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A Detailed Experimental Settings

In this section, we describe the detailed experimental settings of the proposed
ScaleNet for super-supernet training, jointly base model and scaling strategies
searching, model retraining, and fine-tuning tasks, respectively.

FLOPs Budgets: For both ImageNet-1k and ImageNet-100 datasets [17],
we used same method to determine the FLOPs budgets for various scaling stages.

We first selected the FLOPs budget of base model by Monte Carlo simulation
according to the search space in Table 1. We randomly sampled about 100, 000
paths of base model and calculated the mean FLOPs of them. We chose a mul-
tiple of 50M near the mean as the FLOPs budget f0 of base model. For scaling
stage j, we selected 2j ·f0 as the FLOPs budget and searched the optimal scaling
strategy near it.

Super-supernet Training: For ImageNet-1k, we sampled the base model
from the search space in Table 1 and the scaling strategies in Table 2. We used a
stochastic gradient descent (SGD) optimizer with momentum as 0.9 and weight
decay as 4 × 10−5 to train the super-supernet. Initial learning was set as 0.12
with a cosine annealing strategy for 750, 000 iterations. Learning rate warm-
up was also included for 3, 750 iterations, linearly increasing from zero to 0.2.
We train the super-supernet with batch size as 1024. In data augmentation, we
randomly resized the batches according to the resolution values in the sampled
scaling strategies, with common hyper-parameters of the augmentation. Then,
we resized the batch to the scaled resolutions again. The maximum scaling stage
M was set as 3 in the experiments.

For ImageNet-100 dataset in ablation studies, we followed the class selec-
tion [25] and reduced the channel number of the super-supernet to a half with
batch size as 256, total iterations as 150, 000 and warm-up for 375 iterations. All
the other settings are same to those for ImageNet-1k experiments. The visual-
ization of search space in the ablation studies is shown in Figure 1, which has
similar trends with that for ImageNet-1k experiments.

We divided a mini validation set (50 images per class) from the training
set for evaluation. The rest images in the training set were all used for super-
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Table 1: The macro-structure of the search space of the base model. “n” is
the number of stacked building blocks, where “nmin” and “nmax” are the mini-
mum and maximum numbers, respectively. “Operation” is the type of the block.
“N/A” means “not applied”. “Y/N” means “using or not” in the base model of
the super-supernet training. “Input” is the original resolution of input feature
maps. “Channel” is the number of output channels. “Stride” is the stride of
the first block. “Scale” means which dimensions of the stage need to be scaled,
where “D” is depth, “W I” is input channel number, “W O” is output channel
number, “R” is resolution, “!” means having the part, “%” means ignoring the
one. “FC” is a fully connected layer.

Stage
n

Operation Expand rate SE Input Channel Stride
Scale

nmin nmax D W I W O R

Conv stem 1 1 3×3 Conv. N/A N/A 224× 224× 3 112× 112× 32 2 % % ! !

Stage 1 1 1 MBConv 1 Y/N 112× 112× 32 112× 112× 16 1 ! ! ! !

Stage 2 1 4 MBConv 3/6 Y/N 112× 112× 16 56× 56× 32 2 ! ! ! !

Stage 3 1 4 MBConv 3/6 Y/N 56× 56× 32 28× 28× 40 2 ! ! ! !

Stage 4 1 4 MBConv 3/6 Y/N 28× 28× 40 14× 14× 80 2 ! ! ! !

Stage 5 1 4 MBConv 3/6 Y/N 14× 14× 80 14× 14× 96 1 ! ! ! !

Stage 6 1 4 MBConv 3/6 Y/N 14× 14× 96 7× 7× 192 2 ! ! ! !

Stage 7 1 1 MBConv 3/6 Y/N 7× 7× 192 7× 7× 320 1 ! ! ! !

Conv out 1 1 1×1 Conv. N/A N/A 7× 7× 320 7× 7× 1280 1 % ! % !

