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Abstract. Vision transformer (ViT) recently has drawn great attention
in computer vision due to its remarkable model capability. However, most
prevailing ViT models suffer from huge number of parameters, restricting
their applicability on devices with limited resources. To alleviate this is-
sue, we propose TinyViT, a new family of tiny and efficient small vision
transformers pretrained on large-scale datasets with our proposed fast
distillation framework. The central idea is to transfer knowledge from
large pretrained models to small ones, while enabling small models to
get the dividends of massive pretraining data. More specifically, we apply
distillation during pretraining for knowledge transfer. The logits of large
teacher models are sparsified and stored in disk in advance to save the
memory cost and computation overheads. The tiny student transformers
are automatically scaled down from a large pretrained model with com-
putation and parameter constraints. Comprehensive experiments demon-
strate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8%
on ImageNet-1k with only 21M parameters, being comparable to Swin-
B pretrained on ImageNet-21k while using 4.2 times fewer parameters.
Moreover, increasing image resolutions, TinyViT can reach 86.5% accu-
racy, being slightly better than Swin-L while using only 11% parameters.
Last but not the least, we demonstrate a good transfer ability of TinyViT
on various downstream tasks. Code and models are available at here.
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1 Introduction

Transformer [62] has taken computer vision domain by storm and are becoming
increasingly popular in both research and practice [20,8,75]. One of the recent
trends for vision transforms (ViT) is to continue to grow in model size while
yielding improved performance on standard benchmarks [75,41,54]. For exam-
ple, V-MoE [54] uses 305 million images to train an extremely large model with
14.7 billion parameters, achieving state-of-the-art performance on image clas-
sification. Meanwhile, the Swin transformer uses 3 billion parameters with 70
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Fig. 1: Comparison of our
TinyViT with other small vision
transformer models [61,42] on
ImageNet-1k in terms of w/ and
w/o ImageNet-21k pretraining
and distillation. Pretraining with
distillation can effectively improve
the performance of all these
small transformer models, further
unveiling their capacities. Best
viewed in color.
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million pretraining images, to attain promising results on downstream detection
and segmentation tasks [42,41]. Such large model sizes and the accompanying
heavy pretraining costs make these models unsuitable for applications involving
limited computational budgets, such as mobile and IoT edge devices [77].

In contrast to scaling up models to large scales, this work turns attention to
downsizing vision transformers, aiming to generate a new family of tiny models
and elevate their transfer capacities in downstream tasks. In particular, we ex-
plore the following key issue: how to effectively transfer the knowledge of existing
large-scale transformers to small ones, as well as unleash the power of large-scale
data to elevate the representability of small models? In computer vision, it has
long been recognized that large models pretrained on large datasets often achieve
better results, while small models easily become saturated (or underfitting) as
the growth of data [75,41]. Is there any possible way for small models to absorb
knowledge from massive data and further unveil their capacities?

To answer this question, we introduce a fast knowledge distillation method to
pretrain small models, and show that small models can also get the dividends of
massive pretraining data with the guidance of large models. More specifically, we
observe that direct pretraining of small models suffers from performance satura-
tion, especially when the data scale increases. But if we impose distillation during
pretraining, using a powerful model as the teacher, the potentials of large-scale
pretraining data can be unlocked for small models, as demonstrated in Fig. 1.
Meanwhile, the distilled small models can be transferred well to downstream
tasks, since they have learned a great deal of knowledge about how to general-
ize from the large model as well as the large-scale pretraining data. We give a
detailed discussion in Sec. 4 exploring the underlying reasons why pretraining
distillation is able to further unveil the capacities of small models.

Pretraining models with distillation is inefficient and costly, because a consid-
erable proportion of computing resources is consumed on passing training data
through the large teacher model in each iteration, rather than training the target
small student. Also, a giant teacher may occupy the most GPU memory, signif-
icantly slowing down the training speed of the students (due to limited batch
size). To address this issue, we propose a fast and scalable distillation strategy.
More concretely, we propose to generate a sparse probability vector as the soft
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label of each input image in advance, and store it into label files together with
the corresponding data augmentation information like random cropping, Ran-
dAugment [17], CutMix [73], etc. During training, we reuse the stored sparse soft
labels and augmentations to precisely replicate the distillation procedure, suc-
cessfully omitting the forward computation and storage of large teacher models.
Such strategy has two advantages: 1) Fast. It largely saves the memory cost and
computation overheads of generating teachers’ soft labels during training. Thus,
the distillation of small models can be largely speed up because it is able to use
much larger batch size. Besides, since the teacher logits per epoch are indepen-
dent, they can be saved in parallel, instead of epoch-by-epoch in conventional
methods. 2) Scalable. It can mimic any kind of data augmentation and generate
the corresponding soft labels. We just need to forward the large teacher model
for only once, and reuse the soft labels for arbitrary student models.

