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This supplementary material presents the details of Section 3.2, 5.1, 5.4.
Besides, two extra experiments show how fast the proposed distillation method
is and the result of distillation with ground-truth.

— Model Architectures. We elaborate the model architectures of TinyViT
of Section 3.2.

— Implementation Details. We provide the details of ImageNet-21k pre-
training, ImageNet-1k finetuning and training from scratch of Section 5.1.

— Few-shot Learning. We elaborate few-shot datasets and evaluation proto-
cal of Section 5.4.

— How fast the distillation method is? We compare the training cost be-
tween our proposed fast pretraining distillation and the conventional method,
to show the effectiveness of the proposed method.

— Distillation with ground-truth. We show why to use soft labels only to
distill student models.

A  Model Architectures

Our proposed TinyViT architecture is shown in Tab. 1. It is a hierarchical struc-
ture with 4 stages, for the convenience of dense prediction downstream tasks
like Swin [10] and LeViT [5]. The attention biases [5] and a 3 x 3 depthwise
convolution between attention and MLP are introduced to capture local infor-
mation [17,1]. The factors { s YNy _as VWa s YRs YA, YE+ can be contracted
to form tiny model families. We start with a 21M model and generate a set of
candidate models around the basic model by adjusting the contraction factors.
Then we select models that satisfy both constraints on the number of parame-
ters and throughput, and evaluate them on 99% train and 1% val data sampled
from ImageNet-1k train set. The models with the best validation accuracy will
be utilized for further reduction in the next step until the target is achieved. In
TinyViT model family, all models share the same factors: {vn,, Yn,, YNss YN, }
= {2, 2, 67 2}7 {?n'_” TWs Txx'l} = {77 147 7} and {A/R7 YN A,F} = {4, 47 32}
For the embeded dimensions {7/, , , }, TinyViT-21M: {96, 192, 384,
576}, TinyViT-11M: {64, 128, 256, 448} and TinyViT-5M: {64, 128, 160, 320}.
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Table 1: An elastic base architecture of TinyViT.

Block Configuration Output
Patch Embed Stacked Conv Sifir;jl;iz d‘;ii;’l x 2 56 x 56
] embed dim ,
Stage 1 MBConv [8] . . X YN, 56 x 56
expansion ratio vr
Downsampling MBConv [8] C}Eﬁ:;:/tiltput ’;;flldc 2 x 1 28 x 28
embed dim , head /VE,
Stage 2 Transformer [15] window size v, X Vi, X YN, | 28 X 28
mlp ratio v,
Downsampling MBConv [8] eli?;c?jn(/i(l;:tput ,dsit;lde 2, x 1 14 x 14
embed dim , head /vE,
Stage 3 Transformer [15] window size Vi, X Y, X YN, | 14 x 14
mlp ratio 7,
Downsampling MBConv [8] elgl(;)(‘(ltln(/lgstput ’dsitrfllde 2, x 1 TxT7
[ embed dim , head /vE, ]
Stage 4 Transformer [15] window size Y, X Y., XN, | TXT
mlp ratio 7/
Classifier AvgPool+LayerNorm-+Linear [output dim: the number of classes}

Besides, we provide some interesting observations about model contraction.
It may help both the manual design and the search space design for efficient
small vision transformers.

1) For small vision transformers, it improves the accuracy when replacing
the transformer block in the first stage with MBConv [8] blocks. We conjecture
that early convolution introduces inductive bias like locality [18,5]. It provides
more prior knowledge to help small models converge well.

2) Tt reduces the number of parameters significantly when decreasing the
embeded dimension , S0 it is the first step to scale the model down. When
the model becomes narrower, its depth (especially in the depth of the third
stage v, ) is increased to satisfy the constraint of the number of parameters.

3) For the MLP expansion ratio 7,/, the value 4 is better than 3 in our
models.
4) Window sizes 7y, , do not affect the model size, but larger windows

imrpove the accuracy with more computational cost. Especially for Stage 3,
14 x 14 window size improves the accuracy with little extra computational cost.

