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A Appendix

A.1 Details of Training and Search with ViTAS

In this section, we present the details of training recipe w.r.t. different models and
datasets. Concretely, we uniformly partitioned transformer space with 10 groups to im-
plement the search of dimensions.

Search with ViTAS on ImageNet-1k dataset. We use the same training recipe
of superformer for both DeiT- and Twins-based transformer space. As illustrated in
Table 5, all superformers are trained for 300 epochs with a batch size of 1, 024 with
the AdamW optimizer [28]. The learning rate is initialized to be 0.001 and decayed
to zero with a cosine strategy. Besides, we also leverage a linear warm-up in the first
five epochs same as [5]. Note that we do not leverage any further extra data augmenta-
tion/regularization for training the superformer.

Training recipe of searched models on ImageNet-1k dataset. For DeiT-based
architectures, we follow the same recipe as [41]. In detail, we use a weight decay of
0.05 and batch size of 1, 024, and we train the models by 300 epochs with the learn-
ing rate decayed with cosine strategy from initial value 0.05 to 0. Except for repeated
augmentation, we adopt all other recipes same as DeiT [41], i.e., 5 epochs for warmup,
0.1 of label smoothing, 0.1 of stochastic depth, rand augmentation, mixup, cutmix, and
random erasing. For Twins-based architectures, compare to DeiT recipe, we use the
stochastic depth augmentation of 0.1, 0.2, 0.3, 0.5 for tiny, small, base, and large mod-
els, respectively. We also use gradient clipping with a max norm of 5.0 to stabilize the
training process for twins as in [5].

Training recipe of models on COCO2017 dataset. We transfer the searched archi-
tectures to COCO2017 [13] and ADE20k [67] based on MMDetection [3] and with the
same recipes as [5]. We train all the models with AdamW optimizer of 12 epochs and
batch size of 16. The learning rate is initialized as 1×10−4 and 2×10−4 for RetinaNet
and Mask R-CNN, respectively. The learning rate is started with 500-iteration warmup
and decayed by 10× at the 8-th and 11-th epoch, respectively. We set stochastic drop
path regulation as 0.2 and weight decay of 0.0001.

Training recipe of models on ADE20k dataset. For the semantic FPN framework,
we leverage the same setting as [44,5]. We train models with AdamW and 80K steps
with a batch size of 16. The learning rate is set as 1 × 10−4 and decayed with “poly
strategy” with the power coefficient of 0.9. We use the drop-path rate of 0.2 for small,
base models while 0.4 for large model to avoid over-fitting. For the UperNet framework,
we leverage the recipe provided in [46,5]. In detail, we train models with AdamW
optimizer for 160 iterations and a batch size of 16. The initial learning rate is set to
6 × 10−5 and linearly decay to zero. The drop-path is set to 0.2 for backbone and
weight decay is of 0.01 for the whole model.

A.2 Transformer Space of ViTAS

In this section, we present the constitution of transformer space w.r.t. different sizes for
the Twins and DeiT. We incorporate all the essential elements in our transformer space,
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including head number, patch size, output dimension of each layer, and depth of the
architectures.

Table 10 describes the defined Twins-based ViTAS transformer space. The block
setting (the default order and numbers of MHSA and FC layers) is inspired by [11,41].
The maximum depth of each stage is set as original setting of Twins plus two for ID
search and the head number h in the MHSA is chosen within the set {3, 6, 12, 16}.
Meanwhile, the way of sharing FC1 in the MHSA is to evenly divide its output fea-
tures into h groups (i.e., h heads), while different h leads to different dimensions D/h
of a group. Furthermore, in order to accommodate the output dimensions w.r.t. each
stage, the maximum dimension of each layer is set to 2× of baseline method, and the
dimension can be selected from a group of ten settings, i.e., { i

10}
10
i=1. Given the de-

fined transformer space, we encourage each block in the ViT to freely select their own
optimal head numbers and output dimensions. Therefore, with the Twins-small based
transformer space as an example, the size of transformer space amounts to 1.1 × 1054

and the FLOPs (parameters) ranges from 0.02G (0.16M) to 11.2G (86.1M).

Table 10: Macro transformer space for the ViTAS of Twins-based architecture.“TBS”
indicates that layer type is searched from parametric operation and identity operation for
depth search. “Embedding” represents the patch embedding layer. “Maxa” and “Maxm”
indicates the max dimension of attention layer (“Maxa” also used for patch embedding
layer) and MLP layer, respectively. “Ratio” means the reduction ratio from the “Max
Output Dim”. A larger “Ratio” indicates a larger dimension.

