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Abstract. Vision transformers (ViTs) inherited the success of NLP but their
structures have not been sufficiently investigated and optimized for visual tasks.
One of the simplest solutions is to directly search the optimal one via the widely
used neural architecture search (NAS) in CNNs. However, we empirically find
this straightforward adaptation would encounter catastrophic failures and be frus-
tratingly unstable for the training of superformer. In this paper, we argue that since
ViTs mainly operate on token embeddings with little inductive bias, imbalance of
channels for different architectures would worsen the weight-sharing assumption
and cause the training instability as a result. Therefore, we develop a new cyclic
weight-sharing mechanism for token embeddings of the ViTs, which enables each
channel could more evenly contribute to all candidate architectures. Besides, we
also propose identity shifting to alleviate the many-to-one issue in superformer
and leverage weak augmentation and regularization techniques for more steady
training empirically. Based on these, our proposed method, ViTAS, has achieved
significant superiority in both DeiT- and Twins-based ViTs. For example, with
only 1.4G FLOPs budget, our searched architecture achieves 3.3% higher accu-
racy than the baseline DeiT on ImageNet-1k dataset. With 3.0G FLOPs, our re-
sults achieve 82.0% accuracy on ImageNet-1k, and 45.9% mAP on COCO2017,
which is 2.4% superior than other ViTs.

Keywords: Vision transformer (ViT), nerual architecture search (NAS), cyclic
weight sharing mechanism, identity shifting, weak augmentation

1 Introduction

Transformer, as a self-attention characterized neural network, has been widely lever-
aged for natural language processing (NLP) tasks [9,31,32,1]. Amazingly, recent break-
through of vision transformers (ViTs) [11,41] further revealed the huge potential of
transformers in computer vision (CV) tasks [62,64,65,49,47,48,38,52]. With no use of
inductive biases, self-attention layers in the transformer introduce a global receptive
⋆ Corresponding author.
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field, which conveys refresh solutions to process vision data. Following ViTs, there
have been quite a few works on vision transformers for a variety of tasks, such as im-
age recognition [20,12,7,59,54,63], object detection [68,25], and semantic segmenta-
tion [25].

Despite the remarkable achievements of ViTs, the design of their architectures is
still rarely investigated. Current ViTs simply split an image into a sequence of patches
(i.e., tokens) and stack transformer blocks as NLP tasks. Nevertheless, this vanilla pro-
tocol does not necessarily ensure the optimality for vision tasks. Stacking manner and
intrinsic structure of the blocks need to be further analyzed and determined, such as
patch size of input, head number in multihead self-attention (MHSA), output dimen-
sions of parametric layers, operation type, and depth of the whole model. Therefore,
we raise questions that What makes a better vision transformer? How can we obtain
it? Inspired by the success of one-shot neural architecture search (NAS) in ConvNets
(CNNs), our intuition is also to directly search for an optimal architecture for ViTs,
which in turn gives us insight about designing more promising ViTs.

Unlike the sliding convolutions of CNNs, ViTs project the patches into a sequence
of token embeddings, and the features are extracted sequentially. In this way, how to
specify an appropriate configuration (dimension) for token embeddings of all layers
play an important role for the architecture of ViTs [51]. To search [43] for the optimal
token embedding dimension, recent work [4,21] simply borrow the ordinal weight shar-
ing [14,60] in CNNs for the superformer (a.k.a. supernet in CNNs) to accommodate dif-
ferent token dimension. However, this ordinal mechanism would inevitably introduce
imbalance among channels during training, causing the superformer cannot evaluate
each token dimension well and induces sub-optimal architectures consequently. Though
recent bilateral mechanism [37] was proposed to handle this issue, the training cost has
to be doubled yet the imbalance of channels still exist to some extent.

In this paper, we propose a novel cyclic weight sharing mechanism for superformer
to embody various token embedding dimensions of all layers. Concretely, we encourage
balanced training fairness and influence uniformity for each channel in the superformer.
With these two conditions, the cyclic rule could be learned as an index mapping to
indicate each dimension of token embeddings (see Figure 1), so that each could be more
evenly evaluated. Besides, since the cyclic rule is a single-pass mapping, computation
cost of training the superformer is similar to that of a ordinal [60,4] one.

Based on the customized cyclic manner, we propose a corresponding NAS method
for ViTs dubbed vision transformer architecure search (ViTAS). However, we empir-
ically observe that the training of superformer tends to be frustratingly instable. We
argue that the space size of ViTs are way too huger (even 1.1 × 1054), and propose
to calibrate the space with an identity shifting technique. Besides, we find that strong
augmentation and regularization are critic to further stabilize the superformer training.
Extensive experimental results have shown the superiority of our ViTAS.

2 Related Work

Vision Transformer. ViT was first proposed by Dosovitskiy et al. [11] to extend the ap-
plications of transformers into computer vision fields by cascading manually designed
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Fig. 1: Comparison between (a) ordinal [60,4], (b) bilateral [37] and (c) our cyclic forms
with a toy example of six groups of channels. In (a), channels cannot be fairly trained
in terms of training times and influence. Channels in (b) need double training cost com-
pared to the others and also unevenly distributed influence. Then in (c), the proposed
cyclic pattern overcomes the defects of (a) and (b) and achieves fairly training of chan-
nels w.r.t. training times and influence while maintaining half training cost than the
bilateral form.

multilayer perceptrons (MLPs) and MHSA modules. Touvron et al. [41] introduced
a teacher-student strategy and a distillation token into the ViT, namely data-efficient
image transformers (DeiT). Recently, other variants of ViT were proposed and all in-
troduced inductive bias and prior knowledge to extract local information for better fea-
ture extraction. Tokens-to-Token (T2T) ViT [61] added a layer-wise T2T transforma-
tion and a deep-narrow backbone to overcome limitations of local structure modeling.
Then, Han et al. [15] proposed to model both patch- and pixel-level representations
by transformer-in-transformer (TNT). Swin Transformer [25] generated various patch
scales by shifted windows for better representing highly changeable visual elements.
Wu et al. [45] reintroduced convolutions into the ViT, namely convolutional vision
transformer (CvT). Pyramid vision transformer (PVT) [44] trained on dense partitions
of the image to achieve high output resolution and used a progressive shrinking pyra-
mid to reduce computations of large feature maps. Another Twins ViT framework [5]
was proposed, which introduced spatially separable self-attention (SSSA) to replace the
less efficient global sub-sampled attention in PVT. All the aforementioned transformer
structures were manually designed according to expert experience.