Pooling 1 1 Global avgpool N/A N/A 7× 7× 1280 1280 N/A % % % %

Classifier 1 1 FC N/A N/A 1280 1000 N/A % % % %

supernet training. All the validation accuracies that we have emphasized in the
paper were calculated by the mini validation set, respectively.

Jointly Base Model and Scaling Strategies Searching: We applied
the proposed MCEA for the search with iteration number T as 8 and sampling

number of base models for obtaining initial scaling strategies S
(0)
j as 20.

We first conducted an initial step for obtaining the S
(0)
j based on (7) of the

main body. Then, we iteratively searched the optimal base model and scaling
strategies for T iterations. In each sub-optimization process of the base model
search steps, we undertook an evolution algorithm NSGA-II [6] with population
size P as 50 and generation sizeN as 40. Meanwhile, although we can also employ
the evolution algorithm for scaling strategy search steps, we directly applied a
small grid search on the trained super-supernet as the search space of a scaling
stage is small enough. Note that we can also use small N with large T (such as
N = 8, T = 20), but this may be easy to fall into sub-optimal as the evolution
algorithm needs to undertake crossover-mutation steps.

Model Retraining: We followed previous work [12,23] for obtaining the
common training recipe. The models were trained using a RMSProp optimizer
with momentum as 0.9 and weight decay as 1× 10−5. Initial learning was set as
0.08 with a step strategy for 300 epochs. The learning rate was increased from
zero to 0.08 linearly in the first 3 epochs with batch size 1024, and then decayed to
0.97 every 2.4 epochs. In addition, exponential moving average (EMA) on weights
was adopted with a decay rate 0.9999. RandAugment [5] was also introduced.
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Table 2: The range of the search space of the scaling strategies. We take M = 3
as an example. Depth and width use the same intervals of choices. Scaling stage
0 refers to the base model.

Scaling stage Depth / Width Resolution
j Min Step Max Min Step Max

0 1.00 0.00 1.00 1.00 0.00 1.00
1 1.04 0.04 1.16 1.00 0.07 1.14
2 1.20 0.04 1.36 1.21 0.07 1.35
3 1.40 0.04 1.64 1.43 0.07 1.57

Fig. 1: Sampling distribution based on the proposed HSS, compared with that
of the original uniform sampling for ablation studies (ImageNet-100). We took
750, 000 paths for each to simulate actual super-supernet training. The sampling
distribution of the original uniform sampling performs as a bell-shape single-
modal one, where paths cannot be fairly trained In each scaling stage (between
black dashed lines). Meanwhile, paths in scaling stage 0 and 3 cannot be suffi-
ciently trained due to the too small sampling probabilities of them. In contrary,
our proposed HSS provides single-modal distributions for each scaling stage and
the modes of each locate near the corresponding target FLOPs budgets.

Furthermore, for the ImageNet-100 dataset in ablation studies, we modified
batch size as 256, decay rate of the EMA as 0.99, and epoch number as 200.

Fine-tuning Tasks:We followed the model retraining settings for ImageNet-
1k experiments, but removed the EMA and reduced the batch size as 256.
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B Detailed Settings and Definitions of Comparisons of
Pearson, Spearman, and Kendall Coefficients

In Table 4 of the main body, we evaluated the proposed HSS with three coeffi-
cients, including Pearson ρP [1], Spearman ρS [29], and Kendall τ [9], compared
to the original uniform sampling in [28], in order to indicate the super-supernet
trained with our HSS can provide more precisely ranking for architectures. In
this section, we explain the detailed settings and definitions of them, respectively.

Here, we assume the validation accuracies of the paths sampled the super-
supernet should be order preserving on FLOPs same to the actual performance of
those trained from scratch. This matches the assumption of the next architecture
search step in the one-shot NAS that the validation accuracies of the paths can
reflect on the actual performance. Thus, we utilized the three ones to evaluate
the effectiveness of our HSS on the order preservation of the path performance.