(a) Twins tiny transformer space.

Number OP Type Patch size / #Heads Maxa Maxm Ratio
1 False Embeding 4 128 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 480 512 {i/10}10i=1Global

1 False Embeding 2 256 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 960 1024 {i/10}10i=1Global

1 False Embeding 2 512 - {i/10}10i=1

12 TBS
Local {2, 4, 8, 16} 1920 2048 {i/10}10i=1Global

1 False Embeding 2 1024 - {i/10}10i=1

6 TBS
Local {2, 4, 8, 16} 3840 4096 {i/10}10i=1Global

(b) Twins small transformer space.

Number OP Type Patch size / #Heads Maxa Maxm Ratio
1 False Embeding 4 128 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 480 512 {i/10}10i=1Global

1 False Embeding 2 256 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 960 1024 {i/10}10i=1Global

1 False Embeding 2 512 - {i/10}10i=1

12 TBS
Local {2, 4, 8, 16} 1920 2048 {i/10}10i=1Global

1 False Embeding 2 1024 - {i/10}10i=1

6 TBS
Local {2, 4, 8, 16} 3840 4096 {i/10}10i=1Global

(c) Twins base transformer space.

Number OP Type Patch size / #Heads Maxa Maxm Ratio
1 False Embeding 4 192 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 480 768 {i/10}10i=1Global

1 False Embeding 2 384 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 960 1536 {i/10}10i=1Global

1 False Embeding 2 768 - {i/10}10i=1

20 TBS
Local {2, 4, 8, 16} 1920 3072 {i/10}10i=1Global

1 False Embeding 2 1536 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 3840 6144 {i/10}10i=1Global

(d) Twins large transformer space.

Number OP Type Patch size / #Heads Maxa Maxm Ratio
1 False Embeding 4 256 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 960 1024 {i/10}10i=1Global

1 False Embeding 2 512 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 1920 2048 {i/10}10i=1Global

1 False Embeding 2 1024 - {i/10}10i=1

20 TBS
Local {2, 4, 8, 16} 3840 4096 {i/10}10i=1Global

1 False Embeding 2 2048 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 7680 8192 {i/10}10i=1Global
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Similarly, Table 11 describes the definition of DeiT-based transformer space. “Max
Dim” indicates the output dimensions of both attention and MLP blocks. With the DeiT-
small transformer space, the size of transformer space amounts to 5.4 × 1034 and the
FLOPs (parameters) ranges from 0.1G (0.5M) to 20.0G (97.5M).

Table 11: Macro transformer space for the ViTAS of DeiT-based architecture.“TBS”
indicates that layer type is searched from vanilla ViT block or identity operation for
depth search. “Ratio” means the reduction ratio from the “Max Dim”. A larger “Ratio”
means a larger dimension.

(a) DeiT tiny transformer space.

Number OP Type Patch size / #Heads Max Dim Ratio
1 False Linear {14, 16, 32} 384 {i/10}10i=1

14 TBS
MHSA {3, 6, 12, 16} 1440 {i/10}10i=1

MLP - 1440 {i/10}10i=1

(b) DeiT small transformer space.

Number OP Type Patch size / #Heads Max Dim Ratio
1 False Linear {14, 16, 32} 768 {i/10}10i=1

14 TBS
MHSA {3, 6, 12, 16} 2880 {i/10}10i=1

MLP - 2880 {i/10}10i=1

A.3 Evolutionary Search

To avoid the exhausted search from the enormous (e.g., 1.1 × 1054 for Twins small)
transformer space and boost the search efficiency, we leverage the multi-objective NSGA-
II [6] algorithm for evolutionary search, which is easy to accommodate the constraint
budgets (e.g., FLOPs, GPU throughput). Concretely, we set the population size and
generation number as 50 and 40, respectively, which amounts to 2, 000 searched paths
in ViTAS. To implement the search, we randomly select 50 paths within the pre-set
FLOPs as the initial population. Then, we select the top 20 performance architectures
as the parents to generate new generalization architectures via mutation and crossover.
After the search, we only leverage the architecture with the highest performance during
search to train from scratch and report its performance.

A.4 Algorithm of ViTAS

The details about ViTAS are presented in Algorithm 1.