We verify the efficacy of our fast pretraining distillation framework not only
on existing small vision transformers, such as DeiT-T [61] and Swin-T [42], but
also over our new designed tiny architectures. Specifically, following [21], we
adopt a progressive model contraction approach to scale down a large model
and generate a family of tiny vision transformers (TinyViT). With our fast
pretraining distillation on ImageNet-21k [18], TinyViT with 21M parameters
achieves 84.8% top-1 accuracy on ImageNet-1k, being 4.2 times smaller than the
pretrained Swin-B (85.2% accuracy with 88M parameters). With higher resolu-
tion, our model can reach 86.5% top-1 accuracy, establishing new state-of-the-art
performance on ImageNet-1k under aligned settings. Moreover, TinyViT mod-
els demonstrate good transfer capacities on downstream tasks. For instance,
TinyViT-21M gets an AP of 50.2 on COCO object detection benchmark, being
2.1 points superior to Swin-T using 28M parameters.

In summary, the main cotributions of this work are twofold.

– We propose a fast pretraining distillation framework to unleash the capacity
of small models by fully leveraging the large-scale pretraining data. To our
best knowledge, this is the first work exploring small model pretraining.

– We release a new family of tiny vision transformer models, which strike a
good trade-off between computation and accuracy. With pretraining distil-
lation, such models demonstrate good transfer ability on downstream tasks.

2 Related Work

In this section, we review the related work on large-scale pretraining, small
vision transformers, and knowledge distillation. It is notable that our work is
orthogonal to existing literature on model compression techniques such as quan-
tization [43,35,26,43] and pruning [81,69,70,38]. These techniques can be used as
a post-processing for our TinyViT to further improve model efficiency.

Large-scale pretraining. Bommasani et al. [6] first coined the concept
of foundation models that are pretrained from large-scale data and have out-
standing performance in various downstream tasks. For example, BERT [19]
and GPT-3 [51] have been demonstrated to be effective foundation models in
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natural language processing. Recently, there are some research efforts in devel-
oping foundation models in computer vision, including CLIP [50], Align [36]
and Florence [72]. They have shown impressive transfer and zero-shot capabil-
ities. However, these large models are unsuitable for downstream applications
with limited computational budgets. By contrast, our work investigates the pre-
training method for small models and improves their transferability to various
downstream tasks.

Small vision transformers. Lightweight CNNs have powered many mo-
bile vision tasks [33,59]. Recently, there are several attempts developing light
vision transformers (ViTs). Mehta et al. [44] combined standard convolutions
and transformers to develop MobileViT, which outperforms the prevailing Mo-
bileNets [33] and ShuffleNet [79]. Gong et al. [22] employed NAS and identified
a family of efficient ViTs with MACs ranging from 200M to 800M, surpassing
the state-of-the-art. Graham et al. [24] optimized the inference time of small
and medium-sized ViTs and generated a family of throughput-efficient ViTs.
Different from these manually designed or automatically searched small models,
our work explores model contraction to generate small models by progressively
slimming a large seed model, which can be considered as a complementary work
to existing literature on scaling-up large vision transformers [12,75,54,41].

Knowledge distillation. Distillation in a teacher-student framework [31] is
widely used to leverage knowledge from large teacher models. It has been exten-
sively studied in convolutional networks [23]. Recently, there are several research
works in developing distillation techniques for ViTs [70,80]. For example, Tou-
vron et al. [61] introduced a distillation token to allow the transformer to learn
from a ConvNet teacher, while Jia et al. [37] proposed to excavate knowledge
from the teacher transformer via the connection between images and patches.
Distillation for ViTs is still under-explored, especially for pretraining distillation.

In knowledge distillation, the mostly related work to ours is the recent FKD [56].
Both methods share a similar spirit on saving teacher logits to promote train-
ing efficiency, but our framework has two advantages. 1) More efficient. Instead
of saving the explicit information of each transformation in data augmentation
using hundreds of bytes, such as crop coordinates and rotation degree, our frame-
work only needs 4 bytes to store a random seed. The seed will be used as the
initial state of the random number generator to reproduce the number sequence
that controls the transformations in data augmentation to generate crop coor-
dinates and rotation degree, etc. 2) More general. Our framework supports all
existing types of data augmentation including the complex Mixup [76] and Cut-
mix [73], which are not explored in FKD. Moreover, the studied problem in [56]
is different to ours. We focus on pretraining-stage distillation for transformers,
while FKD explores finetune-stage distillation for CNN models.

