
Equivariant Hypergraph Neural Networks

Jinwoo Kim1, Saeyoon Oh1, Sungjun Cho2, and Seunghoon Hong1,2

1KAIST
2LG AI Research

Abstract. Many problems in computer vision and machine learning can
be cast as learning on hypergraphs that represent higher-order relations.
Recent approaches for hypergraph learning extend graph neural networks
based on message passing, which is simple yet fundamentally limited in
modeling long-range dependencies and expressive power. On the other
hand, tensor-based equivariant neural networks enjoy maximal expressive-
ness, but their application has been limited in hypergraphs due to heavy
computation and strict assumptions on fixed-order hyperedges. We re-
solve these problems and present Equivariant Hypergraph Neural Network
(EHNN), the first attempt to realize maximally expressive equivariant
layers for general hypergraph learning. We also present two practical
realizations of our framework based on hypernetworks (EHNN-MLP) and
self-attention (EHNN-Transformer), which are easy to implement and
theoretically more expressive than most message passing approaches. We
demonstrate their capability in a range of hypergraph learning problems,
including synthetic k-edge identification, semi-supervised classification,
and visual keypoint matching, and report improved performances over
strong message passing baselines. Our implementation is available at
https://github.com/jw9730/ehnn.

Keywords: hypergraph neural network, graph neural network, permuta-
tion equivariance, semi-supervised classification, keypoint matching

1 Introduction

Reasoning about a system that involves a set of entities and their relationships
requires relational data structures. Graph represents relational data with nodes
and edges, where a node corresponds to an entity and an edge represents a
relationship between a pair of nodes. However, pairwise edges are often insuf-
ficient to represent more complex relationships. For instance, many geometric
configurations of entities such as angles and areas can only be captured by con-
sidering higher-order relationships between three or more nodes. Hypergraph
is a general data structure that represents such higher-order relationships with
hyperedges, i.e., edges associating more than two nodes at a time [6]. Thus, it
is widely used to represent various visual data such as scenes [19, 30], feature
correspondence [4, 41, 49, 55], and polygonal mesh [8, 46, 58], as well as general
relational data such as social networks [10, 37, 52], biological networks [22, 33],
linguistic structures [15], and combinatorial optimization problems [28].

https://github.com/jw9730/ehnn
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To learn deep representation of hypergraphs, recent works developed special-
ized hypergraph neural networks by generalizing the message passing operator
of graph neural networks (GNNs) [2, 3, 13, 16, 18, 26]. In these networks, node
and (hyper)edge features are updated recurrently by aggregating features of
neighboring nodes and edges according to the connectivity of input (hyper)graph.
Despite such simplicity, message passing networks have fundamental limitations.
Notably, the local and recurrent operations of message passing prevents them
from handling dependencies between any pair of nodes with distance longer than
the number of propagation steps [21, 32]. It is also known that this locality is
related to oversmoothing that hinders the use of deep networks [11,26,39,47].

A more general and potentially powerful approach for hypergraph learning
is to find all possible permutation equivariant linear operations on the input
(hyper)graph and use them as bases of linear layers that constitute equivariant
GNNs [43, 54]. While message passing is one specific, locally restricted case
of equivariant operation, the maximal set of equivariant operations extends
further, involving various global interactions over possibly disconnected nodes
and (hyper)edges [32]. The formulation naturally extends to higher-order layers
that can handle hypergraphs in principle and even mixed-order layers where input
and output are of different orders (e.g., graph in, hypergraph out). Despite the
advantages, the actual usage of equivariant GNNs has been mainly limited to sets
and graphs [32,43,51,59], and they have not been realized for general hypergraph
learning. This is mainly due to the prohibitive parameter dimensionality of
higher-order layers and a bound in the input and output hyperedge orders that
comes from fixed-order tensor representation.

We propose Equivariant Hypergraph Neural Network (EHNN) as the first
attempt to realize equivariant GNNs for general hypergraph learning. We begin
by establishing a simple connection between sparse, arbitrarily structured hy-
pergraphs and dense, fixed-order tensors, from which we derive the maximally
expressive equivariant linear layer for undirected hypergraphs. Then, we impose
an intrinsic parameter sharing within the layer via hypernetworks [23], which (1)
retains maximal expressiveness, (2) practically bounds the number of parameters,
and (3) allows processing hyperedges with arbitrary and possibly unseen orders.
Notably, the resulting layer (EHNN-MLP) turns out to be a simple augmentation
of an MLP-based message passing with hyperedge order embedding and global
pooling. This leads to efficient implementation and also allows incorporation
of any advances in the message passing literature. We further extend into a
Transformer counterpart (EHNN-Transformer) by introducing self-attention to
achieve a higher expressive power with the same asymptotic cost. In a challenging
synthetic k-edge identification task where message passing networks fail, we show
that the high expressiveness of EHNN allows fine-grained global reasoning to
perfectly solve the task, and demonstrate their generalizability towards unseen
hyperedge orders. We also demonstrate their state-of-the-art performance in
several transductive and inductive hypergraph learning benchmarks, including
semi-supervised classification and visual correspondence matching.
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2 Preliminary and Related Work

Let us introduce preliminary concepts from permutation equivariant learning [32,
43,51]. We first describe higher-order tensors, then describe maximally expressive
permutation equivariant linear layers that compose equivariant GNNs [43].

