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Abstract. Recently, community has paid increasing attention on model
scaling and contributed to developing a model family with a wide spec-
trum of scales. Current methods either simply resort to a one-shot NAS
manner to construct a non-structural and non-scalable model family or
rely on a manual yet fixed scaling strategy to scale an unnecessarily best
base model. In this paper, we bridge both two components and propose
ScaleNet to jointly search base model and scaling strategy so that the
scaled large model can have more promising performance. Concretely,
we design a super-supernet to embody models with different spectrum
of sizes (e.g., FLOPs). Then, the scaling strategy can be learned inter-
actively with the base model via a Markov chain-based evolution algo-
rithm and generalized to develop even larger models. To obtain a decent
super-supernet, we design a hierarchical sampling strategy to enhance its
training sufficiency and alleviate the disturbance. Experimental results
show our scaled networks enjoy significant performance superiority on
various FLOPs, but with at least 2.53× reduction on search cost. Codes
are available at https://github.com/luminolx/ScaleNet.

Keywords: Neural architecture search (NAS), model scaling, hierarchi-
cal sampling strategy, Markov chain-based evolution algorithm

1 Introduction

Convolutional neural networks (CNNs) have achieved great performance in com-
puter vision with various model architectures [4,5,8,11,12,21,34,35,36,37,40,42]
proposed for better feature extraction abilities. Previous work [22,23,24,25,39]
usually focused on how to automatically design a model architecture under a cer-
tain resource budget (e.g., floating-point operations per second, FLOPs) with
neural architecture search (NAS) algorithms and gained significant improve-
ments. However, due to different levels of budgets which may occur in vari-
ous applications, multi-scale architectures should be considered in practice and
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Fig. 1: Comparisons of different methods to generate a model family S0-S3. Red,
blue, and green arrows are the scaling strategy searching for scaling stage 1, 2,
and 3, respectively. The pure one-shot NAS (baseline) independently searched
various models without either scaling strategy modeling between scaling stages or
larger-scale architecture generalization. BigNAS [41] jointly searched the model
family from an entire supernet, although it obtained non-structural then non-
scalable architectures. Then in EfficientNet [28], the base model (i.e., S0) and
the scaling strategy to S1 were only searched independently for architecture
generalizing. In our ScaleNet, we combine the two components and jointly search
base model and all scaling strategies to scale the model into infinite ones.

can be independently generated by the NAS. Nevertheless, typical NAS meth-
ods [22,23,24,25,39] have to search one a time for each scale, and the searching
cost will be approximated linearly scaled as well [29] (see baseline in Figure 1).

In contrast, recent work [3,6,7,10,15,16,17,28,31,33,41,43] get down to paying
attention on model scale and designing a model family in a more straightforward
way. Two frameworks have been proposed as shown in Figure 1, including one-
shot NAS-based pipeline (e.g., BigNAS [41] and Once-for-All (OFA) [3]) and
two-step pipeline (e.g., EfficientNet [28] and EfficientNet-X [15]). The former
directly designed an overcomplete one-shot supernet to embody multiple (finite)
scales and searched models by NAS. However, they are difficult to extend the
searched models to a larger one, since finding a specific scaling strategy that
adapts all the non-structurally searched architectures is infeasible. The latter
decomposed the large model generation with two steps, i.e., first acquiring an
optimal base model, then scaling it on three dimensions, including depth, width,
and resolution, using some pre-defined strategies, e.g., compound scaling [28]
and fast compound scaling [7]. However, the best base model is unnecessarily
optimal for scaling. How to combine the advantages of both, i.e., automatically
and jointly searching the base model and scaling strategy by NAS and freely
extending the scaling strategy into infinite scales, should be carefully considered.

Different with manually designed rule-based scaling strategies [7,28,38], we
propose to directly discover the optimal scaling strategies within base model
search. One-shot NAS can search model architectures based on a trained super-
net that contains all the possible architectures (so-called paths). For improving
search efficiency, we apply an even-larger supernet dubbed super-supernet to
embody multi-scale networks. However, a common one-shot space usually has
a uni-modal distribution of FLOPs of paths under uniform sampling [9,41]. In
this way, the super-supernet tends to favor the intermediate-FLOPs and cannot
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accommodate all FLOPs budgets well, which will in turn hampers the optimal-
ity of searched scaling strategies. Inspired by ancestral sampling [1], we propose
a hierarchical sampling strategy (HSS) that splits the search space into parti-
tions and the sampling is implemented respectively. The search space and the
sampling distribution of the super-supernet for FLOPs are carefully designed
according to the budgets of various scaling stages and undertake a multi-modal
form distribution.