We define a validation accuracy vector ACC = [ACC1, · · · , ACCQ]
T and a

FLOPs vector f = [f1, · · · , fQ]T for all the Q sampled paths, where ACCq and
fq are both for one corresponding path. In our experiments, Q = 6, 000. We can
calculate the Pearson coefficient ρP by

ρP =
Cov(ACC,f)

σACC · σf
=

E[(ACC − µACC)(f − µf )]

σACC · σf
, (1)

where Cov(·, ·) is covariance function, σACC and σf are the standard deviations
of the two vectors, respectively, and µACC and µf are the means of the two
vectors, respectively.

For the Spearman coefficient ρS, as it replace the accuracy and FLOPs vectors
by their rank vectors ˜ACC and f̃ , respectively, we can compute it by

ρS =
Cov( ˜ACC, f̃)

σ ˜ACC · σf̃

, (2)

where σ ˜ACC and σf̃ are the standard deviations of the two rank vectors, respec-
tively. As all the ranks are distinct integers, (2) can be transferred to

ρS = 1−
6
∑Q

q=1(
˜ACCq − f̃q)

2

Q(Q2 − 1)
. (3)

Third, the Kendall coefficient τ is defined as

τ =

∣∣∣∣Qconcordant −Qdisconcordant

Qall

∣∣∣∣ , (4)

where

Qconcordant = #{(ACCq1 −ACCq2)(fq1 − fq2) > 0, q1 < q2}, (5)

Qdisconcordant = #{(ACCq1 −ACCq2)(fq1 − fq2) ≤ 0, q1 < q2}, (6)
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and Qall =
Q(Q−1)

2 .

All the three coefficients are the larger the better in the interval of [0%, 100%].
More detailed explanations of them can be found in Wiki Pedia for Pearson5,
Spearman6, and Kendall7 coefficients.

C Definitions of Compared Functions in Lager-scale
Architecture Generalization

We have compared the proposed larger-scale architecture generalization function
in the ablation studies with linear and squared functions. Here, we define the
forms of the two compared functions and their optimization processes in the
ablation studies.

We define the optimal scales of M + 1 scaling stages as {Ŝj}Mj=0. We also

pre-define Ŝ0 as d̂0 = ŵ0 = r̂0 = 1 for the base model. These are same to those
in the main body.

Linear Function. Here, we define the linear functions for the three dimen-
sions, respectively, as 

d̂j = a
(d)
0 · j + a

(d)
1

ŵj = a
(w)
0 · j + a

(w)
1

r̂j = a
(r)
0 · j + a

(r)
1

, (7)

where a0 and a1 are parameters.

In order to guarantee the relation between j = 0 and Ŝ0, we put d̂ = ŵ =
r̂ = 1, j = 0 into (7) and obtain 

a
(d)
1 = 1

a
(w)
1 = 1

a
(r)
1 = 1

. (8)

After that, we re-put (8) into (7) and obtain the linear functions for the three
dimensions as 

d̂j = a
(d)
0 · j + 1

ŵj = a
(w)
0 · j + 1

r̂j = a
(r)
0 · j + 1

. (9)

We should note that a
(d)
0 , a

(w)
0 , and a

(r)
0 are all constrained to be positive as

the trends of the three dimensions should be monotonically increasing.

5 https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
6 https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_

coefficient.
7 https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient
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Squared Function. Similarly, we define the squared functions for the three
dimensions, respectively, as

d̂j = a
(d)
0 · j2 + a

(d)
1 · j + a

(d)
2

ŵj = a
(w)
0 · j2 + a

(w)
1 · j + a

(w)
2

r̂j = a
(r)
0 · j2 + a

(r)
1 · j + a

(r)
2

, (10)

where a0, a1 ,and a2 are parameters.