We begin with some notations. We denote a set as {a, ..., b}, a tuple as

(a, ..., b), and [n] = {1, ..., n}. We denote the space of order-k tensors as Rnk×d

with feature dimension d. For an order-k tensor A ∈ Rnk×d, we use a multi-index
i = (i1, ..., ik) ∈ [n]k to index an element Ai = Ai1,...,ik ∈ Rd. Let Sn denote
all permutations of [n]. A node permutation π ∈ Sn acts on a multi-index i by
π(i) = (π(i1), ..., π(ik)), and acts on a tensor A by (π ·A)i = Aπ−1(i).

Higher-order Tensors Prior work on equivariant learning regard a hypergraph

data as G = (V,A) where V is a set of n nodes and A ∈ Rnk×d is a tensor that
encodes hyperedge features [32,43,51]. The order k of the tensor A indicates the
type of hypergraph. First-order tensor encodes a set of features (e.g., point cloud)
where Ai is feature of node i. Second-order tensor encodes pairwise edge features
(e.g., adjacency) where Ai1,i2 is feature of edge (i1, i2). Generally, an order-k
tensor encodes hyperedge features (e.g., mesh normal) where Ai1,...,ik is feature
of hyperedge (i1, ..., ik). We begin our discussion from tensors, but will arrive at
the familiar notion of hypergraphs with any-order undirected hyperedges [18].

Permutation Invariance and Equivariance In (hyper)graph learning, we
are interested in building a function f that takes a (higher-order) tensor A as
input and outputs some value T . Since the tensor representation of the graph
changes dramatically with the permutation of node indices, the function f should
be invariant or equivariant under node permutations. Formally, if the output T
is a single vector, f is required to be permutation invariant, always satisfying
f(π·A) = f(A); if we want T to be a tensor T = T, f is required to be permutation
equivariant, always satisfying f(π ·A) = π · f(A). As a neural network f is often
built as a stack of linear layers and non-linearities, its construction reduces to
finding invariant and equivariant linear layers.

Invariant and Equivariant Linear Layers Many (hyper)graph neural net-
works rely on message passing [18, 20], which is a restricted equivariant oper-
ator. Alternatively, tensor-based maximally expressive linear layers have been
characterized by Maron el. al. (2019) [43]. Specifically, invariant linear layers

Lk→0 : Rnk×d → Rd′
and equivariant linear layers Lk→l : Rnk×d → Rnl×d′

were
identified (note that invariance is a special case of equivariance with l = 0). Given

an order-k input A ∈ Rnk×d, the order-l output of an equivariant linear layer
Lk→l is written as follows, with indicator 1 and multi-indices i ∈ [n]k, j ∈ [n]l:

Lk→l(A)j =
∑
µ

∑
i

1(i,j)∈µAiwµ +
∑
λ

1j∈λbλ, (1)
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where wµ ∈ Rd×d′
, bλ ∈ Rd′

are weight and bias parameters, and µ and λ are
equivalence classes of order-(k + l) and order-l multi-indices, respectively.

The equivalence classes can be interpreted as a partitioning of a multi-index
space. The equivalence classes µ for the weight specifies a partitioning of the space
of order-(k + l) multi-indices [n]k+l, and λ for the bias specifies a partitioning
of the space of order-l multi-indices [n]l. The total number of the equivalence
classes (the size of partitioning) depends only on orders k and l. With b(k) the
k-th Bell number, there exist b(k+ l) equivalence classes µ for the weight and b(l)
equivalence classes λ for the bias. For first-order layer L1→1, there exist b(2) = 2
equivalence classes µ1, µ2 for the weight, specifying the partitioning of [n]2 as
{µ1, µ2} where µ1 = {(i, j)|i = j} and µ2 = {(i, j)|i ̸= j}. For further details, we
guide the readers to Maron et. al. (2019) [43] and Kim et. al. (2021) [32].

Equivariant GNNs Based on the maximally expressive equivariant linear layers
(Eq. (1)), a bouquet of permutation invariant or equivariant neural networks
were formulated. A representative example is equivariant GNN [43] (also called
k-IGN [12,42]) built by stacking the equivariant linear layers and non-linearity.
Their theoretical expressive power has been extensively studied [12, 29, 42, 44, 59],
leading to successful variants in set and graph learning [31,32,45,51]. In particular,
practical variants such as Higher-order Transformer [32] and TokenGT [31] unified
equivariant GNNs and Transformer architecture [36, 53], surpassing the graph
learning performance of message passing GNNs by a large margin.

Challenges in Hypergraph Learning Despite the theoretical and practical
advantages, to our knowledge, equivariant GNN and its variants were rarely
considered for general hypergraph learning with higher-order data [1], and never
implemented except for highly restricted k-uniform hyperedge prediction [32,51].
We identify two main challenges. First, although the asymptotic cost can be
reduced to a practical level with recent tricks [32], the number of parameters still
grows rapidly to Bell number of input order [5]. This makes any layer Lk→l with
k + l > 4 challenging to use, as k + l = 5 already leads to 52 weight matrices.
Second, in inductive learning [24, 60] where a model is tested on unseen nodes or
hypergraphs, the model can be required to process unseen-order hyperedges that
possibly surpass the max order in the training data. This is not straightforward
for equivariant GNNs, because fixed-order tensors that underlie Lk→l require to
pre-specify the max hyperedge order (k, l) that the model can process.