Secondly, considering that our goal is to find a base model architecture with
the strongest scaling capability (instead of the best performance) and its corre-
sponding optimal scaling strategies, we propose a joint search for them, dubbed
Markov chain-based evolution algorithm (MCEA), by iteratively and interac-
tively optimizing both of them. After obtaining the searched scaling strategies,
we model the trends of depth, width, and resolution, respectively, and generalize
them to develop even larger models. We theoretically derive a group of gener-
alization functions in the three dimensions for larger-scale architectures, with
which moderate performance can be actually achieved.

The contributions of this paper are four-fold:

– We propose ScaleNet to jointly search the base model and a group of the
scaling strategies based on one-shot NAS framework. The scaling strategies
of larger scales are generalized by the searched ones with our theoretically
derived generalization functions.

– We carefully design the search space and a multi-modal distribution for
FLOPs budgets for hierarchical sampling strategy (HSS) in the one-shot
NAS-based scaling search algorithm to enhance the training sufficiency of
paths in super-supernet.

– We propose a joint search algorithm for both the base model and the scal-
ing strategies, namely Markov chain-based evolution algorithm (MCEA), by
iteratively and interactively optimizing both of them.

– Experimental results show that the searched architectures by the proposed
ScaleNet with various FLOPs budgets can outperform the referred methods
on various datasets including ImageNet-1k. Meanwhile, search time can be
significantly reduced at least 2.53×.

2 Related Work

2.1 One-shot NAS-based Model Family Searching

FBNets [6,31,33] optimized CNN architectures for mobile devices and generated
a family of models in order to avoid training individual architectures separately
and reduce resource consuming. Cai et al. [3] proposed to train a once-for-all
(OFA) model that supports diverse architectural settings by decoupling training
and search, in order to reduce the cost. BigNAS [41] challenged the conventional
pipeline that post-processing of model weights is necessary to achieve good per-
formance and constructed big single-stage models without extra retraining or
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Fig. 2: Framework of the proposed ScaleNet. Based on the carefully designed
search space with multiple scaling stage (the left box), we apply the proposed
hierarchical sampling strategy (HSS) for sampling paths (one path is generated
by a base model and a scaling strategy) in one-shot super-supernet training (the
upper box). Then, we utilize the proposed Markov chain-based evolution algo-
rithm (MCEA) to iteratively and iteractively search the optimal base model and
scaling strategies (the lower box). In each iteration, an evolution procedure with
crossover-mutation and evaluation is undertaken for searching the optimal base
model or scaling strategies based on the search space. Finally, after obtaining the
optimal ones, we generalize them to larger-scale architectures by the estimations
of the trends of depth, width, and resolution, respectively (the right box). All
the obtained architectures will be applied for retraining and inference.

post-processing. However, the main drawback of these methods is that they only
searched for a model family by training a joint or even a group of independent
supernet(s), but did not analyze the structural relationship and explicit scaling
strategies between the architectures with different budgets in the model family.
It is difficult and even infeasible to extend the scaling strategies to larger scales.

2.2 Model Scaling

Tan and Le [28] systematically studied model scaling and found that carefully
balancing depth, width, and resolution of a model can lead to better perfor-
mance. They proposed to empirically obtain the optimal compound scaling that
effectively scales a specific base model up to gain a model family, i.e., Efficient-
Net. Its variant versions, such as EfficientNetV2 [29] and EfficientNet-X [15],
improved it in trade-off on speed and accuracy. A simple fast compound scaling
strategy [7] was proposed to encourage to primarily scale model width, while
scaling depth and resolution to a lesser extent for memory efficiency. Another
work [16] built an greedy network enlarging method based on the reallocation of
computations in order to enlarge the capacity of CNNs by improving the three
dimensions on stage level. However, the aforementioned work always estimated
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the optimal scaling strategy for theoretical double-FLOPs budget by a small
grid search, which is computationally expensive and does not match the actual
FLOPs budgets. Meanwhile, they only considered to find the strategy for the
smallest scaling stage, which did not learn the dependency between larger scaling
stages. Furthermore, the relation between a base model and scaling strategies
did not be investigated, which means the base is not the optimal for scaling.