One-shot NAS Method. Differentiable architecture search (DARTS) [24,56,57,19]
first formulated the NAS task in a differentiable manner based on the continuous relax-
ation. In contrast, single path one-shot (SPOS) framework [53,35,58] adopted an ex-
plicit path sampler to construct a simplified supernet, such as uniform sampler [14,38],
greedy sampler [58,18,53] and Monte-Carlo tree sampler [34]. Some work also at-
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Table 1: Macro transformer space for the ViTAS of Twins-based architecture.“TBS”
indicates that layer type is searched from parametric operation and identity operation for
depth search. “Embedding” represents the patch embedding layer. “Maxa” and “Maxm”
indicates the max dimension of attention layer (“Maxa” also used for patch embedding
layer) and mlp layer, respectively. “Ratio” means the reduction ratio from the “Max
Output Dim”. A larger “Ratio” indicates a larger dimension.

Number OP Type Patch size / #Heads Maxa Maxm Ratio
1 False Embeding 4 128 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 480 512 {i/10}10i=1Global

1 False Embeding 2 256 - {i/10}10i=1

4 TBS
Local {2, 4, 8, 16} 960 1024 {i/10}10i=1Global

1 False Embeding 2 512 - {i/10}10i=1

12 TBS
Local {2, 4, 8, 16} 1920 2048 {i/10}10i=1Global

1 False Embeding 2 1024 - {i/10}10i=1

6 TBS
Local {2, 4, 8, 16} 3840 4096 {i/10}10i=1Global

tempted to investigate the channel dimension by direct searching [37,36] or pruning
from pretrained models [26,39]. As for ViTs, AutoFormer [4] first adopted the one-
shot NAS framework for the ViT based architecture search. BossNAS [21] imple-
mented the search with an self-supervised training scheme and leveraged a hybrid CNN-
transformer search space for boosting the performance.

3 Revisiting One-shot NAS towards Transformer Space

One-shot NAS & dimension search. Towards the search of a decent architecture α ∈
A from a huge transformer space A (i.e., transformer space), a weight sharing strategy
is commonly leveraged to avoid exhausted path training from scratch. For a superformer
N with weights W , each path α inherits its weights from W . The one-shot NAS is thus
formulated as a two-stage optimization problem, i.e., superformer training and then ar-
chitecture searching. Base on the above settings, many researchers leveraged dimension
search algorithms, e.g., AutoSlim [60,4] and BCNet [37], to perform the search of the
dimensions for fine grained architectures. We define C as the set of candidate dimen-
sions for a certain operation, where c ∈ C indicates the dimensions within α. Thus, the
optimization function is as

W ∗
A,C = argmin

WA,C

losstrain (N (A, C,WA,C)) , (1)

α∗, c∗ = argmax
(α,c)∈(A,C)

Accval
(
N (α, c,W ∗

α,c)
)
, (2)

s.t. FLOPs(N (α, c,W ∗
α,c)) ≤ f,
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Table 2: Macro transformer space for the ViTAS of DeiT-based architecture.“TBS” in-
dicates that layer type is searched from vanilla ViT block or identity operation for depth
search. “Ratio” means the reduction ratio from the “Max Dim”. A larger “Ratio” means
a larger dimension.

Number OP Type Patch size / #Heads Max Dim Ratio
1 False Linear {14, 16, 32} 384 {i/10}10i=1

16 TBS
MHSA {3, 6, 12, 16} 1440 {i/10}10i=1

MLP - 1440 {i/10}10i=1

where losstrain is training loss, Accval is validation accuracy, W ∗
A,C is a set of trained

weights, α∗ is the searched optimal architecture, and f is resource budget. Following
the one-shot framework, the superformer is trained by uniformly sampling different
(α, c) from (A, C), and then we search the optimal architecture (α∗, c∗) according to
W ∗. After these, the selected α∗ will be retrained for evaluation.

Towards Transformer Space. To explore the possibility of the optimal ViT archi-
tecture in the arch-level, we incorporate all the essential elements in our transformer
space, including head number, patch size, operation type, output dimension of each
layer, and depth of the architectures, as shown in Table 17 and Table 28. More details
of transformer space is elaborated in the Section A.2 of Appendix. With the Twins-
small based transformer space in Table 1 as an example, the size of transformer space
amounts to 1.1×1054 and the FLOPs (parameters) ranges from 0.02G (0.16M) to 11.2G
(86.1M). Similarly in Table 2, with the DeiT-small transformer space, the size of space
amounts to 5.4× 1034 and the FLOPs (parameters) ranges from 0.1G (0.5M) to 20.0G
(97.5M).

4 Cyclic Channels for Token Embeddings

Previous work [60,4] proposed the ordinal weight sharing paradigm, which is widely
leveraged in many CNN and Transformer NAS papers [4,42,55]. Concretely, as illus-
trated in Figure 1(a), to search for a dimension i at a layer with maximum of l channels,
the ordinal pattern assigns the left i channels in the superformer to indicate the corre-
sponding architecture as

aA(i) = [1 : i], i ≤ l, (3)

where aA(i) means the selected i channels from the left (smaller-index) side.
However, this channel configuration imposes a strong constraint on the channels

and leads to imbalanced training for each channel in the superformer. As in Figure 1(a),
with the ordinal pattern, channels that are close to the left side are used in both large and

7 In the superformer, Maxa indicates the output of the first fully connected (FC) layer,
which should be able to be divided by all “ratios” and “Heads”, i.e., Maxa|(Ratio ×
Heads), ∀Ratio,Heads. Therefore, we select least common multiple of “ratios” and
“Heads” for Maxa

8 In the superformer, “Max Dim” indicates the output dimensions of both attention and MLP
blocks.
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small dimension. Since different dimensions are uniformly sampled during searching,
the training times CA(i) of the i-th channel used in all dimensions with the ordinal
pattern can be represented as

CA(i) = l − i+ 1. (4)

Therefore, channels closer to the left side will gain more times of training, which in-
duces evaluation bias among different channels and leads to sub-optimal searching re-
sults.