3 Equivariant Hypergraph Neural Network

We now proceed to our framework on practical equivariant GNNs for general
hypergraph data. All proofs can be found in Appendix A.1. In practical setups that
assume undirected hypergraphs [2,3,13,16,18,57], a hypergraph G = (V,E,X) is
defined by a set of n nodes V , a set of m hyperedges E, and features X ∈ Rm×d

of the hyperedges. Each hyperedge e ∈ E is a subset of node set V , and its order
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Fig. 1: Example of a hypergraph represented as a sequence of k-uniform hy-
pergraphs (Definition 1), or equivalently a sequence of symmetric higher-order
tensors (Definition 3). Note that nodes are handled as first-order hyperedges.

|e| indicates its type. For example, a first-order edge {i} represents an i-th node;
a second-order edge {i, j} represents a pairwise link of i-th and j-th nodes; in
general, an order-k edge {i1, ..., ik} represents a hyperedge that links k nodes.
By Xe ∈ Rd we denote the feature attached to a hyperedge e. We assume that
node and hyperedge features are both d-dimensional [12, 32, 42, 43]; to handle
different dimensionalities, we simply let d = (dv + de) and place node features at
first dv channels and hyperedge features at last de channels.

Note that above notion of hypergraphs (V,E,X) does not directly align to

higher-order tensors A ∈ Rnk×d (Section 2) – unlike them, hypergraphs of our
interest are sparse, undirected, and each hyperedge contains unique node indices.
As equivariant GNNs (Section 2) build upon higher-order tensors, it is necessary
to establish a connection between hypergraphs and the higher-order tensors.

3.1 Hypergraph as a Sequence of Higher-order Tensors

To describe hypergraphs (V,E,X) using higher-order tensors A ∈ Rnk×d, it is
convenient to introduce k-uniform hypergraphs. A hypergraph is k-uniform if all
of its hyperedges are exactly of order-k. For example, a graph without self-loops is
2-uniform, and a triangle mesh is 3-uniform. From that, we can define equivalent
representation of a hypergraph as a sequence of k-uniform hypergraphs:

Definition 1 The sequence representation of a hypergraph (V,E,X) with max
hyperedge order K is a sequence of k-uniform hypergraphs with k ≤ K, written
as (V,E(k),X(k))k≤K = (V,E(:K),X(:K)) where E(k) as the set of all order-k
hyperedges in E and X(k) as a row stack of features {Xe|e ∈ E(k)}.

As the collection (E(k))k≤K forms a partition of E, we can retrieve the original
hypergraph (V,E,X) from its sequence representation (V,E(k),X(k))k≤K by
using the union of (E(k))k≤K for E and the concatenation of (X(k))k≤K for X.
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The concept of uniform hypergraph is convenient because we can draw an
equivalent representation as a symmetric higher-order tensor [13, 35]. An order-k
tensor A is symmetric if its entries are invariant under reordering of indices, e.g.,
Aij = Aji, Aijk = Akij = ..., and so on. From that, we can define the equivalent
representation of a k-uniform hypergraph as an order-k symmetric tensor1:

Definition 2 The tensor representation of k-uniform hypergraph (V,E(k),X(k))

is an order-k symmetric tensor A(k) ∈ Rnk×d defined as follows:

A
(k)
(i1,...,ik)

=

{
X

(k)
e if e = {i1, ..., ik} ∈ E(k)

0 otherwise
. (2)

From A(k), we can retrieve the original k-uniform hypergraph (V,E(k),X(k)) by
first identifying the indices of all nonzero entries of A(k) to construct E(k), and
then using E(k) to index A(k) to construct X(k).

Now, directly combining Definition 1 and 2, we can define the equivalent
representation of a hypergraph as a sequence of higher-order tensors:

Definition 3 The tensor sequence representation of a hypergraph (V,E,X) with
maximum hyperedge order K is a sequence of symmetric higher-order tensors
(A(k))k≤K = A(:K), where each A(k) is the tensor representation (Definition 2)
of each k-uniform hypergraph (V,E(k),X(k)) that comes from the sequence repre-
sentation of the hypergraph (V,E(k),X(k))k≤K = (V,E(:K),X(:K)) (Definition 1).

An illustration is in Fig. 1. Note that we can include node features as A(1). Now,
our problem of interest reduces to identifying a function f that operates on se-
quences of tensors A(:K) that represent hypergraphs. The concept of permutation
invariance and equivariance (Section 2) applies similarly here. A node permu-
tation π ∈ Sn acts on a tensor sequence A(:K) by jointly acting on each tensor,
π ·A(:K) = (π ·A(k))k≤K . An invariant f always satisfies f(π ·A(:K)) = f(A(:K)),
and an equivariant f always satisfies f(π ·A(:K)) = π · f(A(:K)).