In the same way, we put d̂ = ŵ = r̂ = 1, j = 0 into (10) and obtain
a
(d)
2 = 1

a
(w)
2 = 1

a
(r)
2 = 1

. (11)

We also re-put (11) into (10) and obtain the squared functions as
d̂j = a

(d)
0 · j2 + a

(d)
1 · j + 1

ŵj = a
(w)
0 · j2 + a

(w)
1 · j + 1

r̂j = a
(r)
0 · j2 + a

(r)
1 · j + 1

, (12)

where a
(d)
0 , a

(w)
0 , and a

(r)
0 are also constrained to be positive.

Optimization Process. We define the optimization objective for one di-
mension with a function func(·; a0, a1) as

argmin
a0,a1

M∑
j=1

||yj − func(j; a0, a1)||2, (13)

s.t. a0 > 0,

where func(·; a0, a1) is selected from (9), (12), or (8) of the main body and yj
is the searched value of one dimension (d̂, ŵ, or r̂) in scaling stage j. We can
directly optimize by stochastic gradient descent (SGD) or other optimization
algorithms.

D Search Space of Base Model

We introduce the search space of base model for model scaling in Table 1.
Super-supernet training will sample base models in paths according to the search
space. Following previous work [19,27], we utilize mobile inverted bottleneck MB-
Conv [18] with expand rates as 3 or 6. Squeeze-and-excitation network (SENet) [8]
is also applied in the search space. No more than four layers are assigned in each
stage for the base model. Specifically, at least one layer should be selected in
each path of super-supernet training.
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E Search Space of Scaling Strategies

The search space of scaling strategy is defined in Table 2. We take maximum
scaling stage number M = 3 as an example. Note that scaling stage j = 0
represents the base model. As shown in Table 2, the three dimensions, i.e.,
depth, width, and resolution, are set as one for the base model, respectively. For
larger scaling stages, depth and width are selected in the same intervals, while
resolution has other different ones, which are empirically designed.

For the three dimensions, we first set the center points of the intervals by
Monte Carlo simulation according to the FLOPs budgets, and then obtain the
ranges of the intervals based on the center points, respectively. In a dimension, we
define same value of steps for each scaling stage as 0.04 for both depth and width,
and 0.07 for resolution. For the former ones, a certain and suitable step is enough
for the super-supernet training, while for the latter one, we empirically set them
according to BigNAS [28]. Especially for width, we need to guarantee the channel
numbers of different paths to uniformly change as we used the technique in [20]
for width in super-supernet training.

According to the search space of base model in Table 1 and that of scaling
strategy in Table 2, we can visualize the the whole search space to FLOPs by
Monte Carlo simulation, as shown in Figure 3 of the main body for ImageNet-
1k experiments and Figure 1 for ablation studies on ImageNet-100 (half channel
numbers for each layer). Our search spaces are both in similar multi-modal forms
of the histograms, instead of a simple bell-shape form of the original uniform
sampling. Note that although the respective sampling distributions of each scal-
ing stage are overlapped with contiguous ones, the paths near the boundaries
between scaling stages (i.e., away from the FLOPs Budgets) will be dropped
in the search, as they do not satisfy the FLOPs budgets. This means that they
do not affect the joint base model and scaling strategy search after the super-
supernet training.

F Path Generation with Sampled Base Model and
Scaling Strategy

In the super-supernet training, we specifically sample a base model architecture
by uniform sampling and a scaling strategy by the proposed hierarchical sampling
strategy (HSS) for each batch. Thus, we should combine them and generate a
path for the super-supernet training.