A.5 Coefficient Factors w.r.t. Kendall, Pearson, and Spearman

In Section 6.4, we provide a detailed comparison between ordinal, bilateral, and our
cyclic weight sharing paradigm on 2, 000 searched paths w.r.t. three coefficient factors.
Indeed, the Pearson ρS coefficient aims to evaluate to what degree a monotonic function
fits the relationship between two random variables. Besides, the Spearman ρS is defined
as the Pearson correlation coefficient between the rank variables. Therefore, Pearson
and Spearman coefficients share the same formulated equation Eq. (14) but with differ-
ent value types (e.g., original value and ranks for Pearson and Spearman coefficients,
respectively). Defining r and s as two groups of data, the Spearman coefficient ρS can
be computed by

ρS =
cov(r, s)

σrσs
, (14)
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Algorithm 1 Vision Transformer Architecture Search
Require: The number of groups G. The training epochs of superformer N . Searching methods

A. Training dataset Dtr . Validation dataset Dval.
1: initialize the superformer N and Cyclic weight sharing paradigm with Eq.(3) ∼ Eq.(13) and

groups G
2: initialize the search space with identity shifting.
3: while epochs < E do
4: randomly assign the training and backwards path
5: updating the corresponding path of groups with dataset Dtr .
6: end while
7: search the optimized architecture within superformer N by searching methods A (as illus-

trated in section A.3).
8: train the optimized architecture from scratch for evaluation.

Ensure: the optimized architecture with evaluation results =0

where cov(·, ·) is the covariance of two variables, and σr and σs are the standard de-
viations of r and s, respectively. In our experiments, the ranks are distinct integers.
Therefore, the Eq. (14) can be also reformulated as

ρS = 1−
6
∑n

i=1(ri − si)
2

n(n2 − 1)
, (15)

where n = 2000 defines the number of overlapped elements between variables.
The Kendall τ coefficient aims to evaluate the pairwise ranking performance. Given

a pair of (ri, rj) and (si, sj), if we have either both ri > rj and si > sj , or both
ri < rj and si < sj , these two pairs are considered as concordant. Otherwise, it is
said to be disconcordant. With the concordant and disconcordant pairs, the Kendall τ
can be formulated as

Kτ =
ncon − ndiscon

nall
, (16)

where ncon and ndiscon represent the number of concordant and disconcordant pairs, and
nall is the total number of pairs.

A.6 Ablation Studies of Private Tokens with DeiT-based Superformer

For DeiT-based architecture, it usually leverages the trainable vector named class token
to perform the prediction task. The class token is appended to the patch tokens before
the first layer and go through the architecture for the classification task. However, for
the superformer, different architectures assume to share the weights with the weight
sharing paradigm, which blurs the performance gap with the shared class token. Indeed,
we propose to private the class tokens to cater for the variance of different paths in
superformer.

To evaluate the effect of private class tokens on superformer, we implement the
search with/without private tokens and retrain the searched architectures from scratch
and report the performance as in Table 12.
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Table 12: Ablation studies of the proposed ViTAS w.r.t. private token. †: architectures
that are searched with private token.

models FLOPs (G) Throughput (image/s) Params (M) Top-1(%) Top-5(%)
ViTAS DeiT A 1.4 2, 842.7 6.8 75.1 92.3
ViTAS DeiT A† 1.4 2, 831.1 6.6 75.6 92.5
ViTAS DeiT B 5.0 1, 134.8 24 79.9 95.0
ViTAS DeiT B† 4.9 1, 189.4 23 80.2 95.1

A.7 Effect of ViTAS as a superformer with DeiT search space.

To investigate the effect of ViTAS w.r.t. baseline methods with DeiT search space, we
perform the search with AutoFormer (ordinal) [60,4], BCNet (Bilateral) [37], ViTAS
(Cyclic), respectively. As in Table 13, with only Cyclic pattern, our ViTAS (73.9%)
achieves 1.1% or 1.6% on Top-1 accuracy gain compare to bilateral (72.8%) and ordinal
(72.3%) pattern. Besides, when adopting all strategies in this paper, our ViTAS (75.6%)
can attain 0.4% or 0.9% performance gain compare to baselines of bilateral (75.2%)
and ordinal (74.7%) weight sharing mechanism.

Table 13: More detailed experiments w.r.t. weak aug (WA), private token (PT), and
Identity shifting (IF) in DeiT space on ImageNet.