To remove the evaluation bias among channels of the superformer, we introduce a
condition for constructing a mapping for channels:

Theorem 1 (training fairness). Each channel should obtain same training times for
fairer training of superformer.

With the aims of Theorem 1 and keep the same computation cost as AutoSlim [60,4]
(i.e., ordinal pattern), we introduce indicator matrix β with βi,j ∈ {0, 1} (one means
using the channel) to represent whether channel i being used in dimension j. Two condi-
tions need to be satisfied: (1) for each row βi, which is the training times of the channel
i in each dimension, the sum of it should be equal with that of all the other channels,
and (2) for each column βj , which demonstrates the training times of channels in di-
mension j, the sum of it should be the dimension of itself. Finally, the constraints of β
can be represented as follows ∑

j

βi,j = (1 + l)/2, ∀i, (5)

∑
i

βi,j = j, ∀j. (6)

Infinite solutions can be solved under aforementioned constraints only. Here, the bilat-
eral pattern in BCNet [37] is a special case of the aforementioned settings with double
training times as l + 1.

Although forcing the channels to be trained for same training times can boost the
fairness, constructing a path only constrained by condition 1 cannot emerge the actual
performance of the path due to the difference of training saturation between one-shot-
based sampling and training from scratch [27].

This means that in order to more precisely rank various paths, we need to mimic the
process of the latter and balance the influence of each channels.

Theorem 2 (influence uniformity). Each channel needs to have the same sum of in-
fluence among all its related dimensions for training.

Concretely, we should carefully design the weight sharing mechanism based on
Theorem 2. Here, we define ψi,j to indicate the influence of channel i in dimension j.
For each channel pair, we have{

ψi1,j = ψi2,j , ∀i1, i2
ψi,j1 ≥ ψi,j2 , ∀j1 ≤ j2

. (7)
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Considering that transformer architectures are mainly consist of full-connected (FC)
layers. Specifically, for an FC layer with j input channels xi, i = 1, · · · , j and a certain
output channel y =

∑j
i=1 yi, yi = wixi with parameters wi, i = 1, · · · , j, we can

obtain the gradient of wi as

▽wi =
∂losstrain

∂y
· ∂y
∂yi

· ∂yi
∂xi

. (8)

Meanwhile, for a dimension sampled from the FC layer with one random input channel
xi, the gradient of wi here can be represented as

(▽wi)
′ =

∂losstrain

∂y′
· ∂y

′

∂yi
· ∂yi
∂xi

, (9)

where y′ = yi. Therefore, in the former case, the influence ψi,j of the i-th channel can
be defined as the contribution of the channel to its gradient as

ψi,j =
(▽wi)

′

▽wi
=

∂y′

∂yi

∂y
∂yi

, (10)

assuming ∂losstrain
∂y = ∂losstrain

∂y′ . We can also assume yi ≈ yi′ , i ̸= i′, as the distributions
of wi or xi can be similar to each i, respectively, when randomly sampling the dimen-
sions in each batch. In this case, we can obtain y ≈ j × yi, and ψi,j = 1

j for Eq. (7)
and (10).

Note that channel i may be shared w.r.t.different dimensions. To keep all the chan-
nels being treated equally, any two channels i1 and i2 should have the same influence
among all the dimensions, i.e.,∑

j

βi1,jψi1,j =
∑
j

βi2,jψi2,j , ∀i1, i2. (11)

Optimization of cyclic mapping. Combining Eq. (5) ∼ Eq. (11), we can obtain
the specialized weight sharing paradigm for the cyclic superformer. In practice, since
1+l
2 may not be an integer, Eq. (5) may not be completely satisfied. Thus, for any two

channels i1 and i2, we can relax the constraint in Eq. (5) by∣∣∣∣∣∣
∑
j

βi1,j −
∑
j

βi2,j

∣∣∣∣∣∣ ≤ 1, ∀i1, i2. (12)

To facilitate the search of the optimal weight sharing paradigm, we should make
sure all the channels being fairly trained with almost the same influence among all the
dimensions. Therefore, we can update Eq. (11) to an objective as

min
β

∑
i1,i2

(βi1,jψi1,j − βi2,jψi2,j)
2
, (13)

The overall problem is thus a QCQP (quadratically constrained quadratic program),
which can be efficiently solved by many off-the-shelf solvers [10,29]. We have pre-
sented detailed experimental settings and simulations of β and ψi,j in Section A.15 of
Appendix.
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Fig. 2: Private class token and identity shifting search space in ViTAS. (a) For trans-
former architectures with class token settings, with different patch sizes p, we assign
one independent class tokens for each and obtain p×p patches and a private class token
under one patch size setting. (b) Comparison between currently mainstream ID search
strategy (left) and ours ID oriented method (right). From left, a group of paths in the su-
performer, i.e., red, blue and black paths, corresponds to one same architecture, which
may performs differently. This can hinder the search for decent architectures. While for
our method, each architecture corresponds to only one path in the superformer, which
reduces the redundancy in it and boosts the search performance.

5 Further Stabilizing the Training of Superformer

Training the superformer is for fair estimation of each architecture’s performance, which
is essential for the next optimal architecture searching stage. Here, we argue that super-
former requires an efficient and simple transformer space and training recipe for boost-
ing the search. For the transformer space of ViTAS, we propose the identity shifting
strategy to solve the many-to-one issue as in Figure 2b. Besides, for architectures with
class tokens, i.e.DeiT [41], we introduce private class token w.r.t. each patch size to
cater for different paths. For the training recipe of ViTAS, we underline that weak aug-
mentation & regularization rather than complex and tricky ones [41,5] can prevent the
search from unsteady.