For the depth, we simply copy the structure of the last non-identity block in
each stage that can be scaled (See line “D” in Table 1). “Conv stem”, “Pooling”,
“Conv out”, and “Classifier” cannot be scaled in depth. The number ns of scaled
blocks is defined as

ns = ⌈n× d⌉ , (14)

where n is the block number of a stage in a sampled path and d is depth coeffi-
cient.
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Similarly for the width, we directly combine the added channels into each
layer that can be scaled in the base model. Note that the input channel num-
ber of “Conv stem” (three channels for RGB) and the output channel number
of “Conv out” (1280 channels same to the input channel number of the fully
connected layer) are not modified (See line “W I” and “W O” in Table 1). The
latter one is different with that of EfficientNet [23]. The scaled channel number
cs of a layer is defined as

cs = ⌈c× w⌉ , (15)

where c is the channel number of a layer in a sampled path and w is width
coefficient.

For the resolution, we directly resize the input images before augmentations
to the target size. It influences all the layers before “Pooling”. The scaled reso-
lution rs of a input image is defined as

rs = ⌈224× r⌉ , (16)

where r is resolution coefficient.
The size of total search space in the super-supernet training is almost 2×1026.

G Search Cost Computation of Referred Methods

EfficientNet [23]: As they said in the paper that they conducted a small grid
search for d1, w1, and r1 based on the constraint d1 × w2

1 × r21 ≈ 2, we sampled
them in the interval of [1, 2] with step as 0.01 and analyzed all the cases. The
ones that satisfy the constraint |d1×w2

1×r21−2| ≤ 0.1 were counted and 10, 285
cases were included. For the training time of a model, we found that training an
EfficientNet-B4 model (4.2G FLOPs) cost about one TPU day. Thus, training
an EfficientNet-B1 model (0.7G FLOPs) may cost about 1/6 TPU days. The
total search cost for the compound scaling should be 1, 714 TPU days.

Another work [26] said the lower bound of searching EfficientNet-B0 is 91, 000
TPU hours, i.e., 3, 792 TPU days. However, we did not consider the part.

EfficientNet-X [13]: They undertook a two-level grid search for d1, w1,
and r1. We first sampled them in the interval of [1, 2] with step as 0.1 and
remained all the cases. Then, a smaller grid search around the best candidate
with difference ranges in the interval of [−0.1, 0.1] and step 0.01. Finally, we can
obtain 113+213−1 = 10, 591 cases. Similar to the EfficientNet, the total search
cost should be 1, 756 TPU days.

BigNAS [28]: As discussed in the paper, they train the supernet for 36
hours with 64 TPUv3. Here, the model sized from 200M to 2, 000M FLOPs
and they searched from 200M to 1, 000M FLOPs. Thus, for searching a 10G
FLOPs architecture, the supernet should size from 200M to 20G FLOPs, i.e.,
100× than before. The supernet training time should be also enlarged to 10×
as 36 × 64 × 10 = 23, 040 TPU hours, i.e., 960 TPU days. Although the paper
did not mention their cost on searching architectures, we assumed their cost
ratio of supernet training and searching is same to ours and approximated their
searching cost as 960× (106/379) = 268 TPU days.
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Table 3: The searched and generalized scaling strategies from ScaleNet-S0 to
ScaleNet-S5.

Scaling stage Depth Width Resolution

0 1.000 1.000 1.000
1 1.080 1.040 1.140
2 1.360 1.200 1.355
3 1.480 1.400 1.580
4 1.653 1.534 2.042
5 1.848 1.688 2.378

FBNetV2 [26]: As shown in the paper, the authors searched the FBNetV2-
L1 model (0.33M FLOPs) with total 0.6k GPU hours. We linearly expand the
number by FLOPs and obtain 39, 182 GPU hours, i.e., 1, 633 GPU days.

OFA [3]: They first searched a large architecture (40 GPU hours), where
FLOPs budget was not mentioned in the paper and we assumed as 600M FLOPs,
then trained the model for enough time (1, 200 GPU hours), and searched target
ones from the large one by progressive shrinking and fine-tuning (75× 40 GPU
hours). For searching and training a 10G FLOPs large model, they need (1, 200+
40) × 10, 000/600 = 20, 667 GPU hours. Then, searching the five scaling stages
needs at least 75 × 40 × 5 = 15, 000 GPU hours. The total time cost should be
20, 667 + 15, 000 = 35, 667 GPU hours, i.e., 1, 486 GPU days.