3 TinyViT

This section proposes TinyViT, a new family of tiny and efficient models with
fast pretraining distillation on large-scale data. We first introduce the fast knowl-
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Fig. 2: Our fast pretraining distillation framework. Top: the branch for sav-
ing teacher logits. Encoded data augmentation and sparsified teacher logits are
saved. Middle: the disk for storing information. Bottom: the branch for train-
ing the student. The decoder reconstructs the data augmentation, and distilla-
tion is conducted between the teacher logits and student outputs. Note that the
two branches are independent and asynchronous.

edge distillation framework for small model pretraining in Sec. 3.1. Then we
design a new tiny model family with good computation/accuracy trade-off by
progressivley scaling down a large seed model in Sec. 3.2.

3.1 Fast Pretraining Distillation

We observe that direct pretraining of small models on massive data does not
bring much gains, especially when transferring them to downstream tasks, as
presented in Fig. 1. To address this issue, we resort to knowledge distillation to
further unveil the power of pretraining for small models. Different from prior
work that pays most attention to finetune-stage distillation [61], we focus on
pretraining distillation, which not only allows small models to learn from large-
scale model, but also elevates their transfer capacities for downstream tasks.

Pretraining with distillation is inefficient and costly, because a considerable
proportion of computing resources is consumed on passing training data through
the large teacher model in each iteration, rather than training the target small
student. Also, a giant teacher may occupy the most GPU memory, slowing down
the training speed of the target students (due to limited batch size). To solve
this problem, we propose a fast pretraining distillation framework. As depicted in
Fig. 2, we store the information of data augmentation and teacher predictions in
advance. During training, we reuse the stored information to precisely replicate
the distillation procedure, successfully omitting the forward computation and
memory occupation of the large teacher model.



6 Kan Wu et al.

Mathematically, for an input image x with strong data augmentation A, such
as RandAugment [17] and CutMix [73], we store both A and teacher prediction
ŷ = T (A(x)), where T (·) and A(x) are the teacher model and the augmented
image. It is notable that passing the same image through the same data aug-
mentation pipeline multiple times will generate different augmented images due
to the inherent randomness in data augmentation. Therefore, the pair (A, ŷ)
needs to be saved for each image in each iteration, as illustrated in Fig. 2.

In the training process, we only need to recover the pairs (A, ŷ) from stored
files, and optimize the following objective function for student model distillation:

L = CE (ŷ, S(A(x))) , (1)

where S(·) and CE(·) are the student model and cross entropy loss, respectively.
Note that our framework is label-free, i.e., with no need for ground-truth labels,
because we only use the soft labels generated by teacher models for training.
Therefore, it can utilize numerous off-the-shelf web data without labels for large-
scale pretraining. Such a label-free strategy is workable in practice because the
soft labels are accurate enough while carrying a lot of discriminative information
for classification such as category relations. We also observe that distillation with
ground-truth would cause slight performance drops. The reason may be that not
all the labels in ImageNet-21k [18] are mutually exclusive [53], including correl-
ative pairs like “chair” and “furniture”, “horse” and “animal”. Therefore, the
one-hot ground-truth label could not describe an object precisely, and in some
cases it suppresses either child classes or parent classes during training. More-
over, our distillation framework is as fast as training models without distillation
since the cumbersome teacher T (·) is removed during training in Eq. (1).

Besides, our distillation framework is fast due to two key components: sparse
soft labels and data augmentation encoding. They can largely reduce the storage
consumption while improving memory efficiency during training.

Sparse soft labels. Let’s consider the teacher model outputs C logits for
the prediction. It often consumes much storage space to save the whole dense
logits of all augmented images if C is large, e.g., C = 21, 841 for ImageNet-21k.
Therefore, we just save the most important part of the logits, i.e., sparse soft
labels. Formally, we select the top-K values in ŷ, i.e., {ŷI(k)}

K

k=1
∈ ŷ, and store

them along with their indices {I(k)}Kk=1 into our label files. During training, we
only reuse the stored sparse labels for distillation with label smoothing [58,55],
which is defined as

ŷc =

{
ŷI(k) if c = I(k),
1−

∑K
k=1 ŷI(k)