3.2 Equivariant Linear Layers for Hypergraphs

In Definition 3, we represented a hypergraph as a sequence of symmetric higher-
order tensors (A(k))k≤K , each A(k) representing a k-uniform hypergraph. We now

utilize equivariant linear layers Lk→l : Rnk×d → Rnl×d′
(Eq. (1)) in Section 2 to

formalize equivariant linear layers that input and output hypergraphs. The idea
is to find and combine all pairwise linear maps between tensors (i.e., k-uniform
hypergraphs) of input and output sequences. Although seemingly simple, this
gives the maximally expressive equivariant linear layer for hypergraphs.

1 Higher-order tensors can in principle represent directed hypergraphs as well; we
constrain them to be symmetric to specifically represent undirected hypergraphs.
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Fig. 2: Conceptual illustration of an equivariant linear layer L(3)→(2) as in Eq. (3).
The layer uses different weights wI for different overlaps I between input and
output hyperedges. This gives rise to local interactions similar to message-passing
(I ≥ 1) and global interactions (I = 0) implemented as global sum-pooling.

Equivariant Linear Layers for k-uniform Hypergraphs In Section 2, we
argued that the equivariant linear layer Lk→l cannot be practically used due to
the prohibitive number of b(k + l) weights and b(l) biases. Yet, when the input
and output tensors are restricted to k- and l-uniform hypergraphs respectively,
we can show that the layer reduces to O(k + l) weights and a single bias:

Proposition 1. Assume that the input and output of equivariant linear layer
Lk→l (Eq. (1)) are constrained to symmetric tensors that represent k- and l-
uniform hypergraphs respectively (Eq. (2)). Then it reduces to L(k)→(l) below:

L(k)→(l)(A
(k))j = 1|j|=l

min(k,l)∑
I=1

∑
i

1|i∩j|=IA
(k)
i wI +

∑
i

A
(k)
i w0 + bl

 , (3)

where wo, wI ∈ Rd×d′
, bl ∈ Rd′

are weight and bias, |i| is number of distinct
elements in i, and |i ∩ j| is number of distinct intersecting elements in i and j.

The idea for the proof is that, if input and output are constrained to tensors from
Eq. (2), a large number of parameters in the original layer are tied to adhere to
the symmetry. This leads to much less parameters compared to the original Bell
number version (Lk→l). Still, note that L(k)→(l) (Eq. (3)) is still a maximally
expressive linear layer as it produces the identical outputs with Lk→l.

Notably, Eq. (3) reveals that maximal expressiveness is composed of sophisti-
cated local message passing augmented with global interaction. In the first term
of Eq. (3), the constraint 1|i∩j|>0 specifies local dependency between incident
input and output hyperedges having at least one overlapping nodes. Yet, this
local interaction is more fine-grained than conventional message passing, as it
uses separate weights wI for different numbers of overlapping nodes I (Fig. 2).
This is reminiscent of recent work in subgraph message passing [7] that improve
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expressive power of GNNs. In addition, the layer contains intrinsic global inter-
action via pooling in second term of Eq. (3), which reminds of virtual node or
global attention [27,34,38,40,48,56] that also improve expressive power [48].

Equivariant Linear Layers for Hypergraphs We now construct maximally
expressive equivariant linear layers for undirected hypergraphs. We begin by rep-
resenting a hypergraph as a sequence of tensors (A(k))k≤K = A(:K) (Definition 3).
The goal is to construct the linear layer L(:K)→(:L) to input and output those ten-

sor sequences while being equivariant L(:K)→(:L)(π·A(:K)) = π·L(:K)→(:L)(A
(:K)).

For this, we use all pairwise linear layers L(k)→(l) (Eq. (3)) between tensors of
input and output sequences:

L(:K)→(:L)(A
(:K)) =

∑
k≤K

L(k)→(l)(A
(k))


l≤L

. (4)

For better interpretation, we plug Eq. (3) into Eq. (4) and rewrite it with
respect to j-th entry of l-th (order-l) output tensor:

L(:K)→(:L)(A
(:K))l,j = 1|j|=l

∑
k≤K

min(k,l)∑
I=1

∑
i

1|i∩j|=IA
(k)
i wk,l,I

+ 1|j|=l

∑
k≤K

∑
i

A
(k)
i wk,l,0 + 1|j|=lbl. (5)

Note that we added subscripts (k, l) to w0, wI to differentiate between weights
from each sublayer L(k)→(l) as they are involved in different computations. On the
other hand, the biases from sublayers (L(k)→(l))k≤K carry out exactly the same
computation, and can be merged to a single bias bl. As a result, L(:K)→(:L) contains∑

l≤L,k≤K(1+min(k, l)) weights and L biases, achieving a better scalability than
the original LK→L that has exponentially many weights and biases.

Similar to sublayers L(k)→(l) (Eq. (3)), we see that the combined layer for
general hypergraphs L(:K)→(:L) (Eq. (5)) is a mixture of fine-grained local message
passing and global interaction. In this case, the local interactions utilize different
weights wk,l,I for each triplet (k, l, I) that specifies dependency between order-k
input and order-l output hyperedges with I overlapping nodes. Similarly, global
interactions (pooling) utilize different weights wk,l,0 for each pair (k, l), specifying
global dependency between all order-k input and order-l output hyperedges.
Finally, different biases bl are assigned for each output hyperedge order l.