MnasNet [22]: Their total search cost is 91, 000 TPU hours for 388M FLOPs
budget. Transferring to our total FLOPs budgets as 10, 000 + 6, 000 + 3, 000 +
1, 500 + 800 + 350 = 21, 650M FLOPs, their search cost should be 91, 000 ×
21, 650/388 = 5, 077, 706 TPU hours, i.e., 211, 571 TPU days.

Speed comparisons of Different Devices: We have reviewed the com-
putation speed of different devices, including V100 GPU and TPUv2/3, which
were used in previous work [3,13,22,23,26,28] or this paper. TPUv3 is 2.7× faster
than TPUv28. The speed of a TPUv2 core is similar to that of one V1009. Com-
bining all of them, we can obtain the training speed ratios as a TPUv3 core :
a TPUv2 core : a V100 = 2.7 : 1 : 1.

Note that we only discuss the search cost, as we assume all the methods
require same cost on retraining, except for the BigNAS, which does not need
to retrain the searched architectures. Retraining needs about 280 GPU days on
V100 and the ScaleNet totally costs 765 GPU days, which is much smaller than
1, 228 TPU days on TPUv3 of the BigNAS.

H Visualizations of Search Architectures

Table 3 shows the searched and generalized scaling strategies of the proposed
ScaleNet for the ImageNet-1k experiments. Moreover, Figure 2 shows the corre-

8 See https://www.linleygroup.com/newsletters/newsletter_detail.php?num=

6203&year=2020&tag=3.
9 See page 24 in https://storage.googleapis.com/nexttpu/index.html.

https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6203&year=2020&tag=3
https://www.linleygroup.com/newsletters/newsletter_detail.php?num=6203&year=2020&tag=3
https://storage.googleapis.com/nexttpu/index.html
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Fig. 2: Visualizations of searched and generalized architectures from ScaleNet-S0
to ScaleNet-S5. “MBe Kk SE” means the block uses k × k depth-wise convolu-
tion as the intermediate convolution with expand rate as e and SE block. The
architectures are split into stages (not scaling stages) by the resolutions. All the
downsampling blocks are employed in the first layer of each stage.
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Table 4: Detailed comparisons between our ScaleNet and EfficientNet. “re-impl”
means we reimplemented the model with our settings. “∗” used our scaling strate-
gies with EfficientNet-B0. The best results are highlighted in bold.

Model Top-1 acc. (%) Top-5 acc. (%) #Params (M) FLOPs (G) Resolution

EfficientNet-B1 [23] 78.8 94.4 7.8 0.70 240×240
EfficientNet-B1 (re-impl) 78.7 94.1 7.8 0.70 240×240
EfficientNet-S1∗ 79.2 94.6 8.3 0.79 256×256
ScaleNet-S1 79.9 94.8 7.4 0.80 256×256

EfficientNet-B2 [23] 79.8 94.9 9.2 1.00 260×260
EfficientNet-B2 (re-impl) 80.4 95.1 9.2 1.00 260×260
EfficientNet-S2∗ 80.8 95.4 11.8 1.58 304×304
ScaleNet-S2 81.3 95.6 10.2 1.45 304×304

EfficientNet-B3 [23] 81.1 95.5 12.0 1.80 300×300
EfficientNet-B3 (re-impl) 81.1 95.4 12.0 1.80 300×300
EfficientNet-S3∗ 82.1 95.8 15.4 2.94 354×354
ScaleNet-S3 82.2 95.9 13.2 2.76 354×354