None PT WA IF PT+WA PT+IF WA+IF PT+WA+IF
Ordinal 72.3 72.5 73.5 72.6 73.7 73.0 74.1 74.7
Bilateral 72.8 73.0 73.9 73.5 74.2 73.7 74.6 75.2
Cyclic 73.9 74.1 74.8 74.5 74.9 74.4 75.1 75.6

A.8 Comparisons between ViTAS and AutoFormer [4] with the same DeiT space
as AutoFormer

In AutoFormer [4], it adopts some addition tricks during retraining for a high accuracy
performance. For example, AutoFormer adopts the global average pooling rather than
the class token for the classification result, which is the same as Twins search space.
Besides, in AutoFormer, it also leverages a different formation of q, k, v in self- atten-
tion. Moreover, it includes additional relative positional embeddings of k and v to boost
the retraining result. All these strategies contribute to a better retraining result compair
to the original DeiT search space.

To provide a fair comparison with AutoFormer, we also use the strategies in Auto-
Former to retrain our searched ViTAS-DeiT-A and ViTAS-DeiT-B from Table 6. With
the settings same as AutoFormer, the performance of ViTAS in DeiT space can be up-
dated as in Table 14. In this paper, only results of ViTAS in Table 14 leverage the same
strategies as AutoFormer.
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Table 14: Searched ViT architectures that do not involve inductive bias w.r.t. different
FLOPs and GPU throughput on ImageNet-1k. ⋆ indicates that the re-implementation
results of important baseline methods with our recipe. Our results are highlighted in
bold.

Method
FLOPs

(G)
Throughput
(image/s)

Params
(M)

Top-1
(%)

Top-5
(%)

ResNet-18 [17] 1.8 4458.4 12 69.8 89.1
DeiT-T⋆ [41] 1.3 2728.5 5 72.3 91.4

AutoFormer-T⋆ [4] 1.3 2955.4 5.7 74.7 91.9
ViTAS-DeiT-A 1.4 2827.4 6.8 75.7 92.7
ResNet-50 [17] 4.1 1226.1 25 76.2 91.4

DeiT-S⋆ [41] 4.6 940.4 22 79.9 95.0
AutoFormer-S⋆ [4] 5.1 1231.7 22.9 81.7 96.8

ViTAS-DeiT-B 5.0 1165.7 2.5 82.2 97.4

A.9 Comparisons of searched architectures between ViTAS and AutoFormer [4]

To intuitively check the effect of ViTAS with another baseline method, i.e. AutoFormer,
we visualize the network width searched by ViTAS and AutoFormer for 1.4G FLOPs
DeiT-based architecture in Figure 4. The dimension percentage is computed based on
the DeiT-T, e.g., 1.0 means that keep the same channels in the corresponding layer (i.e.,
patch embedding, attention or MLP) as DeiT-T.

Concretely, in the dimension level (i.e., see Figure 4(a)), ViTAS keeps smaller di-
mension in the first few layers while a bit more dimensions in the last few layers. Be-
sides, in the first few layers, the searched ViT architecture tend to keep smaller attention
dimension than MLP output dimension, while larger attention dimension in the last few
layers. We think this may be because attention is performed based on the extracted
information of features, which may be more useful after MLP layer extracted enough
information from the input. With tight budget (i.e., 1.4G), our searched architecture tend
to stack less blocks (i.e., 11) than AutoFormer. In general, AutoFormer keeps almost the
same dimensions for all layers as DeiT-T.

When it comes to the heads number, our searched architectures tend to have larger
heads number in the first and last few blocks. We think that this may help the archi-
tecture to deal with sophisticated information with more heads number in the last few
blocks. The AutoFormer keeps almost the same heads number as DeiT-T in all blocks.
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(a) Dimension percentage of ViTAS and AutoFormer w.r.t. DeiT small setting.

(b) Heads number of searched DeiT-T based architecutre w.r.t. ViTAS and AutoFormer.

Fig. 4: Visualization of dimensions and heads number of searched DeiT-T based archi-
tecture w.r.t. ViTAS and AutoFormer on ImageNet-1k dataset.
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Moreover, to promote the fair comparison of ViTAS and AutoFormer, we retrain
the released structure of AutoFormer with the same retraining recipe of ours, as shown
in Table 15. With the same retraining recipe and same FLOPs budgets, ViTAS achieves
0.8% higher on top-1 accuracy than AutoFormer with 1.3G FLOPs budget DeiT-based
architecture, which indicates the effectiveness of our method.