3 ScaleNet

Due to the drawbacks of the one-shot NAS-based model family searching and
compound scaling-based model scaling, we propose to combine their advantages
together and fill the gap between them. Here, ScaleNet jointly searches a base
model with the strongest scaling capability and the optimal scaling strategies
based on one-shot NAS framework by training a super-supernet as shown in Fig-
ure 2. The super-supernet training and joint searching procedures are carefully
designed for the goal. Then, when obtaining the searched scaling strategies, we
model the trends of depth, width, and resolution, respectively, and generalize
to develop even larger architectures. All the searched and generalized scaling
strategies will be applied for the final model family construction and training.

3.1 One-shot Joint Search Space for Model Scaling

Fig. 3: Sampling distribution based on
the proposed HSS, compared with that
of the original uniform sampling in [41].
We took 750, 000 paths for each to sim-
ulate actual super-supernet training.

The FLOPs budget of the base model
is selected according to the mean
FLOPs of the search space as shown
in Figure 3 (Detailed information of
the search space are shown in supple-
mentary material). Then for various
scaling stages, their FLOPs budgets
are exponentially expanded by that of
the base model α. As scaling strate-
gies {Sj = [dj , wj , rj ]}Mj=0 with max-
imum scaling stage as M , including
the change ratios of depth dj , width
wj , and resolution rj (real numbers
that are not smaller than one), have
their corresponding FLOPs budgets,
respectively, we assign a scaling strat-
egy to each base model architecture
to compute the mean FLOPs and find
the center point of the search space of
scaling stage j according to its FLOPs
budget. The detailed settings of the
whole search space are elaborated in the supplementary material.
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3.2 Hierarchical Sampling Strategy for Super-supernet Training

Applying the original one-shot NAS framework [41,9] by utilizing uniform sam-
pling to train the super-supernet means each operation has equal probability to
be selected. It has two disadvantages: 1) the original bell-shape sampling dis-
tribution towards one specific FLOPs budget for the whole search space is not
suitable for the multiple scaling stages with various budgets, where paths can-
not be fairly trained in each scaling stage (see the red histogram in Figure 3);
2) the search space is almost 300× larger and the size of super-supernet is 8×
larger (statistics with base model and three scaling stages trained) than before,
which increase the difficulty of super-supernet training. As we need to search
architectures in different scaling stages, the paths with the less selected FLOPs
budgets in super-supernet training are not sufficiently trained and those in one
scaling stage are not fairly trained. Here, we propose a hierarchical sampling
strategy (HSS) by implementing a multi-modal sampling distribution to address
the above issues (see the blue histogram in Figure 3).

As we assigned dj , wj , and rj into scaling stages in the search space, we treat
the target multi-modal sampling distribution p(α,S) as a mixture model, i.e.,

p(α,S) = p(α) · p(S) = p(α) ·
(∑M

j=0 ηjpj(S)
)
, (1)

where p(α) and pj(S) are the sampling distributions of base model α and scaling

stage j, respectively, and ηj is normalized component weight,
∑M

j=0 ηj = 1 and

ηj ≥ 0. Here, we can empirically set equal component weights, i.e., ηj = 1
M+1 ,

or normalized combination ratios of scaling strategies in the search space.
In sampling, we apply the ancestral sampling of a probabilistic graphic model [1]

that is a two-step hierarchical strategy for the scaling strategies. We firstly select
a scaling stage m given the conditional distribution p(m|η1, · · · , ηM ), which is a
categorical distribution as

p(m = j|η1, · · · , ηM ) = ηj . (2)

Then, we uniformly sample a scaling strategy S in scaling stage m. Meanwhile,
a base model α is sampled as well based on the original uniform sampling.

The one-shot super-supernet training process based on the proposed HSS is

W ∗ = argmin
W

lossα,S∼p(α,S) (W (α,S);Dtrain) , (3)

where W is a set of super-supernet parameters, W ∗ is a set of the optimal pa-
rameters, loss is training loss function (commonly cross-entropy loss), W (α,S)
means a path that is constructed by α and S, and Dtrain is training set.