Identity shifting. Given a pre-defined NAS transformer space, as in Figure 2b, iden-
tity (ID) operation serves as the significant part and has a large effect on the searched
results for three reasons: 1) it defines the depth of the searched architecture, 2) com-
pared to other operations, the non-parametric ID is much more different with other
parametric operations, which will involve in a higher variance on paths, and 3) stacking
manner and intrinsic structure of a transformer architecture within each stage lead to
complicatedly many-to-one correspondence between architectures in the superformer
and transformer space. These introduce a huge ambiguous for NAS. Here, we propose
to search the operations with identity shifting strategy, as depicted in the right side of
Figure 2b. In each stage, we remove the ambiguous between transformer space and su-
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Table 3: Searched Twins-based ViT architectures w.r.t. different FLOPs and GPU
throughput on ImageNet-1k. We abbreviate the name of tiny, short, base, and large for
T, S, B, and L, respectively. ⋆ indicates that the re-implementation results of important
baseline methods with our recipe. Our results are highlighted in bold.

Method
FLOPs

(G)
Throughput
(image/s)

Params
(M)

Top-1
(%)

Top-5
(%)

ResNet-18 [17] 1.8 4458.4 12 69.8 89.1
DeiT-T⋆ [41] 1.3 2728.5 5 72.3 91.4
Twins-T⋆ [5] 1.4 1580.7 11.5 77.8 94.1

AutoFormer-T⋆ [4] 1.3 3055.4 5.7 74.7 91.9
ViTAS-Twins-T 1.4 1686.3 13.8 79.4 94.8

DeiT-S⋆ [41] 4.6 437.0 22.1 79.9 95.0
PVT-S [44] 3.8 820 24.5 79.8 -

Twins-SVT-S⋆ [5] 2.9 1059 24 81.6 95.9
AutoFormer-S⋆ [4] 5.1 1231.7 22.9 79.8 95.0

BossNet-T0 [21] 5.7 - - 81.6 -
Twins-PCPVT-S⋆ [5] 3.8 815 24.1 81.2 95.6

Swin-T⋆ [25] 4.5 766 29 81.2 95.5
ViTAS-Twins-S 3.0 958.6 30.5 82.0 95.7

T2T-ViTt-19 [61] 8.9 - 39.2 81.4 -
BoTNet-S1-59 [33] 7.3 - 33.5 81.7 -

BossNet-T1 [21] 7.9 - - 82.2 -
Twins-PCPVT-B [5] 6.7 525 43.8 82.7 -

Swin-S⋆ [25] 8.7 444 50 83.0 96.2
Twins-SVT-B⋆ [5] 8.6 469 56 83.2 96.3

ViTAS-Twins-B 8.8 362.7 66.0 83.5 96.5
DeiT-B⋆ [41] 17.6 292 86.6 81.8 95.7

TNT-B [15] 14.1 - 66 82.8 -
CrossViT-B [2] 21.2 - 104.7 82.2 -

ViTAS-Twins-L 16.1 260.7 124.8 84.0 96.9

performer by sampling the number of ID and arrange them at the deeper layers of the
stage in order to remove the redundancy in superformer. Typically, with three operations
(including ID) and twelve searched layers, the transformer space of operations can be
reduced from 312 to 213 − 1.
Private class token. Notably, pure vision transformer architectures, e.g., DeiT [41],
usually introduce a trainable vector named class token for the output classification. The
class token is appended to the patch tokens before the first layer and then go through the
transformer blocks for the prediction task. These class tokens often take a small size,
which changes with the pre-defined patch size P (i.e., H×W

P×P ), and performs significant
in performance. Towards these attributes, we propose to privatize the class token for
each P . As shown in Figure 2a, for different patch sizes, we assign private ones for
each. In this way, the affect between class tokens can be avoided with only negligible
computation cost or memory cost introduced. Ablations of the private class token are
presented in Section A.6 of Appendix.
Weak augmentation & regularization. We explore the superformer training strategy
of the ViTAS, including data augmentation and regularization. We conducted the evalu-
ations with Twins-based architecture and 1.4G FLOPs budget on ImageNet-1k dataset.
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Table 4: Ablation studies of training recipe of superformer of the ViTAS. “!”/“%”
indicates that we used/not used the corresponding method. We implemented the search
on the ImageNet-1k with 1.4G budget of Twins. We report the top-1 accuracy of the
best architectures in both ViTAS (i.e., searching) and retraining. “RD”: Rand-Augment.
“MP”: Mixup. “CM”: CutMix. “CJ”: Color Jitter. “Era”: Erasing. “SD”: Stoch Depth.
“RA”: Repeated Augmentation. “WD”: Weight Decay. Best results are in bold.

Data augmentation Regularization ViTAS Retraining
# RD MP CM CJ Era SD RA WD Acc(%) Acc(%)
0 ! ! ! ! ! ! ! ! 59.4% 77.9%

1 ! ! ! ! ! % ! ! 61.2% 78.0%

2 ! ! ! ! ! % % ! 61.5% 78.2%

3 ! % % ! ! % % ! 62.3% 78.6%

4 % % % ! ! % % ! 64.9% 78.8%

7 % % % % ! % % ! 65.6% 78.9%

8 % % % % % % % ! 66.1% 79.1%

9 % % % % % % % % 67.7% 79.4%

Table 5: Training recipe of the ViTAS with parameter settings. BS: batch size, LR:
learning rate, WD: weight decay. We will conduct the ViTAS according to the following
recipe in experiments.

Epochs BS Optimizer LR LR decay Warmup
300 1024 AdamW 0.001 cosine 5

Compared with one single ViT, the superformer training is much more difficult to con-
verge, which needs a simply yet effective training strategy.