EfficientNet-B4 [23] 82.6 96.3 19.0 4.20 380×380
EfficientNet-B4 (re-impl) 82.6 96.3 19.0 4.20 380×380
EfficientNet-S4∗ 82.8 96.3 19.5 6.34 458×458
ScaleNet-S4 83.2 96.6 16.1 5.97 458×458

EfficientNet-B5 [23] 83.3 96.7 30.0 9.90 456×456
EfficientNet-B5 (re-impl) 83.2 96.7 30.0 9.90 456×456
EfficientNet-S5∗ 83.2 96.4 25.8 11.42 533×533
ScaleNet-S5 83.7 97.1 20.9 10.22 533×533

sponding searched and generalized architectures. Here, we find that they have
the following three properties:

– Regarding kernels of convolutional layers, the base model usually prefers to
use more large kernels (5 × 5 or 7 × 7 convolution layers) and more 7 × 7
kernels are applied in the deeper layers.

– With different FLOPs budgets, two architectures may have same numbers
of layers, but with distinct width and resolution, respectively. As different
values of depth can respond to a same architecture.

– Regarding resolutions of various scaling stages, the ScaleNet tends to use
higher resolutions than those in [7,23] to improve the performance. They
can also reduce the numbers of parameters under certain FLOPs budgets to
some extent.

I Discussion of Maximum Scaling Stage in Searching

In this section, we discuss the maximum scaling stage issue in the joint search of
base model and scaling strategy. As discussed in the ablation studies, searching
on more scaling stages can obtain better scaling strategies. This is given that
directly searching the scaling strategy on a scaling stage should have better
performance than generalizing it. Although we applied the maximum scaling
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Fig. 3: Comparisons between our ScaleNet and other baseline methods with on
ImageNet-1k dataset. Both (a) FLOPs and (b) number of parameters (#Param.)
are compared versus top-1 accuracy. Note that we do not illustrate ResNet in
(b) as it has too many parameters.

stage M = 3 and generalized the model on scaling stage 4 in the ablation studies,
using M = 4 and searching the fourth scaling stage may obtain a better one.

However, larger M implies consuming more resources, for example, training
the super-supernet under current settings on ImageNet-1k needs 32 V100 cards
with automatic mixed precision (AMP) or 64 V100 cards with full precision.
M influences the computational complexity in both super-supernet training and
searching. It is approximately exponential to the computational complexity (the
computational complexity is proportional to FLOPs). However, with its increase,
performance improvement of the generalized models should be approximately
logarithmically increased as in Table 3. As current experimental results have
reached state-of-the-art performance, utilizing double resources to training the
super-supernet and searching with one more scaling stage and achieving 0.5%
top-1 accuracy improvement on ImageNet-1k (similar to s4 models in Table 3 of
the main body. We also trained an s5 model and found that its top-1 accuracy
is 90.74%, slightly higher than 90.46% of s4 model.) between a directly searched
one and a generalized one may not be necessary. Since the performance of models
tends to saturate with the increase of model scales, in practice a moderate M
should be favored for better and efficient search. It can be theoretically set as
infinite, but a too large value of it is worthless. Thus, we only set M as three in
the experiments.

J Comparisons with EfficientNet

Table 4 shows detailed comparisons between our ScaleNet and EfficientNet [23].
With same experimental settings, the searched and generalized models of our
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Table 5: Statistics of five fine-tuning datasets. “#Training”, “#Test”, and
“#Class” are numbers of training samples, test samples, and classes, respec-
tively.

Dataset #Training #Test #Class

FGVC Aircraft [15] 6, 667 3, 333 100
Stanford Cars [10] 8, 144 8, 041 196

Food-101 [2] 75, 750 25, 250 101
CIFAR-10 [11] 50, 000 10, 000 10
CIFAR-100 [11] 50, 000 10, 000 100

ScaleNet can significantly outperform the re-implemented EfficientNet models in
each scaling stage with similar FLOPs and numbers of parameters, respectively.
As our models were implemented with larger resolutions than EfficientNet ones,
we can slightly reduce the numbers of parameters for each.