3.3 Interactive Search for Base Model and Multiple Scaling Strategy

After completing the super-supernet training, we usually search both base model
and a group of scaling strategies by an evolution algorithm (EA). The original
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Fig. 4: The interactive search in the proposed Markov chain-based evolution
algorithm (MCEA) with a coupled Markov chain. The coupled Markov chain
combines both the left ((5)-(6)) and the right ((7)-(8)) ones for the interaction.

objective of the optimization is globally maximizing the weighted sum of the
validation accuracies ACC of the M scaling stages [32]] as

maxα,{Sj}

[∑M
j=1 πjACC (W ∗(α,Sj);Dval)

]
, (4)

s.t. α ∈ Ωα,Sj ∈ Ωj ,FLOPs(W ∗(α,Sj)) = fj ,

where πj is the normalized weight of scaling stage j (constrained by
∑M

j=1 πj =
1), ACC is the validation accuracy of a path, Dval is validation set, Ωα and Ωj

are the search space of base model and scaling stage j, respectively, and fj is
the FLOPs budget of scaling stage j.

However, both the too large search space and constrained computational
resource restrict the search. Meanwhile, searching the globally optimal group of
architectures from the search space is difficult and expensive, since redundant
information and noises may affect the search.

Here, inspired by Markov process, we propose a so-called Markov chain-based
evolution algorithm (MCEA) with a coupled Markov chain, which iteratively
and interactively optimizes α and {Sj}, to overcome the global search issue.
As shown in Figure 4, with maximum iteration number T and iteration index
t = 1, · · · , T , we transfer the optimization problem in (4) to iteratively and
interactively solving the limiting distributions γ(α) and γ({Sj}) to obtain the
optimal α∗ and S∗

j , respectively, as

α∗ =argmax
α

γ(α) = argmaxα
[
limt→∞ p(α(t))

]
, (5)

p(α(t)) =
∑

α(t−1) p(α(t)|α(t−1), {Sj}Mj=1 = {S(t−1)
j }Mj=1)p(α

(t−1)), (6)

S∗
j =argmax

Sj

γ(Sj) = argmaxSj

[
limt→∞ p(S

(t)
j )

]
, (7)

p(S
(t)
j ) =

∑
S

(t−1)
j

p(S
(t)
j |S(t−1)

j ,α = α(t))p(S
(t−1)
j ), (8)

where p(α(t−1)) and p(S
(t−1)
j ) are the state probabilities of the discrete variable

α(t−1) and S
(t−1)
j , respectively, with the enumerable search space as state space.
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p(α(t)|α(t−1), {Sj}Mj=1 = {S(t−1)
j }Mj=1) ∝

∑M
j=1 πjACC

(
W ∗(α,S

(t−1)
j );Dval

)
and p(S

(t)
j |S(t)

j ,α = α(t−1)) ∝ ACC
(
W ∗(α(t),Sj);Dval

)
are transition matri-

ces and are approximated implemented by the crossover-mutation process under
FLOPs budgets given the obtained scaling strategies or base model, respectively.

S
(0)
j is the initial scaling strategy of the jth scaling stage, where probability

p(S
(0)
j ) ∝ 1

K

∑K
k=1 ACC

(
W ∗(α

(0)
k ,Sj);Dval

)
is obtained by a group of ran-

domly selected base models {α(0)
k }Kk=1 under the FLOPs budget of base model.

3.4 Larger-scale Architecture Generalization with Searched Scaling
Strategies

The scaling strategies of larger scales are generalized by the searched ones. We
define the optimal scales of M + 1 scaling stages as {Ŝj}Mj=0. We should note

that we pre-define Ŝ0 as d̂0 = ŵ0 = r̂0 = 1 for the base model.