C−K otherwise,
(2)

where ŷc is the recovered teacher logits for student model distillation, i.e., ŷ =
[ŷ1, . . . , ŷc, . . . , ŷC ]. When the sparsity factor K is small, i.e. K ≪ C, it can
reduce logits’ storage by orders of magnitude. Moreover, we empirically show
that such sparse labels can achieve comparable performance to the dense labels
for knowledge distillation, as presented in Sec. 5.2.
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Data augmentation encoding. Data augmentation involves a set of pa-
rameters d, such as the rotation degree and crop coordinates, to transform the
input image. Since d is different for each image in each iteration, saving it di-
rectly becomes memory-inefficient. To solve this problem, we encode d by a
single parameter d0 = E(d), where E(·) is the encoder in Fig. 2. Then in the
training process, we recover d = E−1(d0) after loading d0 in the storage files,
where E−1(·) is viewed as the decoder. Therefore, the data augmentation can
be accurately reconstructed. In practice, a common choice for the decoder is the
pseudo-random number generator (i.e. PCG [47]). It takes a single parameter as
the input and generates a sequence of parameters. As for the encoder, we simply
implement it by a generator for d0 and reusing the decoder E−1(·). It outputs
d = E−1(d0) for the teacher model. d0 is saved for the decoder to reproduce d
when training the student. Thus, the implementation becomes more efficient.

3.2 Model Architectures

In this subsection, we present a new family of tiny vision transformers by scaling
down a large model seed with a progressive model contraction approach [21].
Specifically, we start with a large model and define a basic set of contraction
factors. Then in each step, smaller candidate models are generated around the
current model by adjusting the contraction factors. We select models that satisfy
both constraints on the number of parameters and throughput. The model with
the best validation accuracy will be utilized for further reduction in the next
step until the target is achieved. This is a form of constrained local search [32]
in the model space spanned by the contraction factors.

We adopt a hierarchical vision transformer as the basic architecture, for the
convenience of dense prediction downstream tasks like detection that require
multi-scale features. More concretely, our base model consists of four stages
with a gradual reduction in resolution similar to Swin [42] and LeViT [24]. The
patch embedding block consists of two convolutions with kernel size 3, stride
2 and padding 1. We apply lightweight and efficient MBConvs [33] in Stage
1 and down sampling blocks, since convolutions at earlier layers are capable
of learning low-level representation efficiently due to their strong inductive bi-
ases [24,67]. The last three stages are constructed by transformer blocks, with
window attention to reduce computational cost. The attention biases [24] and
a 3 × 3 depthwise convolution between attention and MLP are introduced to
capture local information [66,15]. Residual connection [28] is applied on each
block in Stage 1, as well as attention blocks and MLP blocks. All activation
functions are GELU [30]. The normalization layers of convolution and linear are
BatchNorm [34] and LayerNorm [3], respectively.

Contraction factors. We consider the following factors to form a model:

– γD1−4
: embeded dimension of four stages respectively. Decreasing them re-

sults in a thinner network with fewer heads in multi-head self-attention.
– γN1−4

: the number of blocks in four stages respectively. The depth of the
model is decreased by reducing these values.



8 Kan Wu et al.

– γW2−4
: window size in the last three stages respectively. As these values

become smaller, the model has fewer parameters and higher throughput.
– γR: channel expansion ratio of the MBConv block. We can obtain a smaller

model size by reducing this factor.
– γM : expansion ratio of MLP for all transformer blocks. The hidden dimension

of MLP will be smaller if scaling down this value.
– γE : the dimension of each head in multi-head attention. The number of heads

will be increased when scaling it down, bringing lower computation cost.

We scale down the above factors with a progressive model contraction ap-
proach [21] and generate a new family of tiny vision transformers: All models
share the same factors: {γN1 , γN2 , γN3 , γN4} = {2, 2, 6, 2}, {γW2 , γW3 , γW4} =
{7, 14, 7} and {γR, γM , γE} = {4, 4, 32}. For the embeded dimensions {γD1

,
γD2

, γD3
, γD4

}, TinyViT-21M: {96, 192, 384, 576}, TinyViT-11M: {64, 128, 256,
448} and TinyViT-5M: {64, 128, 160, 320}.

4 Analysis and Discussions

In this section, we provide analysis and discussions on two key questions: 1)
What are the underlying factors limiting small models to fit large data? 2) Why
distillation can unlock the power of large data for small models? To answer the
above questions, we conduct experiments on the widely used large-scale bench-
mark ImageNet-21k [18], which contains 14M images with 21,841 categories

What are the underlying factors limiting small models to fit large data? We
observe that there are many hard samples existing in IN-21k, e.g., images with
wrong labels and similar images with different labels due to the existence of mul-
tiple equally prominent objects in the images. This is also recognized by existing
literature [74,5,53] and approximately 10% images in ImageNet are considered
as hard samples. Small models struggle to fit these hard samples, leading to low
training accuracy compared to large models (TinyViT-21M: 53.2% vs. Swin-L-
197M [42]: 57.1%) and limited transferability on ImageNet-1k (TinyViT-21M w/
pretraining: 83.8% vs. w/o pretraining: 83.1%).