Importantly, we can show the following:

Theorem 1. L(:K)→(:L) (Eq. (4)) is the maximally expressive equivariant linear
layer for undirected hypergraphs represented as tensor sequences.

Similar as in Proposition 1, the idea for the proof is to appropriately constraint the
input and output of the maximally expressive equivariant linear layer LK→L, and
observe that most of its parameters are tied and reduced, leading to L(:K)→(:L).
Still, the layer retains maximal expressiveness of the original layer (LK→L) as it
produces the identical output.
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3.3 Equivariant Hypergraph Neural Networks (EHNN)

In Section 3.2, we introduced equivariant linear layers for general undirected
hypergraphs L(:K)→(:L) by composing order-specific sublayers L(k)→(l) for k ≤ K,
l ≤ L and proved their maximal expressiveness. Yet, these layers are still unsuit-
able to be used in practice because they cannot input or output hypergraphs
with orders exceeding (K,L), and the number of weights and biases grows at
least linearly to (K,L) that can reach several hundreds in practice. To resolve
the problems jointly, we propose the concept of Equivariant Hypergraph Neural
Network (EHNN) that introduces intrinsic trainable parameter sharing via hyper-
networks [23]. More specifically, we impose parameter sharing within L(:K)→(:L)

and across all sublayers L(k)→(l) via two hypernetworks, each for weights and
biases2. As a result, an EHNN layer is defined as follows, with hypernetworks
W : N3 → Rd×d′

and B : N → Rd′
inferring all weights wk,l,I and biases bl

(Eq. (5)) from the subscripts (k, l, I) and (l) respectively:

EHNN(A(:K))l,j = 1|j|=l

∑
k≤K

min(k,l)∑
I=1

∑
i

1|i∩j|=IA
(k)
i W(k, l, I)

+ 1|j|=l

∑
k≤K

∑
i

A
(k)
i W(k, l, 0) + 1|j|=lB(l). (6)

In principle, this preserves maximal expressiveness of L(:K)→(:L) when W and
B are parameterized as MLPs, as by universal approximation they can learn
any lookup table that maps subscripts to weights and biases [25]. Furthermore,
as hypernetworks W and B can produce weights for arbitrary hyperedge orders
(k, l, I), we can remove the bound in hyperedge orders from the specification
of the layer and use a single EHNN layer with bounded parameters to any
hypergraphs with unbounded or unseen hyperedge orders. Conclusively, EHNN
layer is by far the first attempt that is maximally expressive while being able to
process arbitrary-order hypergraphs by construction.

3.4 Practical Realization of EHNN

The EHNN layer in Eq. (6) is conceptually elegant, but in practice it can be
costly as we need to explicitly hold all output matrices of the hypernetwork
W(k, l, I) ∈ Rd×d′

in memory. This motivates us to seek for simpler realizations
of EHNN that can be implemented efficiently while retaining the maximal
expressiveness (i.e., being able to model L(:K)→(:L) (Theorem 1) thus exhausting
the full space of equivariant linear layers on undirected hypergraphs). To this end,
we propose EHNN-MLP that utilizes three consecutive MLPs to approximate
the role of the weight hypernetwork, and also propose its extension EHNN-
Transformer with attention mechanism. Then, we finish the section by providing
a comparative analysis of EHNN-MLP and EHNN-Transformer with respect to
the existing message passing hypergraph neural networks.

2 Note that we do not share the hypernetworks across different levels of layers.
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Realization with MLP We first introduce EHNN-MLP, a simple realization of
EHNN with three elementwise MLPs ϕ1:3 where each ϕp : N× Rdp → Rd′

p takes
a positive integer as an auxiliary input. The intuition here is to decompose the
weight application with hypernetwork W(k, l, I) into three consecutive MLPs
ϕ1(k, ·), ϕ2(I, ·), and ϕ3(l, ·), eliminating the need to explicitly store the inferred
weights for each triplet W(k, l, I). We characterize EHNN-MLP as follows:

EHNN-MLP(A(:K))l,j = ϕ3

l,
∑
I≥0

ϕ2

I,
∑
k≤K

∑
i

BI
i,jϕ1(k,A

(k)
i )

+ B(l),

(7)

where BI
i,j =

{
1|i∩j|=I if I ≥ 1

1 if I = 0
, (8)

where we omit the output constraint 1|j|=l for brevity, and introduce a binary
scalar BI

i,j to write local (I ≥ 1) and global (I = 0) interactions together.
Now we show that an EHNN-MLP layer can realize any EHNN layer:

Theorem 2. An EHNN-MLP layer (Eq. (7)) can approximate any EHNN layer
(Eq. (6)) to an arbitrary precision.

The proof is done by leveraging the universal approximation property [25] to
model appropriate functions with MLPs ϕ1:3, so that the output of EHNN-
MLP (Eq. (7)) accurately approximates the output of EHNN (Eq. (6)). As a
result, with EHNN-MLP, we now have a practical model that can approximate
the maximally expressive linear layer for general undirected hypergraphs.