We argue that depth, width, and resolution should have distinct growth rates,
respectively, since they perform different roles in the model scaling. Meanwhile,
j is exponentially proportional to FLOPs budgets in our setting, but Ŝj , j =
1, · · · ,M are under almost linear- or quadratic-level. Therefore, inspired by [28],
we propose to utilize the independent regression functions for depth, width, and
resolution for the larger-scale generalization with

d̂j = a
(d)
0 ·

((
a
(d)
1

)j

− 1

)
+ 1

ŵj = a
(w)
0 ·

((
a
(w)
1

)j

− 1

)
+ 1

r̂j = a
(r)
0 ·

((
a
(r)
1

)j

− 1

)
+ 1

(9)

to guarantee the values in Ŝ0, where a0 and a1 are parameters which can be
directly optimized by stochastic gradient descent (SGD) or other optimization
algorithms. As we can learn different values of the parameters, respectively, the
three dimensions can obtain distinct growth rates.

Derivation of Larger-scale Architecture Generalization Functions.
We define FLOPs budget as f here. We can obtain the relation between f and
scaling stage j as f ∝ 2θ×j where ∝ means “proportional to”, θ > 0 is a
parameter. As the depth d̂, width ŵ, resolution r̂ are positively correlated with
f , we have θ(d), θ(w), and θ(r) with θ = θ(d)+θ(w)+θ(r) for the three, and obtain

2(θ
(d)+θ(w)+θ(r))×j ∝̇ d̂× ŵ2 × r̂2, (10)

where ∝̇ means “positively correlated with”, but not “proportional to”. We

formulate the relation between j and d̂ as 2θ
(d)×j ∝̇ d̂ and introduce a linear

approximation as 2θ
(d)×j ≈ βd̂ + δ ⇒ d̂ ≈ 1

β · 2θ(d)×j − δ
β , where β and δ are
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Table 1: Comparisons with other state-of-the-art methods on ImageNet-1k
dataset. Top-1 and Top-5 accuracies (%), FLOPs (G), and numbers of parame-
ters (#Param., M) are reported. The best results are highlighted in bold.

Model Top-1 Top-5 FLOPs #Param.

FBNetV2-L1 [31] 77.2 N/A 0.33 N/A
OFA-80 [3] 76.8 93.3 0.35 6.1
GreedyNAS-A [39] 77.1 93.3 0.37 6.5
EfficientNet-B0 [28] 76.3 93.2 0.39 5.3
ScaleNet-S0 (ours) 77.5 93.7 0.35 4.4

EfficientNet-B1 [28] 78.8 94.4 0.70 7.8
OFA-200 [3] 79.0 94.5 0.78 11.0
RegNetY-800MF [19] 76.3 N/A 0.80 6.3
EfficientNet-X-B0 [15] 77.3 N/A 0.91 7.6
ScaleNet-S1 (ours) 79.9 94.8 0.80 7.4

EfficientNet-B2 [28] 79.8 94.9 1.00 9.2
BigNASModel-XL [41] 80.9 N/A 1.04 9.5
EfficientNet-X-B1 [15] 79.4 N/A 1.58 9.6
RegNetY-1.6GF [19] 78.0 N/A 1.60 11.2
ScaleNet-S2 (ours) 81.3 95.6 1.45 10.2

EfficientNet-B3 [28] 81.1 95.5 1.80 12.0
EfficientNet-X-B2 [15] 80.0 N/A 2.30 10.0
RegNetY-3.2GF [19] 79.0 N/A 3.20 19.4
RegNetY-4GF [19] 79.4 N/A 4.00 20.6
ScaleNet-S3 (ours) 82.2 95.9 2.76 13.2

RegNetY-500M→4GF [7] 81.7 N/A 4.10 36.2
EfficientNet-B4 [28] 82.6 96.3 4.20 19.0
EfficientNet-X-B3 [15] 81.4 N/A 4.30 13.3
RegNetY-8GF [19] 81.7 N/A 8.00 39.2
ScaleNet-S4 (ours) 83.2 96.6 5.97 16.1

EfficientNet-B5 [28] 83.3 96.7 9.90 30.0
EfficientNet-X-B4 [15] 83.0 N/A 10.40 21.6
RegNetY-500M→16GF [7] 83.1 N/A 16.20 134.8
EfficientNet-B0 →16GF [7] 83.2 N/A 16.20 122.8
ScaleNet-S5 (ours) 83.7 97.1 10.22 20.9

parameters. Here, we define a
(d)
0 = 1

β , a
(d)
1 = 2θ

(d)

, a
(d)
2 = − δ

β and obtain

d̂ = a
(d)
0 ·

(
a
(d)
1

)j

+ a
(d)
2 . (11)

Note that as a
(d)
0 , a

(d)
1 , and a

(d)
2 are parameters, “≈” can be transferred to “=”.