B Implementation Details

ImageNet-21k pretraining. We pretrain TinyViT for 90 epochs on ImageNet-
21k [4] with an AdamW [11] optimizer, a weight decay of 0.01, initial learning
rate of 0.002 with a cosine scheduler, 5 epochs warm-up, batch size of 4,096 and
gradient clipping with a max norm of 5. The stochastic depth [9] rate is set
to 0 for TinyViT-5/11M and 0.1 for 21M, respectively. The data augmentation
techniques include random resize and crop, horizontal flip, color jittering, random
erasing [21], RandAugment [3], Mixup [20] and Cutmix [19].
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ImageNet-1k finetuning from the pretrained model. We finetune the pre-
trained models for 30 epochs on ImageNet-1k, using a batch size of 1,024, a
cosine learning rate scheduler with 5-epoch warm-up. The initial learning rate
is 5 x 107* and weight decay is 10~8. The learning rate of each layer is decayed
by the rate 0.8 from the output layer to the input layer. The running statistics
of BatchNorm are frozen. We disable Mixup and Cutmix.

ImageNet-1k finetuning on higher resolution. When finetuning TinyViT on
higher resolution, the windows of each self-attention layer are enlarged as the
increasing of input resolution. The attention biases are bilinear-interpolated to
adapt the new window size. For example, the window sizes of the four stages
are {7, 7, 14, 7} on 2242 resolution, {12, 12, 24, 12} on 3842 resolution and {16,
16, 32, 16} on 5122 resolution. We finetune the model for 30 epochs, using an
accumulated batch size of 1024, a cosine learning rate scheduler with 5-epoch
warm up. The initial learning rate is 4 x 10~° and weight decay is 1078, The
running statistic of BatchNorm are frozen. Mixup and Cutmix are disabled.

ImageNet-1k training from scratch. We train our models for 300 epochs on
ImageNet-1k with an AdamW optimizer, a weight decay of 0.05, initial learning
rate of 0.001 with a cosine scheduler, 20 warm-up epochs, batch size of 1,024
and gradient clipping with a max norm of 5.0. The stochastic depth rate is set
t0 0.0/0.1/0.2 for TinyViT-5/11M/21M, respectively.

C Few-shot Learning

The few-shot learning benchmark [6] contains four datasets, namely CropDisease
[12] (plant leaf images, 38 disease stages over 14 plant species), EuroSAT [7]
(RGB satellite images, 10 categories), ISIC 2018 [2] (dermoscopic images of skin
lesions, 7 disease states) and ChestX [16] (Chest X-rays, 16 conditions). The
learning and inference settings are the same as in [6]. The evaluation protocol
involves 5-way classification across 5-, 20- and 50-shot. The classes and shots are
randomly sampled for each episode, for 600 episodes per way and shot. Average
accuracy over all episodes is reported. We add a single linear layer in replace of
the original classification layer in TinyViT-21M.

D How fast the distillation is?

The proposed fast pretraining distillation is faster than the conventional distilla-
tion method by 29.8% when using Florence model as the teacher (682M Params
and 97.9 GFLOPs). More concretely, our method takes 92.4 GPU days to store
the top-100 logits of Florence and 140.0 GPU days to pretrain TinyViT-21M
(4.4 GFLOPs) with the saved logits for 90 epochs on ImageNet-21k, while the
conventional distillation uses 330.9 GPU days due to limited batch size. Since
the teacher logits per epoch are different and independent, they can be saved
in parallel, instead of epoch-by-epoch in the conventional method. Besides, the
saved logits can be reused for arbitrary student models, and avoid re-forwarding
cost of the large teacher model.
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Table 2: Comparison for pretraining distillation w/ and w/o ground truth (GT)
labels. The student model is a variant of TinyViT-21M, pretrained for 90 epochs
on ImageNet-21k and then finetuned for 30 epochs.

IN-21k Distillation IN-1k IN-Real IN-V2
Pretrained Teacher Type Top-1(%)  Top-1(%)  Top-1(%)
. w/ GT 84.3 88.5 73.6
CLIP-ViT-L/14 w/o GT | 845 883 [z
Florence w/ GT 81.2 885 737
w/o GT 84.9 89.0 74.9

E Distillation with ground-truth

We compare the performance under the distillation with and without ground-
truth. The student model is a variant of TinyViT-21M, equipped with talking
head [14] and shared blocks in Stage 4. As shown in Tab 2, the distillation with
ground-truth would cause slight performance drops. This is probably because
that not all the labels in ImageNet-21k [4] are mutually exclusive. For exam-
ple, it contains labels like “chair” and “furniture”, “horse” and “animal” [13],
which are correlative pairs. Therefore, the one-hot ground-truth label could not
describe an object precisely, and in some cases it suppresses either child classes
or parent classes during training. By contrast, the soft labels generated by pre-
trained foundation models carry a lot of category relation information, that is
helpful for distilling a small model, as presented in Fig. 3 of the main paper.
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