Table 15: Performance comparison with AutoFormer [4] of DeiT tiny based architec-
tures on ImageNet-1k by the same training recipe. ⋆ indicates the re-implementation re-
sults of important baseline methods with our recipe. †: we uniformly scale the searched
models to the same FLOPs of 1.3G w.r.t. AutoFormer-T.

Method
FLOPs

(G)
Throughput
(image/s)

Params
(M)

Top-1
(%)

Top-5
(%)

DeiT-T⋆ [41] 1.3 2728.5 5 72.3 91.4
AutoFormer-T⋆ [4] 1.3 2955.4 5.7 74.7 91.9

ViTAS-DeiT-A† 1.3 2965.7 6.1 75.5 92.4
ViTAS-DeiT-A 1.4 2831.1 6.6 75.6 92.5

A.10 Implementing the Search with CNN-based Search Space.

To comprehensively check the effect of cyclic weight sharing mechanism w.r.t. CNN
based search space, we implement the dimension search with ResNet50 on ImageNet-
1k dataset. We leverage the same recipe and search space as [37]. As shown in Table 16,
our searched architecture achieves the superior performance w.r.t. baseline methods of
DS10, AutoSlim [60], and BCNet [37], which indicates the effectiveness of the proposed
cyclic weight sharing mechanism.

Table 16: Performance comparison of ResNet50 on ImageNet-1k. ⋆ indicates the re-
implementation results of important baseline methods with our recipe.
Groups Methods FLOPs(G) Params(M) accuracy(%) Groups Methods FLOPs(G) Params(M) accuracy(%)

1.4G

DS-ResNet-S 1.2 - 74.6

2.4G

DS-ResNet-M 2.2 - 76.1
AutoSlim⋆ 1.4 15.3 73.8 AutoSlim⋆ 2.4 21.8 75.7

BCNet⋆ 1.4 16.3 75.4 BCNet⋆ 2.4 22.6 77.0
ViTAS 1.4 15.7 75.8 ViTAS 2.4 22.1 77.2

10 The DS-ResNet is from the paper of “Dynamic slimmable network”, CVPR 2021 (oral).
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A.11 Re-implementation Results of Baseline Methods

To intuitively check the performance of ViTAS, we present the re-implement results
w.r.t baseline methods on ImageNet-1k, COCO2017, and ADE20k datasets with our
training recipe, as shown in Table 17∼19.

Table 17: Searched Twins-based ViT architectures w.r.t. different FLOPs and GPU
throughput on ImageNet-1k. We abbreviate the name of tiny, short, base, and large for
T, S, B, and L, respectively. Re-Top-1, Re-Top-5: indicates that the re-implementation
results of baseline methods with our recipe. Top-1, Top-5: performance of baseline
methods that is reported from papers. Our results are highlighted in bold.

Method
FLOPs

(G)
Throughput
(image/s)

Params
(M)

Top-1
(%)

Top-5
(%)

Re-Top-1
(%)

Re-Top-5
(%)

DeiT-T [41] 1.3 2728.5 5 72.2 91.3 72.3 91.4
Twins-T [5] 1.4 1580.7 11.5 - - 77.8 94.1

AutoFormer-T [4] 1.3 3055.4 5.7 74.7 92.6 74.7 91.9
ViTAS-Twins-T 1.4 1686.3 13.8 79.4 94.8 - -

DeiT-S [41] 4.6 437.0 22.1 79.8 - 79.9 95.0
Twins-SVT-S [5] 2.9 1059 24 81.7 - 81.6 95.9

AutoFormer-S [4] 5.1 1231.7 22.9 81.7 95.7 79.8 95.0
Twins-PCPVT-S [5] 3.8 815 24.1 81.2 - 81.2 95.6

Swin-T [25] 4.5 766 29 81.3 - 81.2 95.5
ViTAS-Twins-S 3.0 958.6 30.5 82.0 95.7 - -

Swin-S [25] 8.7 444 50 83.0 - 83.0 96.2
Twins-SVT-B [5] 8.6 469 56 83.2 - 83.2 96.3
ViTAS-Twins-B 8.8 362.7 66.0 83.5 96.5 - -

DeiT-B [41] 17.6 292 86.6 81.8 - 81.8 95.7
Twins-SVT-L [5] 15.1 288 99.2 83.7 - 83.6 96.6
ViTAS-Twins-L 16.1 260.7 124.8 84.0 96.9 - -
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Table 18: Object detection and instance segmentation performance with searched back-
bones on the COCO2017 dataset with Mask R-CNN framework and RatinaNet frame-
work. We followed the same training and evaluation setting as [5]. “FLOPs” and
“Param” are in giga and million, respectively. ⋆ indicates the re-implementation re-
sults of important baseline methods with our recipe. Methods without ⋆ indicates that
the performance is reported from papers. Since Twins do not provide the experiment
results for Twins-SVT-L, we only report our re-implement results as Twins-SVT-L⋆.
Our results are highlighted in bold.

