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1 Proof of the uniqueness of the COMBO decomposition

We recall here the COMBO decomposition of the ground truth flow vectorw∗(x)
between a physical part w∗

p(x) fulfilling the Brightness Consistency (BC) as-
sumption, an augmented term w∗

a(x), and a BC uncertainty term α∗(x):

w∗(x) = (1− α∗(x)) w∗
p(x) + α∗(x) w∗

a(x). (1)

Since the decomposition in Eq. (1) is not necessarily unique, the COMBO
decomposition (w∗

p,w
∗
a, α

∗) is defined as the solution of the following constrained
optimization problem:

min
wp,wa

∥(wa,wp)∥ subject to: (2)
(1− α∗(x)) wp(x) + α(x) wa(x) = w∗(x)

(1− α∗(x)) |I1(x)− I2(x+wp(x))| = 0

α∗(x) = σ (|I1(x)− I2(x+w∗(x))|) .

We detail here the uniqueness guarantee of the COMBO decomposition in
Eq. (2). An unconstrained decomposition would be written as follows:

w(x) = (1− α(x)) wp(x) + α(x) wa(x). (3)

It is clear that the naive decomposition in Eq. (3) admits multiple (wp(x),wa(x), α(x))
tuples. We highlight here the effect of the different constraints in Eq. (2) :

– α∗(x) = σ(LBC(x,w)) specifies a unique value for α∗(x), but their remains
an infinite number of (wp(x),wa(x)) tuples.

– (1 − α(x)) |I1(x) − I2(x +wp(x))| = 0 specifies a set of BC minimizers for
wp, that we denote FBC .

– By minimizing ||wp||, we limit wp(x) ∈ FBC to obtain wp(x) ∈ FBC ∩ Cp,
where Cp is the circle of radius minwp′ ||w

′
p||2 (orange in Fig. 1).
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– By minimizing ||wa||, we limit (wp(x),wa(x)) to the two sets (w
1
p(x),w

1
a(x))

and (w2
p(x),w

2
a(x)) shown in Fig. 1, which is the intersection between the

orange circle and the blue circle of radius minwa′ ||w′
a||2 in Fig. 1. This

constraint following the least action principle, and adds only the minimal
information to the BC properly represent w(x). Finally, by minimizing the
angle γ =< wp;x >, we obtain the unique solution (w1

p(x),w
1
a(x)) shown

in Fig 1.

Therefore the decomposition in Eq. 2 admits a unique tuple (w∗
p,w

∗
a, α

∗).

Fig. 1. Illustration of the unique decomposition of COMBO.
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2 Implementation details

The code of COMBO is implemented in Pytorch. In the supervised setting, we
train models with the following curriculum: FlyingChairs (100000 steps, learning
rate=4e−4), FlyingThings3D (100000 steps, lr=0.000125), Sintel with additional
data from HD1K, FlyingThings and KITTI (100000 steps, lr=0.000125), and
finally KITTI (100000 steps, lr=0.001). We use the Adam optimizer with a
cyclic learning rate scheduler.

The hyperparameters choosen in the training loss are the following: λtotal =
1, λp = 0.1, λa = 0.01, λphoto = 0.01, λα = 1, λw = 0.1. This ensures a proper
scaling between losses, but we do not attempt at finely tuning the hyperparam-
eters due to the huge computational training time. This setting is kept constant
for all stages of the curriculum and datasets.

Each step of the curriculum takes approximately 5 days to converge on a DGX
A100 gpu. This gives a very long training curriculum as a whole, highlighting
the benefits brought up by the simplification with the semi-supervised training
of COMBO.

3 Experiments

3.1 Examples of supervision (w∗
p, w

∗
a, α

∗)

We provide a few examples of ground truth supervision (w∗
p, w

∗
a, α

∗) for the
datasets FlyingChairs (Figure 2), FlyingThings3D (Figure 3), Sintel (Figure 4)
and KITTI (Figure 5).

Fig. 2. Example of ground truth supervision (w∗
p, w

∗
a, α

∗) for FlyingChairs.
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Fig. 3. Example of ground truth supervision (w∗
p, w

∗
a, α

∗) for FlyingThings3D.

Fig. 4. Example of ground truth supervision (w∗
p, w

∗
a, α

∗) for Sintel.

Fig. 5. Example of ground truth supervision (w∗
p, w

∗
a, α

∗) for KITTI.
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3.2 COMBO analysis

Fig. 6. Precision-recall curve quantifying the ability of COMBO to detect occlusions.

To analyze the ability of COMBO to detect occlusions, we show in Figure 6
the precision-recall curve of the COMBO uncertainty detector with respect to
the ground-truth occlusion masks (which ground truth is provided on Sintel).
COMBO obtains an Average Precision (AP) of 59% for occlusion detection. This
average precision underestimates the true AP since COMBO detects occlusions
and also other failure cases: therefore, the precision computed here penalizes
a correct BC violation detection (large α) which is not labeled as occlusion.
Similarly, some occluded pixels fulfilled the BC assumption, making the recall
computed in this manner overestimated. Therefore, the AP reported here is a
lower bound of the true AP for occlusions. Despite this, it shows that COMBO
is able to efficiently detect occlusions without any ground-truth occlusion super-
vision, compared to the random classifier which reaches 7% (ratio of occluded
pixels).

3.3 Influence of the backbone model

In the main paper, we validate the performances of COMBO based on the RAFT
[53] backbone architecture, which is currently one of the state-of-the-art models.
However, the COMBO rationale of leveraging the brightness constancy in a deep
augmented model is agnostic to the backbone model. We conduct an additional
experiment on top of the very recent GMA model [23]. The results shown below
(Table 1) on the test set prove that COMBO still provides a significant improve-
ment (epe=0.71 v.s. 0.79) compared to this state-of-the-art GMA model on the
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FlyingChairs stage, showing that COMBO is a general augmentation strategy
for the BC, agnostic to the optical flow architecture.

RAFT 0.82
COMBO (backbone RAFT) 0.74

GMA 0.79
COMBO (backbone GMA) 0.71

Table 1. Performances of COMBO on the FlyingChairs dataset, based on the RAFT
[53] and GMA [23] backbone architectures.

3.4 Additional visualizations

We provide additional visualizations for Sintel in Figures 7, 8, 9 and KITTI-2015
in Figures 10, 11, 12.

In each case, we can observe that in zones of high uncertainty of the brightness
constancy, the physical flow wp is ill-defined; in these zones, it is efficiently
complemented by the flow wa to produce an accurate COMBO flow estimate.
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Fig. 7. Additional visualization on Sintel.
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Fig. 8. Additional visualization on Sintel.
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Fig. 9. Additional visualization on Sintel.
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Fig. 10. Additional visualizations on KITTI-2015.
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Fig. 11. Additional visualizations on KITTI-2015.
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Fig. 12. Additional visualizations on KITTI-2015.
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Augmenting physical models with deep networks for complex dynamics forecasting.
In: Ninth International Conference on Learning Representations ICLR 2021 (2021)

63. Zhao, S., Sheng, Y., Dong, Y., Chang, E.I., Xu, Y., et al.: Maskflownet: Asymmetric
feature matching with learnable occlusion mask. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 6278–6287 (2020)