To verify the impact of hard samples, we resort to two techniques. 1) In-
spired by [5], we exploit the powerful pretrained model Florence [72] finetuned
on ImageNet-21k to identify the images whose labels lie outside the top-5 predic-
tions of Florence. Through this procedure, we remove 2M images from ImageNet-
21k, approximately 14%, and then pretrain TinyViT-21M and Swin-T on the
cleaned dataset. 2) We perform distillation to pretrain TinyViT-21M/Swin-T
using Florence as the teacher model, which generates soft labels to replace the
polluted groundtruth labels in ImageNet-21k. The results of the pretrained mod-
els with finetuning on ImageNet-1k are reported in Tab. 1.

We obtain several insights from the results. 1) Pretraining small models on
the original ImageNet-21k dataset brings limited performance gains on ImageNet-
1k (0.7% for both Swin-T and TinyViT-21M). 2) After removing parts of the
hard samples in ImageNet-21k, both models can better leverage the large data
and achieve higher performance gains (1.0%/1.1% for Swin-T/TinyViT-21M).
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Table 1: Impact of hard samples. Models are pretrained on IN-21k and then
finetuned on IN-1k.

# Model
Pretraining IN-1k IN-Real [5] IN-V2 [52]

Dataset Top-1(%) Top-1(%) Top-1(%)

0

Swin-T [42]

Train from scratch on IN-1k 81.2 86.7 69.7
1 Original IN-21k 81.9(+0.7) 87.0(+0.3) 70.6(+0.9)

2 Cleaned IN-21k 82.2(+1.0) 87.3(+0.6) 71.1(+1.4)

3 Original IN-21k w/ distillation 83.4(+2.2) 88.0(+1.3) 72.6(+2.9)

4

TinyViT-21M (ours)

Train from scratch on IN-1k 83.1 88.1 73.1
5 Original IN-21k 83.8(+0.7) 88.4(+0.3) 73.8(+0.7)

6 Cleaned IN-21k 84.2(+1.1) 88.5(+0.4) 73.8(+0.7)

7 Original IN-21k w/ distillation 84.8(+1.7) 88.9(+0.8) 75.1(+2.0)

(a) Teacher (b) TinyViT w/o distill. (c) TinyViT w/ distill.

Fig. 3: Pearson correlations of output predictions on ImageNet-21k.

3) Distillation is able to avoid the defects of hard samples, because it does not
use the groundtruth labels that are the main cause of hard samples. Thus, it
gets higher improvements (2.2%/1.7% for Swin-T and TinyViT-21M).

Why can distillation improve the performance of small models on large datasets?
The answer is that the student models can directly learn domain knowledge from
teachers. Namely, the teacher injects class relationship prior when training the
student, while filtering noisy labels (hard samples) for small student models.

To analyze the class relationships of teacher predictions, we select 8 images
per class from IN-21k with totally 21,841 classes. These images are then fed into
Florence [72] to extract prediction logits. Following [60], we can generate the
heatmap of Pearson correlation coefficients between classes on the prediction
logits. In Fig. 3(a), simialr or related classes clearly have a high correlations
with each other (red), illustrated by the block diagonal structure. In addition,
the teacher model can also capture uncorrelated classes (shown in blue). This
observation verifies that teacher predictions indeed reveal class relationships.

We compare the Pearson correlations on the predictions of TinyViT-21M w/o
and w/ distillation, as shown in Fig. 3(b) and Fig. 3(c) respectively. The block
diagonal structure is less obvious without distillation, indicating that the small
model is difficult to capture more class relations. However, distillation can guide
the student model to imitate the teacher behaviors, leading to better excavating
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Table 2: Ablation study on different pretraining strategies for Swin [42] and
DeiT [61]. The performance on IN-1k is reported.

Model
#Params Train on Pretrain on IN-21k

(M) IN-1k w/o distill. w/ distill.

DeiT-Ti [61] 5 72.2 73.0(+0.8) 74.4(+2.2)

DeiT-S [61] 22 79.9 80.5(+0.6) 82.0(+2.1)

Swin-T [42] 28 81.2 81.9(+0.7) 83.4(+2.2)

knowledge from large datasets. As shown in Fig. 3(c), the Pearson correlations
of TinyViT with distillation are closer to the teacher.

