

)
,

Qh(X) = XWQ
h ,Kh(X) = XWK

h ,

(4)

where the WQ
h ,W

K
h ,WV

h ∈ RD×Dh and WO ∈ RD×D are the learnable pa-
rameters. For all-MLP models [43, 42], the spatial mixing operation is simply
performed by a linear layer without the multi-head operation, i.e.,

H = 1,V1(X) = X,M1(X) = W,C = I. (5)

3.2 Rethinking Self-Attention in ViTs

From the analysis in Section 3.1, we can identify the differences between the
vision Transformers and the all-MLP models. Specifically, vision Transformers
contain four components that the all-MLP models do not have: (1) the multi-
head scheme; (2) the softmax operation; (3) the V-projection (Vh) and the
C-projection (C); (4) the dot-product between the query and the key. In this
section, we will investigate whether these factors can bring improvements to the
vanilla MLP models. The step-by-step results of our analysis are summarized in
Table 1.

Multi-head Scheme. The multi-head self-attention [46] is originally pro-
posed to help the model to attend to multiple positions. One nice property of
the multi-head scheme is that it does not induce extra FLOPs. However, it is
interesting to see that there are rare previous efforts that apply the multi-head
scheme to MLPs except [29]. In our experiments, we implement a multi-head
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Table 1: Starting from ResMLP [43] and surpassing DeiT [44]. We gradually
add key ingredients to an all-MLP model ResMLP [43] and show the final model
(AMixer) outperform the Transformer DeiT [44] with fewer FLOPs and param-
eters.

Model Params. FLOPs Acc. (%)

ResMLP-12 [43] 15M 3.0G 76.6
+ Multi-head Scheme 19M 3.0G 77.4(+0.8)

+ Extra Projections 22M 3.7G 78.0(+1.4)

+ Softmax 22M 3.7G 78.2(+1.6)

+ Adaptive Weight Mixing 26M 3.9G 79.9(+3.3)

+ Relative Attention Weight 19M 3.9G 80.3(+3.7)

DeiT-S [44] 22M 4.6G 79.8

MLP model based on ResMLP [43] and find the accuracy on ImageNet can be
improved from 76.6% to 77.4%.

Extra Projections. The V-projection and the C-projection are also impor-
tant, especially when the multi-head scheme is used. Without these projections,
interactions across different heads are cut off. We then add the extra projections
and find they can further boost the performance by 0.6%.

Softmax. Another difference between self-attention and MLP is the softmax
operation. Softmax makes the weighted sum of the row of Vh(X) bounded and
we find it can improve the accuracy to 78.2%.

By far, the performance of the modified MLP is still lower than DeiT [44]
and the only difference now is how Mh is generated. In vision Transformers,
the Mh(X) matrix is adaptive because the dot-product between Qh and Kh is
conditioned on the input X while Mh is simply a memory-like weight in MLPs.
Then we ask: can we find another implementation of the adaptive Mh(X), which
is better than the standard dot-product self-attention? To make an attempt
towards this interesting question, we propose adaptive weight mixing, a better
alternative to self-attention.

3.3 Adaptive Weight Mixing

To obtain the adaptive weights {Mh}Hh=1, self-attention requires 2ND2 FLOPs
to compute the query and key and N2D to perform the dot-product, such that
the total FLOPs is

FLOPs(SA) = N2D︸ ︷︷ ︸
dot-product

+ 2ND2︸ ︷︷ ︸
compute query and key

. (6)

In this paper, we propose a more efficient method named adaptive weight mixing
to achieve a similar function to self-attention. Briefly speaking, our adaptive
weight mixing learns a weight bank of size B and predicts a mixing policy for
each token to generate the Mh adaptively. Formally, let the weight bank be
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W ∈ RB×N×N , which is learnable during training. We then use an adapter to
predict the mixing policy based on the input X:

Π(X) = Adapter(X) ∈ RN×H×B . (7)

The mixing policy Π(X) is sample-specific and head-specific, which largely in-
creases the diversity. To reduce extra costs induced by predicting the policy, our
adapter is designed to be very lightweight as a two-layer MLP.