Then, due to d̂ = 1 for the base model (i.e., scaling stage 0), we should

guarantee the relation. Thus, we put d̂ = 1, j = 0 into (11) and obtain a
(d)
2 =

1− a
(d)
0 . We re-put it into (11) and obtain the depth function in (9) as

d̂ = a
(d)
0 ·

(
a
(d)
1

)j

+
(
1− a

(d)
0

)
= a

(d)
0 ·

((
a
(d)
1

)j

− 1

)
+ 1. (12)
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Table 2: Performance in five fine-tuning tasks. Top-1 accuracies (%), FLOPs (G),
parameter numbers (#Param., M) are reported. The best results are in bold.

Dataset Model Top-1 FLOPs #Param.

FGVC Aircraft [18]
Inception-v4 [26] 90.9 13.00 41
EfficientNet-B3 [28] 90.7 1.80 10
ScaleNet-S3 (ours) 91.4 2.76 11

Stanford Cars [13]
Inception-v4 [26] 93.4 13.00 41
EfficientNet-B3 [28] 93.6 1.80 10
ScaleNet-S3 (ours) 94.4 2.76 11

Food-101 [2]
Inception-v4 [26] 90.8 13.00 41
EfficientNet-B4 [28] 91.5 4.20 17
ScaleNet-S4 (ours) 92.0 5.97 14

CIFAR-10 [14]
NASNet-A [44] 98.0 42.00 85
EfficientNet-B0 [28] 98.1 0.39 4
ScaleNet-S0 (ours) 98.3 0.35 3

CIFAR-100 [14]
NASNet-A [44] 87.5 42.00 85
EfficientNet-B0 [28] 88.1 0.39 4
ScaleNet-S0 (ours) 88.4 0.35 3

Similarly, we can achieve the relation between i and ŵ, r̂, respectively, as

ŵ ≈
√

1
β′ · 2θ(w)×i − δ′

β′ ≈ 1√
β′

√
2
θ(w)×i

−
√

δ′

β′ , (13)

r̂ ≈
√

1
β′′ · 2θ(r)×i − δ′′

β′′ ≈ 1√
β′′

√
2
θ(r)×i

−
√

δ′′

β′′ , (14)

where β′, δ′, β′′, and δ′′ are parameters.

4 Experimental Results and Discussions

4.1 Performance of ScaleNet on ImageNet-1k

We conducted experiments on ImageNet-1k dataset [20] for the proposed ScaleNet
with recently proposed methods. Note that we divided a mini validation set (50
images per class) from the training set for evaluation in the MCEA. The search
models are named by Sj, where S0 is the base model, S1, S2, and S3 are searched
by the MCEA, and S4 and S5 are the generalized ones. The FLOPs budgets are
selected according to Figure 3. Detailed settings are in the supplementary ma-
terial. In Table 1 with different FLOPs budgets, the searched models of our
ScaleNet can achieve the best performance among those with similar FLOPs.

4.2 Transferability to Fine-tuning Tasks

In addition to the experiments on ImageNet-1k, we also transferred the searched
architectures to fine-tuning tasks by fine-tuning our ImageNet-pretrained mod-
els. Experimental settings can be found in the supplementary material. Table 2
shows the transfer learning results. Ours can outperform different referred mod-
els, respectively. When applying larger models, we can gain further improvement.
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Table 3: Ablation studies. Top-1 accuracies (%) of s0-s4 models on ImageNet-100
dataset are reported. In column “Sampl.”, “U” and “H” are the original uniform
sampling and the proposed HSS, respectively. M and T are the maximum scaling
stage and the iteration of the proposed MCEA. “Val” (for T only) means the
validation accuracy (%) in the MCEA. The best results are shown in bold.