Backbone
Mask R-CNN 1× [16] RetinaNet 1× [22]

FLOPs Param APb APb
50 APb

75 APm APm
50 APm

75 FLOPs Param APb APb
50 APb

75 APS APM APL

Twins-SVT-S [5] 164 44.0 43.4 66.0 47.3 40.3 63.2 43.4 104 34.3 43.0 64.2 46.3 28.0 46.4 57.5
Twins-SVT-S⋆ 164 44.0 43.5 66.0 47.8 40.1 62.9 43.1 104 34.3 42.2 63.3 44.9 26.4 45.6 57.0

ViTAS-Twins-S 168 44.2 45.9 67.8 50.3 41.5 64.7 45.0 108 41.3 44.4 65.3 47.6 27.5 48.3 60.0
Twins-SVT-B [5] 224 76.3 45.2 67.6 49.3 41.5 64.5 44.8 163 67.0 45.3 66.7 48.1 28.5 48.9 60.5

Twins-SVT-B⋆ 224 76.3 45.5 67.4 50.0 41.4 64.5 44.5 163 67.0 44.4 65.6 47.4 28.5 47.9 59.5
ViTAS-Twins-B 227 85.4 47.6 69.2 52.2 42.9 66.3 46.5 167 76.2 46.0 66.7 49.6 29.1 50.2 62.0

Twins-SVT-L⋆ [5] 292 119.7 45.9 67.9 49.9 41.6 65.0 45.0 232 110.9 45.2 66.6 48.4 29.0 48.6 60.9
ViTAS-Twins-L 301 144.1 48.2 69.9 52.9 43.3 66.9 46.7 246 135.5 47.0 67.8 50.3 29.6 50.9 62.4

Table 19: Performance comparisons with searched backbones on ADE20K validation
dataset. Architectures were implemented with the same training recipe as [5]. All back-
bones were pretrained on ImageNet-1k, except for SETR, which was pretrained on
ImageNet-21k dataset. ⋆ indicates the re-implementation results of important baseline
methods with our recipe. Methods without ⋆ indicates that the performance is reported
from papers. mAcc: mean accuracy for all categories. aAcc: accuracy of all pixels. Our
results are highlighted in bold.

Backbone
Semantic FPN 80k [5] Upernet 160k [25]

FLOPs(G) Param(M) mIoU mAcc aAcc FLOPs(G) Param(M) mIoU mAcc aAcc
Twins-SVT-S [5] 37 28.3 43.2 - - 228 54.4 46.2 - -

Twins-SVT-S⋆ 37 28.3 43.6 55.4 80.6 228 54.4 45.9 57.3 81.5
ViTAS-Twins-S 38 35.1 46.6 57.6 82.2 229 61.7 47.9 59.0 82.6
Twin-SVT-B [5] 67 60.4 45.3 - - 261 88.5 47.7 - -

Twin-SVT-B⋆ 67 60.4 45.5 57.0 81.5 261 88.5 47.7 59.1 82.7
ViTAS-Twins-B 67 69.6 49.5 60.5 83.4 261 97.7 50.2 61.1 83.5

Twins-SVT-L [5] 102 103.7 46.7 - - 297 133 48.8 - -
Twins-SVT-L⋆ 102 103.7 46.9 58.3 81.8 297 133 49.2 60.5 82.8

ViTAS-Twins-L 108 128.2 50.4 61.6 83.6 303 158.7 51.3 61.9 84.4
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A.12 Comparisons of ViTAS with Baseline Methods w.r.t. Transferability to
COCO2017 and ADE20k Datasets

To intuitively compare the transferability of ViTAS with other baseline methods, we
evaluated the generalization ability of the ViTAS by transferring the searched archi-
tectures to COCO2017 and ADE20k datasets. As shown in Figure 5, we visualize
the performance of ViTAS w.r.t. other baseline methods. Indeed, with similar FLOPs
budget, our ViTAS achieves the superiority than other baseline methods on the both
datasets w.r.t. the tasks of segmentation and detection.