Y = GELU
(
XWD×D′

1

)
WD′×HB

2 ,Adapter(X) = Reshape(Y), (8)

where D′ = D/r is the hidden dimension with reduction ratio r to reduce com-
putational costs following [22]. With the mixing policy, we can construct the Mh

by

Mh,i = Softmax

(
B∑

b=1

Πi,h,bWb,i

)
, (9)

whereMh,i denotes the weighting coefficient for the h-th head and the i-th token.
The above equation also suggests that our Mh,i is taken from a B-dimension
linear space spanned by W :,i. Distinct from self-attention, our method only
requires

FLOPs(Ada) =
ND2

r
+

NDHB

r︸ ︷︷ ︸
adapter

+N2BH︸ ︷︷ ︸
mixing

(10)

to generate Mh. In our experiments, the typical values of the hyper-parameters
are: B = 16, H = 8, r = 4. It is easy to show our adaptive weight mixing is
more efficient than self-attention since D is usually much larger than BH (e.g .,
D = 384 in DeiT-S [44]). With adaptive weight mixing, we can achieve 79.9%
top-1 accuracy on ImageNet, surpassing DeiT-S [44].

Relative Attention Weight. The vanilla design of the weight bank con-
tains too many parameters (O(BN2)). To make the weight bank more memory-
friendly, we propose another variant that considers 2D relative position follow-
ing the practice in [29]. Consider two points i, j with coordinates (ih, iw) and
(jh, jw), we assume the relation between i, j is only related to their relative posi-
tion (ih− jh, iw− jw) and irrelevant to their absolute positions. Therefore, there
are only (2NH − 1)× (2NW − 1) possible relative positions and we only need to
store a weight bank Wrel ∈ RB×(2NH−1)×(2NW−1) instead of the vanilla version
W ∈ RB×NHNW×NHNW . As is shown in Table 1, the relative attention weight
can further bring an improvement of 0.4% on accuracy and significantly reduce
the number of parameters of our model.

Discussions. In Figure 2, we illustrate various weight generation meth-
ods in terms of whether they are data-dependent, spatial-aware, or channel-
specific. Among those, Dynamic Convolution [8] aggregates the whole convo-
lutional weights through predicted attention coefficients. Our adaptive weight
mixing, however, allows more diverse weights since our mixing policies are dif-
ferent across the heads. Besides, convolution-based methods (Dynamic Convo-
lution [8] and Dynamic Depth-wise Convolution [15]) generate spatial-shared
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Fig. 2: Comparisons of different weight generation methods. We categorize the
methods by whether the weights are data-dependent, spatial-aware, or channel-
specific. Some typical operations in each category are: (a) Spatial MLP [43];
(b) Multi-head MLP (Section 3.2); (c) Convolution; (d) Dynamic Convolu-
tion [15, 8]; (e) Self-attention [46], Synthesizer [41], and Adaptive Weight Mixing
(Section 3.3).

weights while our method can produce unique weights for different spatial lo-
cations. Our method is also much more efficient than methods that directly
predict the parameters using an MLP including Synthesizer [41] and Dynamic
Depth-wise Convolution [15]. Our empirical results also show our method is
more effective and efficient than existing dynamic weight generation models (see
Section 4.3).

3.4 Architecture Variants

The adaptive weight mixing can be easily applied to various network architec-
tures based on self-attention and spatial MLP. Apart from the ViT-like archi-
tectures, as is already shown in Table 1, our method is conceptually compatible
with hierarchical architectures like Swin Transformers and Swin Mixer [29]. We
directly apply our adaptive weight mixing to Swin Transformers to build our
hierarchical models, including three variants named AMixer-T, AMixer-S, and
AMixer-B. We follow the hierarchical design in Swin [29], where a 4-stage archi-
tecture is adopted with [2, 2, n, 2] blocks in each stage. We adjust the number of
blocks in the third stage, number of heads, and the MLP ratio to scale our model
to have similar FLOPs with the Swin [29] series. Different from Swin, we find
setting the MLP ratio to 3 can lead to a better trade-off between accuracy and
complexity for our models. We also enlarge the window size to 14 for the third
stage benefiting from the proposed highly efficient weight generation method
without query-key interactions. We also further scale the ViT-like architecture
to 17 layers to match the complexity of the original DeiT-S model. We fix the
ratio of the bank size B to the number of heads H as 1.5 for our models due to
the decent trade-off between complexity and performance. Note that our models
enjoy more diversity with more heads but the performance of standard vision
Transformers saturates with the number of heads increasing as shown in [45]. We
follow the settings of Swin and do not add any extra convolutional layers except
the patch embedding [13] and merging layers [29], while many previous works
obtain significant improvement by adding more convolutional layers to capture
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Table 2: Main results on ImageNet. We apply our adaptive weight mixing
to ViT-style and hierarchical architectures. We also include the results of multi-
head MLP (MH-MLP) for comparison. We find the multi-head mechanism can
bring notable improvements to MLPs and show our adaptive weight mixing can
further enhance the performance of MLPs, surpassing self-attention.