Sampl. M T Val s0 s1 s2 s3 s4

U 3 4 N/A 84.16 86.96 87.72 89.26 90.02

H 1 4 N/A 84.06 86.30 87.93 88.86 90.30
H 2 4 N/A 84.42 86.24 88.02 89.12 90.14

H 3 1 63.58 84.18 86.34 88.12 88.90 89.76
H 3 2 63.38 84.20 85.86 88.00 89.44 90.18
H 3 4 63.61 84.76 87.18 88.10 89.90 90.46
H 3 6 63.59 84.44 86.42 87.80 89.54 90.48
H 3 8 63.53 84.50 86.48 87.64 89.30 90.36

4.3 Ablation Studies
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Fig. 5: Mean validation accuracies in the
4th iteration of the MCEA by using orig-
inal uniform sampling in [41] and our
HSS, respectively. The accuracies are
grouped based on FLOPs. Each non-
overlapping group contains recent 50M
FLOPs paths. We merely show the per-
formance of the three scaling stages, as
we only evaluate them in the MCEA, ex-
cept those of the base model.

We discuss the effect of the pro-
posed components for the ScaleNet
on ImageNet-100 dataset [20,30]. We
divided a mini validation set (50
images per class) from the train-
ing set. All the following validation
accuracies were calculated by the
mini one. Searched models are named
by sj, where s0 (120M FLOPs) is
the base model, s1 (240M FLOPs),
s2 (480M FLOPs), and s3 (960M
FLOPs) are searched by the MCEA,
and s4 (1920M FLOPs) is the general-
ized one. The experimental results are
shown in Table 3. Detailed experimen-
tal settings and visualization of search
space are in supplementary material.

Effect of HSS: We compare the
proposed HSS with the original uni-
form sampling in [41]. Our HSS im-
proves the searched results with bet-
ter retrained accuracies of s0-s4.

Furthermore, we illustrate the val-
idation accuracies of paths by using
both of them to evaluate the sufficiency of the super-supernet training. In Fig-
ure 5, the accuracies of our HSS are generally larger than those of the original
one in addition to the FLOPs interval of [360, 440], as the interval is the mode
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Table 4: Performance comparison of three coefficients (%), including Pearson,
Spearman, and Kendall coefficients, for validation accuracies by using original
uniform sampling (“Original”) in [41] and our HSS, respectively, to evaluate the
sampling strategies in super-supernet training. We sampled 6, 000 paths.

Method Pearson Spearman Kendall

Original 35.3 80.1 64.1
Our HSS 73.6 83.9 66.2
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(b) Scaling stage 1.
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(c) Scaling stage 2.
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(d) Scaling stage 3.

Fig. 6: Standard deviations (Stds) of validation accuracies in each iteration of
the MCEA. In different scaling stages, the Stds decrease significantly in the first
four iterations, while they then tend to be steady and convergent.

of the original uniform sampling distribution. This means the proposed HSS can
improve the sufficiency of the super-supernet training.

We further analyze the Pearson, Spearman, and Kendall coefficients for val-
idation accuracies of the two ones, respectively. All of them are the larger the
better. Detailed settings are in the supplementary material. Table 4 shows the
values of our HSS significantly outperform the corresponding ones of the original.
Specifically, our Pearson one is more than double of the original’s.

Effect of Maximum Scaling Stage in Searching: We set the maximum
scaling stageM to be one, two, or three in the MCEA for searching. ScaleNet can
gain better performance with larger M , which means a more suitable base model
for scaling can be found. More scaling stages can achieve better performance by
obtaining better base model architecture for scaling, which is a common sense.
This means we do not have to validate with much larger M .

Effect of Iteration in Searching: We set the iteration T as one, two, four,
six, or eight in the MCEA for searching. When increasing T from one to four,
better base models and scaling strategies can be obtained with top-1 accuracies
improved in most of the scaling stages. This means that larger T can improve
the searched results. However, when increasing T from four to eight, similar
performance can be found. This means about four iterations is enough for the
search. Meanwhile, we can find that the retraining accuracies of s0-4 is relative
to the validation accuracy in the MCEA, which shows the effectiveness of it.

In addition, we show the standard deviations (Stds) of validation accuracies in
each iteration of the MCEA in Figure 6 to analyze their convergence. In different
scaling stages, the Stds decrease significantly in the first four iterations, while
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Method Top-1 acc.
Linear 89.90
Squared 89.26
Ours 90.46

(d) s4 model.

Fig. 7: Comparison of larger-scale architecture generalization functions. The def-
initions of the compared ones are in the supplementary material. We generalized
the three ones of s4 and retrained the scaled models on ImageNet-100 in (d).