From Table 4, as group 0, the superformer performs badly with the default train-
ing strategy [41,5]. To facility the search, we first removed the stochastic depth, since
our identity search performs the similar effect in the superformer training. Then, we
gradually dropped other data augmentation and/or regularization and find that a weak
augmentation can largely promote retraining accuracy with searching a better archi-
tecture. Table 5 presents the ViTAS training recipe for our experiments. We provide a
detailed analysis of weak augmentation in Section A.14 of Appendix.

6 Experimental Results

We perform the ViTAS on the challenging ImageNet-1k dataset [8] for image classifi-
cation, and COCO2017 [13] and ADE20k [67] for object detection, instance segmen-
tation, and semantic segmentation. To promote the search, we randomly sample 50K
images from the training set as the local validation set and the rest images are leveraged
for training. All experiments are implemented with PyTorch [30] and trained on V100
GPUs. Please find detailed experimental settings in Section A.1 and A.3 of Appendix.
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Table 6: Searched ViT architectures that do not involve inductive bias w.r.t. different
FLOPs and GPU throughput on ImageNet-1k. ⋆ indicates that the re-implementation
results of important baseline methods with our recipe. Our results are in bold.

Method
FLOPs

(G)
Throughput
(image/s)

Params
(M)

Top-1
(%)

Top-5
(%)

ResNet-18 [17] 1.8 4458.4 12 69.8 89.1
DeiT-T⋆ [41] 1.3 2728.5 5 72.3 91.4

AutoFormer-T⋆ [4] 1.3 2955.4 5.7 74.7 91.9
ViTAS-DeiT-A 1.4 2831.1 6.6 75.6 92.5
ResNet-50[17] 4.1 1226.1 25 76.2 91.4

DeiT-S⋆ [41] 4.6 940.4 22 79.9 95.0
AutoFormer-S⋆ [4] 5.1 1231.7 22.9 79.8 95.0

ViTAS-DeiT-B 4.9 1189.4 2.3 80.2 95.1

6.1 Efficient search of ViTAS on ImageNet-1k

In Table 3, we compare our results with recent precedent ViT architectures. To evaluate
our methods with other existing algorithms, we based on the Twins transformer space9

and present the search results with both FLOPs and GPU throughput. With different
FLOPs budgets, The search ones (ViTAS-Twins-T/S/B/L) can outperform the referred
transformers. For example, ViTAS-Twins-T can improve Top-1 accuracy by 1.6%, com-
pared with Twins-T. For larger architectures, the search ones can moderately surpass all
the corresponding referred ones as well, respectively.

In addition, we also searched the optimal architectures based on pure ViT and DeiT
space, shown in Table 6. With only 1.4G FLOPs and similar GPU throughput, our
searched ViTAS-DeiT-A model achieves 75.6% on Top-1 accuracy and is 3.4% supe-
rior than DeiT-T, which indicates the effectiveness of our proposed ViTAS method. Fur-
thermore, with 4.9G FLOPs budget, our ViTAS-DeiT-B model also achieves superior
performance of 80.2% on Top-1 accuracy with 0.3% surpassing the DeiT-S.

6.2 Transferability of ViTAS with Semantic Segmentation on ADE20K

In addition to search the optimal ViT architectures on the ImageNet-1k, we evaluated
the generalization ability of the ViTAS by transferring the searched architectures to
other tasks. With the same recipe as Twins [5], we fintuned on ADE20k [67] by using
our ImageNet-pretrained models as backbones for semantic segmentation, shown in
Table 8. Under different FLOPs budgets, our models can obtain significant performance
improvement as 2% ∼ 4% on mIoU, compared with corresponding referred methods.
For example, with semantic FPN [5] method as baseline, ViTAS-Twins-B surpasses the
second best one, Twins-SVT-B, by more than 4% on mIoU.

9 We constructed the ViTAS-Twins-T transformer space from Twins-S similar to Table 1, and
the Twins-T was uniformly scaled from Twins-S.
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Table 7: Object detection and instance segmentation performance with searched back-
bones on the COCO2017 dataset with Mask R-CNN framework and RatinaNet frame-
work. We followed the same training and evaluation setting as [5]. “FLOPs” and
“Param” are in giga and million, respectively. ⋆ indicates the re-implementation results
of important baseline methods with our recipe. Our results are highlighted in bold.

Backbone
Mask R-CNN 1× [16] RetinaNet 1× [22]

FLOPs Param APb APb
50 APb

75 APm APm
50 APm

75 FLOPs Param APb APb
50 APb

75 APS APM APL

ResNet50 [17] 174 44.2 38.0 58.6 41.4 34.4 55.1 35.7 111 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PVT-Small [44] 178 44.1 40.4 62.9 43.8 37.8 60.1 40.3 118 34.2 40.4 61.3 43.0 25.0 42.9 55.7

Twins-PCPVT-S [5] 178 44.3 42.9 65.8 47.1 40.0 62.7 42.9 118 34.4 43.0 64.1 46.0 27.5 46.3 57.3
Swin-T [25] 177 47.8 42.2 64.6 46.2 39.1 61.6 42.0 118 38.5 41.5 62.1 44.2 25.1 44.9 55.5

Twins-SVT-S⋆ [5] 164 44.0 43.5 66.0 47.8 40.1 62.9 43.1 104 34.3 42.2 63.3 44.9 26.4 45.6 57.0
ViTAS-Twins-S 168 44.2 45.9 67.8 50.3 41.5 64.7 45.0 108 41.3 44.4 65.3 47.6 27.5 48.3 60.0
ResNet101 [17] 210 63.2 40.4 61.1 44.2 36.4 57.7 38.8 149 56.7 38.5 57.8 41.2 21.4 42.6 51.1

ResNeXt101 [50] 212 62.8 41.9 62.5 45.9 37.5 59.4 40.2 151 56.4 39.9 59.6 42.7 22.3 44.2 52.5
PVT-Medium [5] 211 63.9 42.0 64.4 45.6 39.0 61.6 42.1 151 53.9 41.9 63.1 44.3 25.0 44.9 57.6