Model Params FLOPs Acc(%)

DeiT-S [44] 22M 4.6G 79.8
ResMLP-12 [43] 15M 3.0G 76.6
ResMLP-24 [43] 30M 6.0G 79.4
MH-MLP-DeiT-S 22M 4.5G 79.2
AMixer-DeiT-S 21M 4.5G 80.8

Model Params FLOPs Acc(%)

Swin-T [29] 29M 4.5G 81.3
Swin-Mixer-T/D6 [29] 23M 4.0G 79.7
Swin-Mixer-B/D24 [29] 61M 10.4G 81.3
MH-MLP-T 27M 4.5G 80.7
AMixer-T 28M 4.5G 82.0

local patterns [23, 11, 48, 50]. Moreover, we develop a series of pure MLP models
that have identical architecture and designs (including all techniques discussed
in Section 3.2 and relative attention weight) to AMixer series except the adap-
tive weight mixing strategy as the static counterpart of our models. We refer to
them as “MH-MLP” (multi-head MLP) models. More details can be found in
Supplementary Material.

4 Experiments

We conduct extensive experiments to verify the effectiveness of our AMixer mod-
els and the new adaptive weight mixing operation. We present the main results
on ImageNet [37] and compare them with various state-of-the-art vision Trans-
formers and MLP-like architectures. We also test our models on the downstream
transfer learning task on relatively small datasets [26, 25, 32] and semantic seg-
mentation task on the challenging ADE20K [57] dataset. Lastly, we investigate
the effectiveness and efficiency of our new designs, and provide the visualization
for a better intuitive understanding of our method.

4.1 ImageNet Classification

Setups. We conduct our main experiments on ImageNet [37], a large-scale
benchmark dataset for image classification. We follow the standard protocol
to train our model on the training set that contains 1.2M images and evalu-
ate the model on the 50,000 validation images reporting the single-crop top-1
classification accuracy over the 1,000 categories. To fairly compare with previous
works on vision Transformers and MLP-like models, we follow the training strat-
egy proposed in DeiT [44], where the model is trained for 300 epochs with the
AdamW optimizer [30] and cosine learning rate scheduler. For ViT-style mod-
els, we directly adopt the data augmentation and training strategy of DeiT [44].
For hierarchical models, we follow the training techniques of Swin Transform-
ers [29], where EMA model [33] and repeated augmentation [20] are not used
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Table 3: Comparisons with state-of-the-art vision Transformers and
MLP-like models on ImageNet. We report the top-1 accuracy on ImageNet
as well as the number of parameters and the theoretical complexity in FLOPs.
We divide models into three groups based on their complexities. AMixer series
exhibit very competitive performances with previous state-of-the-art methods.

Model Params FLOPs Acc(%)

gMLP-S [28] 20M 4.5G 79.4
DeiT-S [44] 22M 4.6G 79.8
PVT-M [48] 44M 6.7G 81.2
Swin-T [29] 29M 4.5G 81.3
CPVT-S [12] 23M 4.6G 81.5
GFNet-H-S [34] 32M 4.6G 81.5
T2T-ViT-14 [54] 22M 5.2G 81.5
CycleMLP-B2 [6] 27M 3.9G 81.6
AMixer-T 26M 4.5G 82.0

Model Params FLOPs Acc(%)

ResMLP-36 [43] 45M 8.9G 79.7
PVT-Large [48] 61M 9.8G 81.7
T2T-ViTt-19 [54] 39M 9.8G 82.2
CrossViT-18 [5] 43M 9.0G 82.5
GFNet-H-B [34] 54M 8.6G 82.9
Swin-S [29] 50M 8.7G 83.0
CycleMLP-B4 [6] 52M 10.1G 83.0
Twins-SVT-B [11] 56M 8.3G 83.2
AMixer-S 46M 9.0G 83.5