In our implementation of the MLPs ϕ1:3, we first transform the input order
(k, l or I) into a continuous vector called order embedding, and combine it with
the input feature through concatenation. This way, the order embeddings are
served similarly as the positional encoding used in Transformer [53] with a subtle
difference that it indicates the order of the input or output hyperedges. We
employ sinusoidal encoding [53] to obtain order embedding due to its efficiency
and, more importantly, to aid extrapolation to unseen hyperedge orders in testing.

Realization as a Transformer While EHNN-MLP (Eq. (7)) theoretically
inherits the high expressive power of EHNN, in practice, its static sum-pooling can
be limited in accounting for relative importance of input hyperedges. A solution
for this is to introduce more sophisticated pooling. In particular, the attention
mechanism of Transformers [53] was shown to offer a large performance gain in
set and (hyper)graph modeling [13, 31, 32, 36] via dynamic weighting of input
elements. Thus, we extend EHNN-MLP with multihead attention coefficients
αh,I

i,j and introduce EHNN-Transformer, an advanced realization of EHNN:

Attn(A(:K))l,j = ϕ3

l,
∑
I≥0

ϕ2

I,
H∑

h=1

∑
k≤K

∑
i

αh,I
i,j ϕ1(k,A

(k)
i )wV

h

 , (9)

EHNN-Transformer(A(:K)) = Attn(A(:K)) +MLP(Attn(A(:K))), (10)
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where we omit the output constraint 1|j|=l and bias B(l) for brevity. H denotes

the number of heads and wV
h ∈ Rd×dv denotes the value weight matrix. To

compute attention coefficients αh,I
i,j from the input, we introduce additional

query and key (hyper)networks Q : N → RH×dH and K : N× Rd → RH×dH and
characterize scaled dot-product attention [53] as follows:

αh,I
i,j =


σ

(
Q(I)hK

(
I, ϕ1(k,A

(k)
i )

)⊤

h
/
√
dH · 1|i∩j|=I

)
if I ≥ 1

σ

(
Q(0)hK

(
I, ϕ1(k,A

(k)
i )

)⊤

h
/
√
dH

)
if I = 0

, (11)

where σ(·) denotes activation, often chosen as softmax normalization. Note that
the query Q(I) is agnostic to output index j, following prior works on set and
(hyper)graph attention [13, 36]. Although this choice of attention mechanism has
a drawback that assigning importance to input (i) depending on output (j) is
not straightforward, we choose it in favor of scalability.

Comparison to Message Passing Networks We finish the section by pro-
viding a comparative analysis of EHNNs with respect to the existing message
passing networks for hypergraphs. We specifically compare against AllSet [13], as
it represents a highly general framework that subsumes most existing hypergraph
neural networks. Their MLP-based characterization AllDeepSets can be written
with two MLPs ϕ1 and ϕ2 as follows:

AllDeepSets(A(:K))l,j = 1|j|=lϕ2

∑
k≤K

∑
i

1|i∩j|≥1ϕ1(A
(k)
i )

 . (12)

We show the below by reducing EHNN-MLP to AllDeepSets through ablation:

Theorem 3. An AllDeepSets layer (Eq. (12)) is a special case of EHNN-MLP
layer (Eq. (7)), while the opposite is not true.

Finally, Theorem 3 leads to the following corollary:

Corollary 1. An EHNN-MLP layer is more expressive than an AllDeepSets
layer and also all hypergraph neural networks that AllDeepSets subsumes.

We provide an in-depth discussion including the comparison between EHNN-
Transformer and AllSetTransformer [13] in Appendix A.2.

4 Experiments

We test EHNN on a range of hypergraph learning problems including synthetic
node classification problem, real-world semi-supervised classification, and visual
keypoint matching. For the real-world tasks, we use 10 semi-supervised classifica-
tion datasets used in Chien et. al. [13] and two visual keypoint matching datasets
used in Wang et. al. [55]. Details including the datasets and hyperparameters are
in Appendix A.3. Additional experiments including comparative and ablation
studies, and runtime and memory cost analysis are in Appendix A.4.
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Table 1: Results for synthetic order-k hyperedge identification. We show averaged
best test accuracy (%) over 5 runs with standard deviation.

Test involves only seen k Test involves unseen k
Interpolation Extrapolation

AllDeepSets 76.99 ± 0.98 79.6 ± 0.86 79.01 ± 2.82
AllSetTransformer 77.61 ± 2.27 78.61 ± 2.367 77.35 ± 1.89

EHNN-MLP 98.02 ± 0.73 90.70 ± 2.90 85.65 ± 2.89
EHNN-Transformer 99.69 ± 0.31 92.31 ± 1.47 90.19 ± 5.51

4.1 Synthetic k-edge Identification

We devise a simple but challenging synthetic node classification task termed k-edge
identification to demonstrate how the expressive power of EHNN can help learn
complex hypergraph functions. In input hypergraph, we pick a random hyperedge
and mark its nodes with a binary label. The task is to identify all other nodes
whose hyperedge order is the same with the marked one. The model is required
to propagate the information of marked hyperedge globally, while also reasoning
about fine-grained structure of individual hyperedges for comparison. We use
100 train and 20 test hypergraphs, each with 100 nodes and randomly wired 10
hyperedges of orders ∈ {2, ..., 10}. To further test generalization to unseen orders,
we add two training sets where hyperedges are sampled without order-{5, 6, 7}
hyperedges (interpolation) or order-{8, 9, 10} hyperedges (extrapolation). We
evaluate the performance of EHNN-MLP/-Transformer with AllDeepSets and
AllSetTransformer [13] as message passing baselines.