Twins-PCPVT-B [5] 211 64.0 44.6 66.7 48.9 40.9 63.8 44.2 151 54.1 44.3 65.6 47.3 27.9 47.9 59.6
Swin-S [25] 222 69.1 44.8 66.6 48.9 40.9 63.4 44.2 162 59.8 44.5 65.7 47.5 27.4 48.0 59.9

Twins-SVT-B⋆ [5] 224 76.3 45.5 67.4 50.0 41.4 64.5 44.5 163 67.0 44.4 65.6 47.4 28.5 47.9 59.5
ViTAS-Twins-B 227 85.4 47.6 69.2 52.2 42.9 66.3 46.5 167 76.2 46.0 66.7 49.6 29.1 50.2 62.0

Twins-SVT-L⋆ [5] 292 119.7 45.9 67.9 49.9 41.6 65.0 45.0 232 110.9 45.2 66.6 48.4 29.0 48.6 60.9
ViTAS-Twins-L 301 144.1 48.2 69.9 52.9 43.3 66.9 46.7 246 135.5 47.0 67.8 50.3 29.6 50.9 62.4

6.3 Transferability to Object Detection and Instance Segmentation

With the same recipe as Twins [5], we undertook both object detection and instance seg-
mentation on COCO2017 [23] by using our ImageNet-pretrained models as backbones,
respectively. In Table 7, with mask R-CNN and RetinaNet as baseline, we achieve state-
of-the-art performance with remarkably improvement on each AP metrics. The afore-
mentioned experimental results in both of the tasks can demonstrate the effectiveness
of ViTAS.

6.4 Ablation Studies

Effect of ViTAS as a superformer. To validate the effectiveness of our proposed Vi-
TAS, as in Table 9, we implemented the search with 1.4G FLOPs budget and Twins
transformer space on ImageNet-1k dataset. Our baseline superformers are AutoFormer
[60,4] and BCNet [37] that adopt ordinal or bilateral weight sharing mechanism, re-
spectively, to evaluate a sampled architecture. With all settings in our paper, our cyclic
pattern (79.4%) can enjoy a gain of 0.9% or 1.3% on Top-1 accuracy compare to bilat-
eral (78.5%) or ordinal (78.1%) pattern, respectively. In addition, when only searching
with the cyclic weight pattern and without additional strategies, our method (77.9%)
can still attain 0.3% or 0.7% performance gain compare to baseline methods of bi-
lateral (77.6%) and ordinal (77.2%) weight sharing mechanism. We also conduct the
ablations of ViTAS w.r.t. DeiT seach space in section A.7 of Appendix.

Comparison of AutoFormer [60,4], BCNet [37], and ViTAS w.r.t weight sharing
paradigm of superformer training. AutoFormer, BCNet, and ViTAS adopt the ordi-
nal, bilaterally, and cyclic weight sharing paradigm, respectively. As in Figure 3a, we
depict the average of training loss in each epoch w.r.t. three weight sharing mechanisms.
In general, two obvious phenomena can be concluded as follows:
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Table 8: Performance comparison with searched backbones on ADE20K validation
dataset. Architectures were implemented with the same training recipe as [5]. All back-
bones were pretrained on ImageNet-1k, except for SETR, which was pretrained on
ImageNet-21k dataset. ⋆ indicates the re-implementation results of important baseline
methods with our recipe. Our results are highlighted in bold.

Backbone
Semantic FPN 80k [5] Upernet 160k [25]

FLOPs Param mIoU FLOPs Param mIoU
(G) (M) (%) (G) (M) (%)

ResNet50 [17] 45 28.5 36.7 - - -
Twins-PCPVT-S [5] 40 28.4 44.3 234 54.6 46.2

Swin-T [25] 46 31.9 41.5 237 59.9 44.5
Twins-SVT-S⋆ [5] 37 28.3 43.6 228 54.4 45.9

ViTAS-Twins-S 38 35.1 46.6 229 61.7 47.9
ResNet101 [17] 66 47.5 38.8 - - -

Twins-PCPVT-B [5] 55 48.1 44.9 250 74.3 47.1
Swin-S [25] 70 53.2 45.2 261 81.3 47.6

Twin-SVT-B⋆ [5] 67 60.4 45.5 261 88.5 47.7
ViTAS-Twins-B 67 69.6 49.5 261 97.7 50.2

ResNetXt101 [50] - 86.4 40.2 - - -
PVT-Large [5] 71 65.1 42.1 - - -

Twins-PCPVT-L [5] 71 65.3 46.4 269 91.5 48.6
Swin-B [25] 107 91.2 46.0 299 121 48.1

Twins-SVT-L⋆ [5] 102 103.7 46.9 297 133 48.8
ViTAS-Twins-L 108 128.2 50.4 303 158.7 51.3

Backnone PUP (SETR [66]) MLA (SETR [66])
T-Large (SETR) [66] - 310 50.1 - 308 48.6

Table 9: Ablation studies of the proposed ViTAS. We implemented the search on the
ImageNet-1k set with 1.4G FLOPs budget. Weak aug (WA), private token (PT), and
Identity shifting (IF) in Twins space on ImageNet.

None PT WA IF PT+WA PT+IF WA+IF PT+WA+IF
Ordinal [60,4] 77.2 77.3 77.5 77.4 77.8 77.6 77.9 78.1
Bilateral [37] 77.6 77.7 78.0 77.8 78.1 77.9 78.2 78.5

Cyclic 77.9 78.2 78.7 78.6 78.8 78.4 79.0 79.4

– In the first few epochs (e.g., ≤ 20), the ordinal superformer has the fastest conver-
gence, then is the bilateral pattern, the last is our cyclic one.

– After a few epochs (e.g., ≥ 100), the superformer with the cyclic pattern can be
best trained with the lowest loss value, while the bilateral pattern has the second
convergence speed, and ordinal pattern performs the worst for training superformer.