5 Experiments

In this section, we first provide ablation studies on our proposed fast pretraining
distillation framework. Next, we compare our TinyViT with other state-of-the-
art models. At last, we demonstrate the transferability on downstream tasks.

5.1 Implementation Details

Pretraining on ImageNet. For the pretraining on IN-21k [18], we pretrain TinyViT
for 90 epochs, then finetune the pretrained models for 30 epochs on IN-1k. For
the training from scratch on IN-1k, we train our models for 300 epochs. More
details are shown in Supplementary Materials (Sec. B).

Knowledge distillation. We pre-store the top-100 logits of teacher models
for IN-21k, including Swin-L [42], BEiT-L [4], CLIP-ViT-L/14 [50,20] and Flo-
rence [72] for all 90 epochs. Note that CLIP-ViT-L/14 and Florence are finetuned
on IN-21k for 30 epochs to serve as teachers. Then, we distill the student models
using the stored teacher logits with the same hyper-parameters as the distilla-
tion involving the teacher model. The distillation temperature is set to 1.0. We
disable Mixup [76] and Cutmix [73] for pretraining distillation on TinyViT. All
models are implemented using PyTorch [49] with timm library [65].

5.2 Ablation Study

Impact of pretraining distillation on existing small ViTs. We study the effective-
ness of our proposed fast pretraining distillation framework on two popular vision
transformers: DeiT [61] and Swin [42]. As shown in Tab. 2, comparing to training
from scratch on IN-1k, pretraining without distillation on IN-21k can only bring
limited gains, i.e. 0.8%/0.6%/0.7% for DeiT-Ti/DeiT-S/Swin-T, respectively.
However, our proposed fast pretraining distillation framework increases the ac-
curacy by 2.2%/2.1%/2.2% respectively. It indicates that pretraining distillation
allows small models to benefit more from large-scale datasets.
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Fig. 4: Comparison on pretrained TinyViT-21M/5M over training data size.
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Fig. 5: The accuracy on IN-1k and storage cost of TinyViT-21M along different
saved logits K. Left: distill TinyViT-21M on IN-1k Right: distill TinyViT-
21M on IN-21k then finetune it on IN-1k.

Impact of pretraining data scale. We investigate the representation quality of
TinyViT-5M/21M with respect to the total number of images “seen” (batch size
times number of steps) during pretraining on IN-21k, following the strategies in
[75]. We use CLIP-ViT-L/14 [50,20] as the teacher. The results on IN-1k after
finetuning are shown in Fig. 4. We have the following observations. 1) For both
models, pretraining distillation can consistently brings performance gains over
different data size. 2) All models tends to saturate as the number of epochs
increase, which may be bottlenecked by the model capacities.

Impact of the number of saved logits. The effects of sparse logits on distilling
TinyViT-21M by using Swin-L [42] as the teacher model are shown in Fig. 5. On
both IN-1k and IN-21k, we observe that the accuracy increases as the number of
sparse logits K grows until saturation, meanwhile the storage cost grows linearly.

This observation is aligned with existing work on knowledge distillation [60,56],
where teacher logtis capture class relationships but also contain noise. This
makes it possible to sparsify teacher logits such that the class relationships are
reserved while reducing noise. Moreover, memory consumption also impose con-
straints on the choice ofK. To obtain comparable accuracy under limited storage
space, we select the slightly larger K, where K=10 (1.0% logits) on IN-1k for 300
epochs and K=100 (0.46% logits) on IN-21k for 90 epochs using 16 GB/481 GB
storage cost, respectively.

Impact of teacher models. We evaluate the impact of teacher models for pre-
training distillation. As shown in Tab. 3, a better teacher can yield better student
models (#1 vs.#2 vs.#3 and #4). TinyViT-21M distilled by Florence on IN-21k
is 1.0%/0.6%/1.0% higher in top-1 accuracy on three benchmark datasets than
trained from scratch on IN-21k (#0 vs. #4). However, better teacher models are
often large in model size, resulting in high GPU memory consumption and long
training time, e.g., Florence (#4) with 682M parameters occupies 11GB GPU
memory and leads to 2.4 times longer training time.
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Table 3: Ablation study on different teacher models for pretraining distillation.
Teacher performance are listed in the brackets: (the number of parameters, lin-
ear probe performance on IN-1k). We report the training time cost and memory
consumption of teacher models on NVIDIA V100 GPUs without using our pro-
posed fast pretraining distillation.