The test performances are in Table 1. EHNN achieves significant improvement
over message passing nets, producing almost perfect prediction. The result
advocates that even for simple tasks there are cases where high expressive power
of a network is essential. Furthermore, we observe evidences that the model can
interpolate or even extrapolate to unseen hyperedge orders. This supports the
use of hypernetworks to infer parameters for potentially unseen orders.

4.2 Semi-supervised Classification

To test EHNN in real-world hypergraph learning, we use 10 transductive semi-
supervised node classification datasets [13]. The data is randomly split into 50%
training, 25% validation, and 25% test. We run the experiment 20 times with
random splits and initialization, and report aggregated classification accuracy.

The test performances are in Table 2. Our methods often achieve favorable
scores over strong baselines e.g., AllDeepSets and AllSetTransformer – our models
improve the state-of-the art by 3.27% in Walmart (1), 1.82% in House (0.6),
and 1.54% in Walmart (0.6). Notably, EHNN-Transformer gives state-of-the-art
performance in most cases. This supports the notion that attention strengthens
equivariant networks [32, 36], and also implies that high expressiveness of EHNN
makes it strong on general hypergraph learning setups involving not only social
networks but also vision and graphics (NTU2012 and ModelNet40).
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Table 2: Results for semi-supervised node classification. Average accuracy (%)
over 20 runs are shown, and standard deviation can be found in Appendix A.3.
Gray shade indicate the best result, and blue shade indicate results within one
standard deviation of the best. Baseline scores are taken from Chien et. al. [13].

Zoo 20Newsgroups mushroom NTU2012 ModelNet40 Yelp House(1) Walmart(1) House(0.6) Walmart(0.6) avg. rank (↓)

MLP 87.18 81.42 100.00 85.52 96.14 31.96 67.93 45.51 81.53 63.28 6.4
CEGCN 51.54 OOM 95.27 81.52 89.92 OOM 62.80 54.44 64.36 59.78 11.5
CEGAT 47.88 OOM 96.60 82.21 92.52 OOM 69.09 51.14 77.25 59.47 10.5
HNHN 93.59 81.35 100.00 89.11 97.84 31.65 67.80 47.18 78.78 65.80 5.9
HGNN 92.50 80.33 98.73 87.72 95.44 33.04 61.39 62.00 66.16 77.72 7.8
HCHA 93.65 80.33 98.70 87.48 94.48 30.99 61.36 62.45 67.91 77.12 8.1

HyperGCN N/A 81.05 47.90 56.36 75.89 29.42 48.31 44.74 78.22 55.31 12.4
UniGCNII 93.65 81.12 99.96 89.30 98.07 31.70 67.25 54.45 80.65 72.08 5.8

HAN (full batch) 85.19 OOM 90.86 83.58 94.04 OOM 71.05 OOM 83.27 OOM 9.9
HAN (minibatch) 75.77 79.72 93.45 80.77 91.52 26.05 62.00 48.57 82.04 63.1 10.6

AllDeepSets 95.39 81.06 99.99 88.09 96.98 30.36 67.82 64.55 80.70 78.46 5.4
AllSetTransformer 97.50 81.38 100.00 88.69 98.20 36.89 69.33 65.46 83.14 78.46 2.4

EHNN-MLP 91.15 81.31 99.99 87.35 97.74 35.80 67.41 65.65 82.29 78.80 5.0
EHNN-Transformer 93.27 81.42 100.00 89.60 98.28 36.48 71.53 68.73 85.09 80.05 1.6

Table 3: Hypergraph matching accuracy (%) on Willow test set.
car duck face motor. wine. avg.

GMN 38.85 38.75 78.85 28.08 45.00 45.90
NGM 77.50 85.87 99.81 77.50 89.71 86.08
NHGM 69.13 83.08 99.81 73.37 88.65 82.81
NMGM 74.95 81.33 99.83 78.26 92.06 85.29

IPCA-GM 79.58 80.20 99.70 73.37 83.75 83.32
CIE-H 9.37 8.87 9.88 11.84 9.84 9.96
BBGM 96.15 90.96 100.00 96.54 99.23 96.58

GANN-MGM 92.11 90.11 100.00 96.21 98.26 95.34

NGM-v2 94.81 89.04 100.00 96.54 95.87 95.25
NHGM-v2 89.33 83.17 100.00 92.60 95.96 92.21

EHNN-MLP 94.71 91.92 100.00 97.21 97.79 96.33
EHNN-Transformer 97.02 92.69 100.00 97.60 98.08 97.08

Table 4: Hypergraph matching accuracy (%) on PASCAL-VOC test set.
aero bike bird boat botl bus car cat chair cow desk