Meanwhile, we conducted a group of experiments on our scaling strategies
with EfficientNet-B0 as base model, namely EfficientNet-S1 to EfficientNet-S5.
Compared with the baseline models, they can achieve remarkable or marginal
performance improvement in various scaling stages. This means our obtained
scaling strategies is better than those of the baseline. Furthermore, our results
can also surpass those of them, which demonstrates our searched base model is
more suitable for scaling than the EfficientNet-B0.

To intuitively compare the performance of our ScaleNet with other baseline
methods, we visualize the top-1 accuracies of our ScaleNet w.r.t. FLOPs and
number of parameters, respectively, in Figure 3. As shown in Figure 3(a), the
performance of the searched and generalized models can outperform all the oth-
ers as an upper bound. Similarly in Figure 3(b), our models also perform best
among the others with a larger margin on accuracy.

K More Comparisons on Fine-tuning Tasks

The statistics of five fine-tuning datasets are shown in Table 5, including numbers
of training samples, test samples, and classes. Table 6 shows experimental results
on the datasets. On FGVC Aircraft, Stanford Cars, and Food-101, we trained
ScaleNet-S3/4/5 with our ImageNet-pretrained models and obtained state-of-
the-art performance. Furthermore, on the other two CIFAR datasets, we can
also achieve superior accuracies compared with the baseline models.

L Definition Difference between “Stage” and “Scaling
Stage”

“Stage” and “scaling stage” are in two different dimensions. (1) “Stage” corre-
sponds to depth in one model. As shown in Figure 2, a model can be divided
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Table 6: Comparisons with other state-of-the-art methods in five fine-tuning
tasks. Top-1 accuracies (%), FLOPs (G), numbers of parameters (#Param., M)
are reported. The best results on each dataset are highlighted in bold.

Dataset Model Top-1 FLOPs #Param.

FGVC Aircraft

EfficientNet-B3 [23] 90.7 1.80 10
NAT-M4 [14] 90.8 0.58 5
Inception-v4 [21] 90.9 13.00 41
ScaleNet-S3 (ours) 91.4 2.76 11
ScaleNet-S4 (ours) 92.8 5.97 14
ScaleNet-S5 (ours) 92.9 10.22 19

Stanford Cars

NAT-M4 [14] 92.9 0.37 6
Inception-v4 [21] 93.4 13.00 41
EfficientNet-B3 [23] 93.6 1.80 10
EfficientNetV2-S [24] 93.8 8.80 24
EfficientNet-B7 [23] 94.7 37.00 64
DAT [16] 94.8 - -
ScaleNet-S3 (ours) 94.4 2.76 11
ScaleNet-S4 (ours) 95.0 5.97 14
ScaleNet-S5 (ours) 95.1 10.22 19

Food-101

NAT-M4 [14] 89.4 0.36 5
Inception-v4 [21] 90.8 13.00 41
EfficientNet-B4 [23] 91.5 4.20 17
ScaleNet-S3 (ours) 91.2 2.76 11
ScaleNet-S4 (ours) 92.0 5.97 14
ScaleNet-S5 (ours) 92.2 10.22 19

CIFAR-10

Proxyless-G+c/o [4] 97.2 - 6
NASNet-A [30] 98.0 42.00 85
EfficientNet-B0 [23] 98.1 0.39 4
NAT-M3 [14] 98.2 0.39 6
ScaleNet-S0 (ours) 98.3 0.35 3

CIFAR-100

NASNet-A [30] 87.5 42.00 85
NAT-M3 [14] 87.7 0.49 8
EfficientNet-B0 [23] 88.1 0.39 4
ScaleNet-S0 (ours) 88.4 0.35 3

into seven stages with different channel numbers. (2) “Scaling stage” is a holis-
tic concept that refers to various models with different FLOPs budgets, i.e., the
subfigures in Figure 2.
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