It is because the ordinal pattern has the largest bias in training channels. As shown
in Figure 3a, a part of the channels converges the fastest in the first few epochs. The
bilateral pattern performs similar due to no influence uniformity considered. However,
after training more epochs, many channels do not obtain well treated in the superformer
of the ordinal and bilateral patterns, thus they present larger average loss values than
the cyclic one.
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Fig. 3: Comparisons of superformer training loss values and performance comparison
of coefficients. (a) Superformer training loss w.r.t. ordinal, bilateral, and cyclic weight
sharing mechanisms on ImageNet-1k dataset. (b) Superformer training loss w.r.t. iden-
tity shifting and original setting on ImageNet-100. (c) Performance comparison of co-
efficients w.r.t. ordinal, bilateral, and cyclic mechanisms with 2000 sampled paths.

Effect of identity shifting strategy. As in Figure 3b, we present the training losses
of the ViTAS using identity shifting strategy and original setting, respectively, with
ImageNet-100 dataset [8,40]. With the redundancy paths removed, our method can con-
verge to a much smaller loss than the original one, which indicates the proposed identity
shifting strategy can promote the training of the superformer. Concretely, the training
loss of original and identity shifting decrease to 2.4 and 1.5 at the final, respectively,
which indicates that our method promote to better convergence for superformer. More-
over, the results trained from scratch of the searched architectures with identity shifting
or original setting is 90.4% and 88.3%, respectively.

Performance comparison of AutoFormer [60,4], BCNet [37], and ViTAS w.r.t.
weight sharing paradigm with 2, 000 sampled paths. To perform the search, we uni-
formly assign 8 budget range from 1G to 8G FLOPs, with 250 paths in each weight shar-
ing mechanism. Generally, we assume the performance of architectures are positively
correlated with FLOPs. Thus, we can obtain the scores of the three patterns w.r.t. Pear-
son, Spearman, and Kendall coefficients on different FLOPs groups. As shown in Fig-
ure 3c, our method achieves remarkable improvements comparing to the others, which
indicates that our superformer can provide more precisely ranking for architectures.
Details of coefficients are elaborated in Section A.5 of Appendix.

7 Conclusion

In this paper, we presented a vision transformer architecture search (i.e., ViTAS) frame-
work with the formulated cyclic weight sharing paradigm for the fair ranking of di-
mensions and also search efficiency. Besides, we propose the identity shifting strategy
to arrange the the ID operation at the deeper layers for removing the redundant paths
in the superformer. Moreover, we also investigated the training strategy of the super-
former and proposed the weak augmentation strategy during search to boost the perfor-
mance of ViTAS. Extensive experiments on ImageNet-1k, COCO2017, and ADE20k
datasets w.r.t. Twins- and DeiT-based transformer space prove the effectiveness of our
ViTAS in terms of performance and efficiency.



ViTAS: Vision Transformer Architecture Search 15

References

1. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. arXiv
preprint arXiv:2005.14165 (2020)

2. Chen, C.F., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for
image classification. arXiv preprint arXiv:2103.14899 (2021)

3. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu,
J., et al.: Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155 (2019)

4. Chen, M., Peng, H., Fu, J., Ling, H.: AutoFormer: Searching transformers for visual recog-
nition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 12270–12280 (October 2021)

5. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins: Revisiting
the design of spatial attention in vision transformers. arXiv preprint arXiv:2104.13840 (2021)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE transactions on evolutionary computation 6(2), 182–197 (2002)

7. Deng, C., Yang, E., Liu, T., Tao, D.: Two-stream deep hashing with class-specific centers for
supervised image search. IEEE transactions on neural networks and learning systems 31(6),
2189–2201 (2019)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchi-
cal image database. In: 2009 IEEE conference on computer vision and pattern recognition.
pp. 248–255. Ieee (2009)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

10. Diamond, S., Boyd, S.: Cvxpy: A python-embedded modeling language for convex opti-
mization. The Journal of Machine Learning Research 17(1), 2909–2913 (2016)

11. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

12. Du, R., Xie, J., Ma, Z., Chang, D., Song, Y.Z., Guo, J.: Progressive learning of category-
consistent multi-granularity features for fine-grained visual classification (2021)

13. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual
object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338
(2010)

14. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-shot neural
architecture search with uniform sampling. In: European Conference on Computer Vision.
pp. 544–560. Springer (2020)

15. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer. arXiv
preprint arXiv:2103.00112 (2021)

16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE inter-
national conference on computer vision. pp. 2961–2969 (2017)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
(2016)

18. Huang, T., You, S., Wang, F., Qian, C., Zhang, C., Wang, X., Xu, C.: Greedynasv2: Greedier
search with a greedy path filter. arXiv preprint arXiv:2111.12609 (2021)

19. Huang, T., You, S., Yang, Y., Tu, Z., Wang, F., Qian, C., Zhang, C.: Explicitly learning topol-
ogy for differentiable neural architecture search. arXiv preprint arXiv:2011.09300 (2020)



16 X. Su et al.

20. Huang, T., You, S., Zhang, B., Du, Y., Wang, F., Qian, C., Xu, C.: Dyrep: Bootstrapping
training with dynamic re-parameterization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 588–597 (2022)

21. Li, C., Tang, T., Wang, G., Peng, J., Wang, B., Liang, X., Chang, X.: BossNAS: Exploring
hybrid cnn-transformers with block-wisely self-supervised neural architecture search (2021)

22. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In:
Proceedings of the IEEE international conference on computer vision. pp. 2980–2988 (2017)

23. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft coco: Common objects in context. In: European conference on computer
vision. pp. 740–755. Springer (2014)

24. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9 (2019)

25. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hier-
archical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

26. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional
networks through network slimming. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 2736–2744 (2017)

27. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270 (2018)

28. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

29. Park, J., Boyd, S.: General heuristics for nonconvex quadratically constrained quadratic pro-
gramming. arXiv preprint arXiv:1703.07870 (2017)

30. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Pytorch: Tensors and dynamic neural net-
works in python with strong gpu acceleration. PyTorch: Tensors and dynamic neural net-
works in Python with strong GPU acceleration 6 (2017)

31. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
with unsupervised learning. Tech. rep., OpenAI (2018)

32. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are
unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

33. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transform-
ers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 16519–16529 (2021)

34. Su, X., Huang, T., Li, Y., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: Prioritized architec-
ture sampling with monto-carlo tree search. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10968–10977 (2021)

35. Su, X., You, S., Huang, T., Wang, F., Qian, C., Zhang, C., Xu, C.: Locally free weight sharing
for network width search. arXiv preprint arXiv:2102.05258 (2021)

36. Su, X., You, S., Huang, T., Wang, F., Qian, C., Zhang, C., Xu, C.: Locally free weight sharing
for network width search. arXiv preprint arXiv:2102.05258 (2021)

37. Su, X., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: Bcnet: Searching for network width
with bilaterally coupled network. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 2175–2184 (2021)

38. Su, X., You, S., Zheng, M., Wang, F., Qian, C., Zhang, C., Xu, C.: K-shot nas: Learnable
weight-sharing for nas with k-shot supernets. arXiv preprint arXiv:2106.06442 (2021)

39. Tang, Y., You, S., Xu, C., Han, J., Qian, C., Shi, B., Xu, C., Zhang, C.: Reborn filters: Pruning
convolutional neural networks with limited data. In: Proceedings of the AAAI Conference
on Artificial Intelligence. pp. 5972–5980 (2020)

40. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: ECCV. pp. 776–794
(2020)



ViTAS: Vision Transformer Architecture Search 17

41. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Train-
ing data-efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877 (2020)

42. Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen, K.,
et al.: Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 12965–12974 (2020)

43. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial net-
works. IEEE Transactions on Evolutionary Computation 23(6), 921–934 (2019).
https://doi.org/10.1109/TEVC.2019.2895748

44. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: Pyramid
vision transformer: A versatile backbone for dense prediction without convolutions. arXiv
preprint arXiv:2102.12122 (2021)

45. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Introducing con-
volutions to vision transformers. arXiv preprint arXiv:2103.15808 (2021)

46. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene under-
standing. In: Proceedings of the European Conference on Computer Vision (ECCV). pp.
418–434 (2018)

47. Xie, J., Ma, Z., Chang, D., Zhang, G., Guo, J.: GPCA: A probabilistic framework for Gaus-
sian process embedded channel attention (2021)

48. Xie, J., Ma, Z., Lei, J., Zhang, G., Xue, J.H., Tan, Z.H., Guo, J.: Advanced dropout: A model-
free methodology for Bayesian dropout optimization (2021)

49. Xie, J., Ma, Z., Xue, J.H., Zhang, G., Sun, J., Zheng, Y., Guo, J.: DS-UI: Dual-supervised
mixture of Gaussian mixture models for uncertainty inference in image recognition 30,
9208–9219 (2021)

50. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep
neural networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1492–1500 (2017)

51. Xu, H., Su, X., Wang, D.: Cnn-based local vision transformer for covid-19 diagnosis. arXiv
preprint arXiv:2207.02027 (2022)

52. Xu, H., Su, X., Wang, Y., Cai, H., Cui, K., Chen, X.: Automatic bridge crack detection using
a convolutional neural network. Applied Sciences 9(14), 2867 (2019)

53. Xu, H., Su, X., You, S., Huang, T., Wang, F., Qian, C., Zhang, C., Xu, C., Wang, D., Sowmya,
A.: Data agnostic filter gating for efficient deep networks. In: ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 3503–
3507. IEEE (2022)

54. Xu, H., Wang, D., Sowmya, A.: Multi-scale alignment and spatial roi module for covid-19
diagnosis. arXiv preprint arXiv:2207.01345 (2022)

55. Yan, Z., Dai, X., Zhang, P., Tian, Y., Wu, B., Feiszli, M.: Fp-nas: Fast probabilistic neural
architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 15139–15148 (2021)

56. Yang, Y., Li, H., You, S., Wang, F., Qian, C., Lin, Z.: Ista-nas: Efficient and consistent neural
architecture search by sparse coding. Advances in Neural Information Processing Systems
33 (2020)

57. Yang, Y., You, S., Li, H., Wang, F., Qian, C., Lin, Z.: Towards improving the consistency,
efficiency, and flexibility of differentiable neural architecture search. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6667–6676 (2021)

58. You, S., Huang, T., Yang, M., Wang, F., Qian, C., Zhang, C.: Greedynas: Towards fast one-
shot nas with greedy supernet. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1999–2008 (2020)

https://doi.org/10.1109/TEVC.2019.2895748


18 X. Su et al.

59. You, S., Xu, C., Xu, C., Tao, D.: Learning from multiple teacher networks. In: Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. pp. 1285–1294 (2017)

60. Yu, J., Huang, T.: Autoslim: Towards one-shot architecture search for channel numbers.
arXiv preprint arXiv:1903.11728 8 (2019)

61. Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z., Tay, F.E., Feng, J., Yan, S.:
Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint
arXiv:2101.11986 (2021)

62. Zheng, M., Wang, F., You, S., Qian, C., Zhang, C., Wang, X., Xu, C.: Weakly supervised con-
trastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 10042–10051 (2021)

63. Zheng, M., You, S., Huang, L., Wang, F., Qian, C., Xu, C.: Simmatch: Semi-supervised
learning with similarity matching. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 14471–14481 (2022)

64. Zheng, M., You, S., Wang, F., Qian, C., Zhang, C., Wang, X., Xu, C.: Ressl: Relational self-
supervised learning with weak augmentation. Advances in Neural Information Processing
Systems 34, 2543–2555 (2021)

65. Zheng, M., You, S., Wang, F., Qian, C., Zhang, C., Wang, X., Xu, C.: Relational self-
supervised learning. arXiv preprint arXiv:2203.08717 (2022)

66. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr,
P.H., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with
transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 6881–6890 (2021)

67. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through
ade20k dataset. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 633–641 (2017)

68. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers
for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)


	ViTAS: Vision Transformer Architecture Search