GMN 40.67 57.62 58.19 51.38 77.55 72.48 66.90 65.04 40.43 61.56 65.17
PCA-GM 51.46 62.43 64.70 58.56 81.94 75.18 69.56 71.05 44.53 65.81 39.00

NGM 12.09 10.01 17.44 21.73 12.03 21.40 20.16 14.26 15.10 12.07 14.50
NHGM 12.09 10.01 17.44 21.73 12.03 21.40 20.16 14.26 15.10 12.07 14.50

IPCA-GM 50.78 62.29 63.87 58.94 79.46 74.18 72.60 71.52 41.42 64.12 36.67
CIE-H 52.26 66.79 69.09 59.76 83.38 74.61 69.93 71.04 43.36 69.20 76.00
BBGM 60.06 71.32 78.21 78.97 88.63 95.57 89.52 80.53 59.34 77.80 76.00

GANN-MGM 14.75 32.20 21.31 24.43 67.23 36.35 21.09 17.20 25.73 21.00 37.50

NGM-v2 42.88 61.70 63.63 75.62 84.66 90.58 75.34 72.26 44.42 66.67 74.50
NHGM-v2 57.04 71.88 76.06 79.96 89.79 93.70 86.16 80.76 56.36 76.70 74.33

EHNN-MLP 57.34 73.89 76.41 78.41 89.40 94.51 85.58 79.83 56.39 76.56 91.00
EHNN-Transformer 60.04 72.36 78.25 78.59 87.61 93.77 87.99 80.78 58.76 76.29 81.17

dog horse mbk prsn plant sheep sofa train tv avg.

GMN 61.56 62.18 58.96 37.80 78.39 66.89 39.74 79.84 90.94 61.66
PCA-GM 67.82 65.18 65.71 46.21 83.81 70.51 49.88 80.87 93.07 65.36

NGM 12.83 12.05 15.69 09.76 21.00 17.10 15.12 31.11 24.88 16.52
NHGM 12.83 12.05 15.67 09.76 21.00 17.10 14.66 31.11 24.83 16.49

IPCA-GM 69.11 66.05 65.88 46.97 83.09 68.97 51.83 79.17 92.27 64.96
CIE-H 69.68 71.18 66.14 46.76 87.22 71.08 59.16 82.84 92.60 69.10
BBGM 80.39 77.80 76.48 65.99 98.52 78.07 76.65 97.61 94.36 80.09

GANN-MGM 16.16 20.16 25.92 19.20 53.76 18.34 26.16 46.30 72.32 30.85

NGM-v2 67.83 68.92 68.86 47.40 96.69 70.57 70.01 95.13 92.49 71.51
NHGM-v2 76.75 77.45 76.81 58.56 98.21 75.34 76.42 98.10 94.80 78.76

EHNN-MLP 76.57 78.65 75.54 58.92 98.31 76.53 81.14 98.08 95.01 79.90
EHNN-Transformer 78.30 76.91 75.79 63.78 97.60 76.47 78.04 98.53 93.83 79.74
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4.3 Visual Keypoint Matching

To test EHNN in computer vision problems represented as hypergraph learning,
we tackle visual keypoint matching. The task is considered challenging due to
discrepancy between the two images in terms of viewpoint, scale, and lighting.
Following previous work [55], we view the problem as hypergraph matching where
keypoints of each image form an hypergraph. This is considered helpful as the
hyperedge features can capture rotation- and scale-invariant geometric features
such as angles. We then cast hypergraph matching to binary node classification
on a single association hypergraph as in previous work [55].

We use two standard datasets [55]: Willow ObjectClass [14] and PASCAL-
VOC [9,17]. The Willow dataset consists of 256 images with 5 object categories.
The PASCAL-VOC dataset contains 11,530 images with 20 object categories,
and is considered challenging due to large variance in illumination and pose.
We follow the training setup of NHGM-v2 [55] and only replace the hypergraph
neural network module to EHNN-MLP/-Transformer. The key difference between
NHGM-v2 and our models is that NHGM-v2 utilizes two separate message passing
networks, one on 2-edges and another on 3-edges, and aggregates node features
as a weighted sum. In contrast, EHNN mixes the information from 2-edges and
3-edges extensively via shared MLP hypernetworks and global interactions.

The results are in Table 3 and 4. On Willow, EHNN-Transformer gives the best
performance, improving over NHGM-v2 by 4.87%. On PASCAL-VOC, EHNNs
improve over NHGM-v2 by ∼ 1%, and are competitive to the best model (BBGM;
0.19% gap) that relies on sophisticated combinatorial solver [50]. We conjecture
that intrinsic and global mix of 2-edge (distance) and 3-edge (angle) feature
improves hypergraph learning and consequently also keypoint matching.

5 Conclusion

We proposed a family of hypergraph neural networks coined Equivariant Hy-
pergraph Neural Network (EHNN). EHNN extends theoretical foundations of
equivariant GNNs to general undirected hypergraphs by representing a hyper-
graph as a sequence of tensors and combining equivariant linear layers on them.
We further proposed EHNN-MLP/-Transformer, practical realizations of EHNN
based on MLP hypernetworks. We show that EHNN is theoretically more expres-
sive than most message passing networks and provide empirical evidences.
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