Model Params FLOPs Acc(%)

MLP-Mixer-B [42] 46M - 76.4
ViT-B [13] 86M 17.5G 79.7
gMLP-S [28] 73M 15.8G 81.6
DeiT-B [44] 86M 17.5G 81.8
CPVT-B [12] 88M 17.6G 82.3
T2T-ViTt-24 [54] 64M 15.0G 82.6
Swin-B [29] 88M 15.4G 83.3
Twins-SVT-L [11] 99M 14.8G 83.7
AMixer-B 83M 16.0G 84.0

during training. Note that we do not use any extra training tricks [23] to directly
compare with baseline methods.

Comparisons with baseline models. We apply our new adaptive weight
mixing operation to two types of widely used architectures: the original ViT [44]
model enhanced with DeiT training strategy [44], and high-performance hierar-
chical models based on Swin Transformers [29]. We also include the results of
our multi-head MLP (MH-MLP) for comparison. The results are presented in
Table 2. With similar network architecture and identical training configurations,
we see our AMixer achieves +1% performance improvement over DeiT model.
By applying our operations to a Swin-Mixer-T/D6 and scaling the model to
match the complexity, we also observe that our method outperforms the orig-
inal Swin-T model by 0.7%. Besides, we find that the multi-head mechanism
can bring notable improvements to MLPs, where our modified MLP models can
largely improve the ResMLP-12 [43] and Swin-Mixer-T/D6 models by 2.6% and
1.0%. The performance gap between AMixer and MH-MLP (+1.6% and 1.3% for
ViT and Swin style model respectively) also clearly shows the neat improvement
brought by the adaptive weight mixing. These results strongly demonstrate that
our adaptive weight mixing is a more efficient and effective method to generate
attention weights than self-attention.

Comparisons with state-of-the-art models. By further scaling up AMixer
models, we build a series of models based on Swin Transformers to compare with
state-of-the-art vision Transformers and MLP-like models as shown in Table 3.
We see our method achieves very competitive results compared to previous state-
of-the-art networks with a relatively simple design. The building block of AMixer
consists of only MLPs and our adaptive weight mixing operations, while many
previous works add convolutions [48, 11] to better capture local information or
use a more sophisticated architecture [5] instead of the standard four-stage net-
work. Since the mainstream research of developing more powerful vision Trans-
formers still uses self-attention as an indispensable ingredient, we believe our
method has the potential of applying to most vision Transformers variants and
improving their efficiency.
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Table 4:Results on transfer learning datasets. We report the top-1 accuracy
on the four datasets and the FLOPs of the models.

Model FLOPs CIFAR10 CIFAR100 Flowers Cars

ResNet50 [17] 4.1G - - 96.2 90.0
EfficientNet-B7 [40] 37G 98.9 91.7 98.8 94.7
ViT-L/16 [13] 190.7G 97.9 86.4 89.7 -
DeiT-B/16 [44] 17.5G 99.1 90.8 98.4 92.1
ResMLP-24 [43] 6.0G 98.7 89.5 97.9 89.5
Swin-T [29] 4.5G 98.7 88.7 99.6 91.6

AMixer-T 4.5G 98.9 89.9 99.6 92.9
AMixer-B 16.0G 99.1 91.0 99.8 92.9

4.2 Downstream Tasks

Transfer learning. To evaluate the transferability of our AMixer architec-
ture and the learned representation, we follow the commonly used experimental
settings [40, 13, 44] to evaluate AMixer on a set of transfer learning bench-
mark datasets that contain a relatively small number of samples while having
substantial domain gaps from the upstream ImageNet dataset. Specifically, we
test our lightweight AMixer-T model and a more powerful model AMixer-B on
CIFAR-10 [26], CIFAR-100 [26], Stanford Cars [25] and Flowers-102 [32]. Fol-
lowing the setting of previous works, we initialize the models with the ImageNet
pre-trained weights and fine-tune them on the new datasets. The results are pre-
sented in Table 4. Our models generally have strong transferability on various
downstream datasets. Our models also show competitive performance compared
to state-of-the-art CNNs and large-scale vision Transformers with relatively low
complexity.