#
IN-21k IN-1k IN-Real IN-V2 Training Time Memory

Pretrained Teacher Top-1(%) Top-1(%) Top-1(%) (GPU Hours) (GB)

0 w/o distill. 83.8 88.4 73.8 3,360 0

1 BEiT-L (326M, 84.1) [4] 84.1 88.4 73.8 6,415 (1.9×) 3.9
2 Swin-L (229M, 84.4) [42] 84.2 88.6 73.9 5,804 (1.7×) 6.8
3 CLIP-ViT-L/14 (321M, 85.2) [50] 84.8 88.9 75.1 7,087 (2.1×) 2.7
4 Florence (682M, 86.2) [72] 84.8 89.0 74.8 7,942 (2.4×) 10.7
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Fig. 6: Comparison with state-of-the-art methods on IN-1k.

Note that our fast pretraining distillation framework simply loads the teacher
logits from a hard disk during training. Therefore, it does not require additional
GPU memory and has the same training time as #0. Moreover, the framework
is compatible with all types of teacher models. Therefore, the performance of
TinyViT can be further improved by introducing more powerful teachers.

5.3 Results on ImageNet

In this section, we compare our scaled TinyViT models with state-of-the-art
methods on IN-1k [18]. The performance is reported in Fig. 6. The models with
⚗ indicates pretraining on IN-21k with the proposed fast distillation framework
using CLIP-ViT-L/14 [50,20] as the teacher. It shows that, without distilla-
tion, our TinyViT models achieve comparable performance to current prevailing
methods, such as Swin transformer [42] and LeViT [24], with similar param-
eters. This indicates the effectiveness of the proposed new architectures and
the model scaling techniques. Moreover, with the fast pretraining distillation,
the performance of TinyViT can be largely improved, outperforming the state-
of-the-art CNN, transformer and hybrid models. In particular, using only 21M
parameters, TinyViT trained from scratch on IN-1k gets 1.9%/3.2% higher top-1
accuracy than Swin-T [42] and DeiT-S [61] respectively, while after pretraining
with distillation on IN-21k, the improvements arise to 3.6% and 4.9%. With
higher resolution, TinyViT-21M reaches a top-1 accuracy of 86.5%, establishing
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Table 4: TinyViT performance on IN-1k [18] with comparisons to state-of-the-art
models. MACs (multiply–accumulate operations) and Throughput are measured
using the GitHub repository of [1,24] and a V100 GPU. ⚗: pretrain on IN-21k
with the proposed fast distillation; ↑: finetune with higher resolution.

Model
Top-1 Top-5 #Params MACs Throughput

Input Arch.
(%) (%) (M) (G) (images/s)

5
-1

0
M

#
P

a
ra

m
s MoblieViT-S [44] 78.4 - 6 1.8 2,661 256 Hybrid

ViTAS-DeiT-A [57] 75.5 92.4 6 1.3 3,504 224 Trans
GLiT-Tiny [9] 76.3 - 7 1.5 3,262 224 Trans
Mobile-Former-214M [14] 76.7 - 9 0.2 3,105 224 Hybrid
CrossViT-9 [10] 77.1 - 9 2.0 2,659 224 Trans
TinyViT-5M (ours) 79.1 94.8 5.4 1.3 3,060 224 Hybrid
TinyViT-5M⚗ (ours) 80.7 95.6 5.4 1.3 3,060 224 Hybrid

1
1
-2

0
M

ResNet-18 [28] 70.3 86.7 12 1.8 8,714 224 CNN
PVT-Tiny [63] 75.1 - 13 1.9 2,791 224 Trans
ResT-Small [78] 79.6 94.9 14 2.1 2,037 224 Trans
LeViT-256 [24] 81.6 - 19 1.1 7,386 224 Hybrid
CoaT-Lite Small [68] 81.9 95.6 20 4.0 1,138 224 Trans
TinyViT-11M (ours) 81.5 95.8 11 2.0 2,468 224 Hybrid
TinyViT-11M⚗ (ours) 83.2 96.5 11 2.0 2,468 224 Hybrid

>
2
0
M

DeiT-S [61] 79.9 95.0 22 4.6 2,276 224 Trans
T2T-ViT-14 [71] 81.5 95.7 21 4.8 1,557 224 Trans
AutoFormer-S [11] 81.7 95.7 23 5.1 1,341 224 Trans
Swin-T [42] 81.2 95.5 28 4.5 1,393 224 Trans
CrossViT-15 [10] 82.3 - 28 6.1 1,306 224 Trans
EffNet-B5 [59] 83.6 96.7 30 9.9 330 456 CNN
TinyViT-21M (ours) 83.1 96.5 21 4.3 1,571 224 Hybrid
TinyViT-21M⚗ (ours) 84.8 97.3 21 4.3 1,571 224 Hybrid
TinyViT-21M⚗ ↑384 (ours) 86.2 97.8 21 13.8 394 384 Hybrid
TinyViT-21M⚗ ↑512 (ours) 86.5 97.9 21 27.0 167 512 Hybrid

new state-of-the-art performance on IN-1k for small models. Besides, TinyViT
surpasses automatically searched models, such as AutoFormer [11] and GLiT [9].