(a) Semantic FPN 80k framework on ADE20k
dataset.

(b) Upernet 160k framework on ADE20k
dataset.

(c) Mask R-CNN framework on COCO2017
dataset.

(d) RetinaNet framework on COCO2017
dataset.

Fig. 5: The comparisons between ViTAS and other baseline methods with on ADE20k
and COCO2017 dataset.
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Fig. 6: Visualization of cyclic weight sharing mechanism w.r.t. groups number from 5
to 10.

A.13 Visualization of Cyclic Weight Sharing Mechanism w.r.t. Different Groups
Number

In this section, we visualize the channels w.r.t. different groups number in cyclic weight
sharing mechanism. Indeed, to promote the usage of cyclic weight sharing mechanism,
we constraint the channels to be continuous w.r.t. each group, as illustrated in Figure 6.

Moreover, with Eq. (13), we compare the influence uniformity of our cyclic pattern
with ordinal and bilateral weight sharing mechanism. As shown in Table 20, our cyclic
pattern achieves almost zero influence gap w.r.t. channels and much smaller than others,
and bilateral pattern has about the half influence gap than ordinal pattern. It indicates
that our ViTAS can fairly train all channels in superformer, and thus can perform better
than baseline methods.

Table 20: Comparison of cyclic weight sharing mechanism with other baseline meth-
ods w.r.t. different groups number.

methods
Groups

5 6 7 8 9 10

Ordinal 30.3 48.1 70.6 99.1 130.0 167.4
Bilateral 10.0 19.0 30.6 46.1 66.1 88.7
Cyclic 0.6 0.3 0.7 0.5 0.8 0.5
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A.14 Analysis of Weak Augmentation in ViTAS

As in Table 21, we empirically find weak augmentation boost the architecture search of
ViTAS. However, in AutoFormer [4], it adopts the same training recipe of superformer
as DeiT [41] training from scratch. This is due to the difference with the size of search
space. To explore the possibly optimal ViT architecture with no expert manually bias,
we leverage a very large search space for ViTAS.

Table 21: Comparison of ViTAS and AutoFormer w.r.t. search space, dimension range,
and augmentation type of superformer. “DR” indicates the dimension range of trans-
former blocks within search space.

Methods DeiT-T DeiT-S DR of DeiT-T DR of DeiT-S Aug type
AutoFormer 4.2× 1015 1.2× 1018 (192, 256) (320, 448) Strong aug

ViTAS 5.4× 1034 5.4× 1034 (144, 1440) (288, 2880) Weak aug

Our ViTAS search space in Table 21 is exponentially (×1019) larger than that of
AutoFormer. As a result, in ViTAS, the superformer is supposed to cover the weights for
all the architectures (> 1034 paths). Its training thus obtains more challenging when in-
volving stronger augmentations, even affecting the training stability and convergence of
superformer. While for AutoFormer, it only includes a manually designed small search
space and thus can use a strong augmentation for training the superformer. In addition,
the dimension range of the architectures varies greatly (×10 gap between the largest
and smallest dimensions) in ViTAS. While in the AutoFormer, the architectures have
very similar dimensions, which boost the training of the superformer while limited the
search for the optimal ViT architectures.

A.15 Visualization and Interpretation of Searched ViT Architectures

In this section, we discuss the searched ViT architectures. For intuitively understanding,
we visualize our searched three ViT architectures with various FLOPs in Figure 7 as
examples. From Figure 7, we summarize the three experiential results for further ViT
design. For the last stage of ViT architectures, the downsampling size is equal to the
feature size, which indicates that “Local” blocks perform similarly to “Global” blocks.

– The optimal architecture generally tends to follow several local operations after the
global blocks.

– The optimal architecture has a bit more local operations than the global operations.
– The dimension between layers changes smaller in Twins-based architectures than

in DeiT-based architectures (i.e., see Figure 4), which indicates that the work in [5]
performs as a strong baseline w.r.t. the provided ViT architectures.
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(a) Visualization of operations w.r.t. searched
architectures.

(b) Visualization of dimensions w.r.t. searched
architectures.

Fig. 7: Visualization of searched architectures on Twins transformer space.