Semantic Segmentation. Semantic segmentation is a widely used down-
stream task to verify the generality of vision Transformers on dense prediction
tasks with high input resolution. We evaluate our AMixer model on the chal-
lenging ADE20K [57] dataset following previous works [29, 48], where we train
two AMixer models that have similar computational complexities with the ba-
sic ResNet-50 and ResNet-101 models [17]. We see in Table 5 that our model
outperforms the strong Swin models with a similar level of complexity, which
suggests our method generalizes well to dense prediction tasks.

4.3 Analysis and Visualization

Robustness & generalization ability. We further perform experiments to
show our AMixer also has better robustness and generalization ability. For ro-
bustness, we consider ImageNet-A, ImageNet-C, FGSM and PGD. ImageNet-
A [19] (IN-A) is a challenging dataset that contains natural adversarial examples.
ImageNet-C [18] (IN-C) is used to validate the robustness of the model under
various types of corruption. We use the mean corruption error (mCE, lower is
better) on ImageNet-C as the evaluation metric. FGSM [14] and PGD [31] are
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Table 5: Semantic segmentation on ADE20K. We report the mIoU on the
validation set as well as the number of parameters and theoretical complexity
in FLOPs. The models are equipped with the prevalent semantic segmentation
method Semantic FPN [24] and UperNet [51]. The FLOPs are measured with
1024× 1024 input. We divide the models into two groups that have the similar
complexities of widely used ResNet-50 and ResNet-101 models [17] respectively.

Backbone
Semantic FPN [24] 80k UperNet [51] 160k

FLOPs Params mIoU (%) FLOPs Params mIoU (%)

ResNet50 [17] 183G 29M 36.7 952G 67M 42.1
Swin-T [29] 182G 32M 41.5 940G 60M 44.5
AMixer-T 169G 31M 43.7 927G 58M 46.0

ResNet101 [17] 260G 48M 38.8 1029G 86M 43.8
Swin-S [29] 274G 53M 45.2 1033G 81M 47.6
AMixer-S 249G 51M 45.9 1021G 78M 47.7

Table 6: Evaluation of robustness and generalization ability. We measure
the robustness from different aspects, including the adversarial robustness by
adopting adversarial attack algorithms including FGSM and PGD and the per-
formance on corrupted/out-of-distribution datasets including ImageNet-A [19]
(top-1 accuracy) and ImageNet-C [18] (mCE, lower is better). The generaliza-
tion ability is evaluated on ImageNet-V2 [35] and ImageNet-Real [3].

Model FLOPs Params
ImageNet Generalization Robustness

Top-1↑ Top5↑ IN-V2↑ IN-Real↑ FGSM↑ PGD↑ IN-C↓ IN-A↑

DeiT-S 4.6G 22M 79.8 95.0 68.4 85.6 40.7 16.7 54.6 18.9
Swin-T 4.5G 28M 81.2 95.5 69.6 86.6 33.7 7.3 62.0 21.6
AMixer-T 4.5G 26M 82.0 96.0 71.2 87.3 40.8 13.3 54.0 25.4

DeiT-B 17.6G 87M 82.0 95.6 70.9 86.7 46.4 21.3 48.5 27.4
Swin-B 15.4G 88M 83.4 96.5 72.5 87.8 49.2 21.3 54.4 35.8
AMixer-B 16.0G 83M 84.0 96.7 73.5 88.0 51.1 26.8 48.6 36.5

two widely used algorithms that are targeted to evaluate the adversarial ro-
bustness of the model by single-step attack and multi-step attack, respectively.
For generalization ability, we adopt two variants of ImageNet validation set:
ImageNet-V2 [35] (IN-V2) and ImageNet-Real [3] (IN-Real). ImageNet-V2 is a
re-collected version of ImageNet validation set following the same data collection
procedure of ImageNet, while ImageNet-Real contains the same images as Im-
ageNet validation set but has reassessed labels. We compare two of our models
AMixer-T and AMixer-B to both the DeiT [44] and Swin [29] counterparts and
find the AMixer models enjoy better generalization ability and robustness.