5.4 Transfer Learning Results

Linear Probe. For linear probe, we follow the same setting as in MOCO
v3 [13], i.e., replacing the head of TinyViT models with a linear layer, while only
finetuning the linear layer on downstream datasets and frozing other weights. We
consider five classification benchmarks: CIFAR-10 [39], CIFAR-100 [39], Flow-
ers [46], Cars [2] and Pets [48]. The results are reported in Tab. 5.

We compare the performance of TinyViT-21M with 4 different training set-
tings. It is clear that distillation can improve the linear probe performance of
TinyViT (#0 vs. #1, #2 vs. #3). Besides, when trained on larger datasets (i.e.,
IN-21k), TinyViT gets more than 10% gains over CIFAR-100, Flowers and Cars
(#0,#1 vs. #2, #3), indicating better representability. Thus, pretraining with
distillation on large-scale datasets achieves the best representability (#3).

Few-shot Learning. We also evaluate the transferability of TinyViT with
different training settings on few-shot learning benchmark [25]. The bench-
mark datasets include: CropDisease [45], EuroSAT [29], ISIC 2018 [16] and
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Table 5: Performance of TinyViT-21M w/ and w/o pretraining for linear probe
and few-shot image classification.

# Training
dataset

Linear probe 5-shot 20-shot 50-shot
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0 IN-1k 91.7 75.2 80.9 56.3 86.5 42.9 82.4 92.2 24.8 56.7 91.0 97.4 29.0 63.7 94.2 98.6 31.8
1 IN-1k⚗ 91.7 74.5 82.4 61.7 85.5 43.0 83.0 94.2 24.4 58.5 91.8 97.9 28.6 66.2 94.3 98.9 31.8
2 IN-21k 96.3 84.7 99.7 67.7 92.6 52.5 87.4 97.4 24.6 66.5 93.7 99.1 29.4 73.4 95.5 99.5 33.4
3 IN-21k⚗ 96.9 86.6 99.7 75.1 93.8 53.5 88.1 98.0 24.7 67.3 93.9 99.3 29.5 74.2 96.0 99.5 33.2

Table 6: Comparison on COCO [40] object detection using Cascade Mask R-
CNN [7,27] for 12 epochs. We report the number of parameters of the backbone.

# Backbone #Params IN-1k AP AP50 AP75 APS APM APL

0 Swin-T [42] 28M 81.2 48.1 67.1 52.1 31.1 51.2 63.5

1 TinyViT-21M 21M 83.1 49.6 (+1.5) 68.5 54.2 32.3 53.2 64.8
2 TinyViT-21M⚗ 21M 84.8 50.2 (+2.1) 69.4 54.4 32.9 53.9 65.2

ChestX [64]. The average accuracy over 600 episodes is reported in Tab. 5. We
obtain same observations as the linear probe results, except of ChestX, where
gray-scale medical images are the least similar to natural images, as well as few
in the training dataset for the teacher models and the student models. In combi-
nation of these results, we can conclude that pretraining distillation is significant
in improving the representability of small models, and thus our proposed fast
pretraining distillation framework is effective.

Object Detection. We also investigate the transfer ability of our TinyViT
on object detection task [40]. We use Cascade R-CNN [7] with Swin-T [42] as
our baseline. We follow the same training settings used in Swin transformer [42].
The results on COCO 2017 validation set are reported in Tab. 6. Under the
same training recipe, our TinyViT architecture achieves better performance than
Swin-T, getting 1.5% AP improvements. Furthermore, after applying pretrain-
ing distillation, TinyViT gets another 0.6% AP improvements, being 2.1% higher
than Swin-T. This clearly demonstrates our fast pretraining distillation frame-
work is effective and capable of improving the transfer ability of small models.

6 Conclusions

We have proposed a new family of tiny and efficient vision transformers pre-
trained on large-scale datasets with our proposed fast distillation framework,
named TinyViT. Extensive experiments demonstrate the efficacy of TinyViT
on ImageNet-1k, and its superior transferability on various downstream bench-
marks. In future work, we will consider using more data to further unlock the
representability of small models with the assistance of more powerful teacher
models. Designing a more effective scaling down method to generate small mod-
els with better computation/accuracy is another interesting research direction.
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