Table 5: Comparisons of search cost (GPU/TPU days). Those of supernet
(super-supernet) training and searching are compared, respectively. “Ratio-to-
ScaleNet” is the ratio between total cost of a model to that of the proposed
ScaleNet, the smaller the better. “†” means we estimated the lower-bound time.
“N/A” means the work does not have the step. “*” means the work has the step
but did not specifically mentioned in the paper. The best result is in bold.

Model Device Training Searching Total Ratio-to-ScaleNet

MnasNet [27]† TPUv2 N/A 211, 571 211, 571 436.23×
EfficientNet-X [15]† TPUv3 N/A > 1, 765 > 1, 765 > 3.64×
EfficientNet [28]† TPUv3 N/A > 1, 714 > 1, 714 > 3.53×
FBNetV2 [31]† V100 * * > 1, 633 > 3.37×
OFA [3]† V100 * * > 1, 486 > 3.06×
BigNAS [41]† TPUv3 > 960 > 268 > 1, 228 > 2.53×
ScaleNet (ours) V100 379 106 485 1×

they then tend to be steady and convergent. This shows that our ScaleNet can
effectively search the optimal ones and gradually minimize the Stds.

Effect of Larger-scale Architecture Generalization: We experimen-
tally compare the proposed exponential one with commonly used polynomial
functions, such as linear and squared ones. As shown in Figure 7(a)-(c), three
cases can precisely fit the trends of the depth, width, and resolution, respec-
tively. Ours function can perform with different trends in the three dimensions.
For depth and resolution, ours obtains rapid increase similar to the squared one,
while it achieves gradual changes for width as the linear one. The total trends
of ours are various, which is similar to the conclusion in [28], but the other two
always perform the uppermost or the lowest, which are unreasonable.

We also trained all the scaled s4 models with three generalized scaling strate-
gies, respectively, shown in Figure 7(d). The proposed one can achieve the best
top-1 performance as 90.46%, superior to the other two functions. This shows
the effectiveness of our larger-scale architecture generalization.

4.4 Discussion of Search Cost

We discuss the efficiency of our ScaleNet, compared with a few recent strategies,
including both one-shot NAS-based and two-step pipelines. We estimated the



14 J. Xie et al.

search cost for the referred ones under our FLOPs budgets, as they applied with
various FLOPs budgets. The estimations are all shown in the supplementary
material. As shown in Table 5, the proposed ScaleNet can remarkably reduce
the total search cost, which contains the cost of (super-)supernet training and
searching. It can decrease at least 2.53× and even 436.23×. Meanwhile, the
proposed ScaleNet in the two parts of cost can still significantly improve the
efficiency, respectively. Note that we used V100 for our experiments, while some
others utilized TPUv3, which are much better than ours. This means we can
achieve a larger decrease on the total search time under same resource conditions.

4.5 Discussion of the Trend of Scaling Strategies
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Fig. 8: Trends of depth, width, and res-
olution on ImageNet-1k.

We discuss the trend of learned scal-
ing strategies for different scaling
stages (Figure 8) in order to promote
further scaling strategy design.

– Depth, width, and resolution
change in an exponential order.
They have different values of
their change rates among scal-
ing stages. Depth and resolution
change similarly, while that of
width is slightly smaller, which is
similar to EfficientNet [28].

– Their values are not completely
restricted by the theoretical con-
straint in [28], but merely focus on the actual FLOPs budgets in each scaling
stage. This means the searching process of ours is more fair.

– After obtaining the searched ones that are good enough under the corre-
sponding FLOPs budgets, the extended ones can be precisely constructed in
FLOPs of generalized architectures as well under our estimation and work
well in experiments.

5 Conclusion

In this paper, we proposed ScaleNet to jointly search the base model and a group
of the scaling strategies based on one-shot NAS framework. We improved the
super-supernet training by the proposed HSS. Then, we jointly searched the base
model and the scaling strategies by the proposed MCEA. The scaling strategies
of larger scales were decently generalized by the searched ones. Experimental
results show that the searched architectures by the proposed ScaleNet with var-
ious FLOPs budgets can outperform the referred methods on various datasets,
including ImageNet-1k and fine-tuning tasks. Meanwhile, the searching time can
be significantly reduced, compared with those one-shot NAS-based and manually
designed two-step pipelines.
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