Comparisons with existing weight generation methods. We first ana-
lyze the effectiveness of our new weight generation method compared to previous
ones as shown in Table 7. We compare our method with self-attention (DeiT [44]),
Synthesizer [41], location-shared weight generation with MLP (DyConv-G [15])
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Table 7: Comparisons with other weight generation and efficient attention meth-
ods. We fix the training strategy and the number of layers or FLOPs to test the
effectiveness of different methods.

(a) Weight generation strategies.

Model Params FLOPs Acc (%)

DeiT-S [44] 22M 4.6G 79.8
Synthesizer [41] 19M 3.9G 78.4
DyConv-G [15] 287M 4.0G 79.2
DyConv-S [7] 30M 3.7G 78.6

AMixer 19M 3.9G 80.3

(b) Efficient attention methods.

Model FLOPs Acc (%)

Linformer [47] 4.5G 77.8
Performer [10] 4.6G 72.1
Nystroformer [53] 4.6G 77.1
PVTv2 [49] 4.5G 79.1

AMixer 4.5G 80.8

Table 8:Data efficiency & convergence speed.We compare the performance
of our model and the baseline vision Transformer when trained with fewer data
or fewer epochs on ImageNet.

Model
Data ratio Training epoch

10% 50% 100% 50 100 300

DeiT-S [44] 34.0 72.9 79.8 65.7 74.4 79.8
AMixer-DeiT-S 48.7 76.3 80.8 69.2 76.9 80.8

and weight selection (DyConv-S [7]). Under a carefully controlled setting (iden-
tical training method following DeiT [44] and same network configurations), we
show that our method achieves the best performance among competitive base-
line methods with high efficiency, where suggests our method is more suitable
and efficient in the scenarios of vision Transformers.

Comparisons with other efficient self-attentions. We compare our
adaptive weight mixing with other methods to efficiently approximate self-attention,
including Linformer [47], Performer [10], Nystroformer [53] and the linear at-
tention in PVTv2 [49]. For fair comparisons, we use DeiT-S [44] as the basic
architecture and directly replace the standard self-attention with different effi-
cient self-attentions. We also ensure the FLOPs of all the models to be ∼4.6G by
stacking enough layers. The results are summarized in Table 7b. We find those
efficient self-attentions all fail to bring improvement over the DeiT-S, while our
AMixer-Deit-S can outperform the baseline by a significant margin.

Data efficiency & convergence speed. We compare the performance of
our model and the baseline vision Transformer when trained with fewer data
or fewer epochs on ImageNet. The results are shown in Table 8. We see the
advantage of our model becomes more significant when the model is trained
with fewer data or epochs. The results indicate that our adaptive weight mixing
operation performs better when data and computation resources are limited.

Adaptive weights visualization. To investigate how our M matrices vary
with the input images, we visualize our adaptive weights M in Figure 3. For each
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Fig. 3: Our method can generate data-dependent attention weights without
token-token interactions. The attention weights in shallow layers usually focus
on local regions while the weights of deeper layers adaptively attends to the
shape of the whole object.

image, we first find the token (indicated by the red box) that has the highest
classification score on the ground truth category, and visualize the weights corre-
sponded to that token. We include the weights of the 1, 3, 5, 7, 10 and 12-th layer
and weights of different heads are averaged. Firstly, we find the weights exhibit
notable diversity across different images. Secondly, we show our model tends to
attend to the most discriminative part of the images (e.g ., in the first row, the
weights have higher values near the head of the dog). These visualizations show
that our adaptive weights generated without token-token interactions have the
similar behavior to the weights obtained by self-attention [13].

5 Conclusion

In this paper, we have thoroughly studied the key differences between vision
Transformers and recent all-MLP models. Inspired by our empirical results, we
have proposed a new operation named adaptive weight mixing to generate at-
tention weights without token-token interactions. Based on this operation, we
have developed a new architecture AMixer that is computationally and para-
metrically more efficient than vision Transformers. Extensive experiments have
shown that our adaptive weight mixing is more efficient and effective than pre-
vious weight generation methods. Our models achieve a better trade-off between
accuracy and complexity than vision Transformers and MLP models on both
ImageNet and downstream tasks.

Acknowledgments. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFA0700802, in
part by the National Natural Science Foundation of China under Grant 62125603
and Grant U1813218, in part by a grant from the Beijing Academy of Artificial
Intelligence (BAAI).



AMixer 15

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A
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