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A  Anchor-Free Detection Head

We describe the details of our anchor-free detection head that works across views
and formats. The key is to abstract away from the specific views and formats,
and think about the individual elements. The elements are individual voxels /
pixels / pillars under the voxel / perspective / pillar view.

A.1 Training Phase

The detection head has two sequential jobs: finding the centers, and regressing
parameters from them.

Finding the Centers In training the network to find the centers, we construct
a ground truth heatmap. For each element e € E where E is the set of all
elements, we use V (e) to represent its Cartesian coordinates, which can be either
2-dimensional (only z and y) or 3-dimensional (all of x,y, z). We construct its
ground truth heatmap value to be:
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where C/(e) is the set of centers of the boxes that contain e, and o is a hyper-

parameter. h(e) = 0 if |C(e)| = 0. Intuitively, the heatmap value is high when

the element is close to an object center (||V(e) —¢||). This distance is modified /

compensated by the closest distance among all the elements (minsc g ||V (f)—cl]).
A penalty-reduced focal loss [1, 5] is used to train the predicted heatmap:
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where fl(e) is the predicted heatmap value for element e, a = 2, 8 = 4, ¢ = 0.001.
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Regressing Box Parameters We use smooth L1 loss to regress the 3-dimensional
box center offsets, as well as the 3-dimensional box length, width, height. We
use a bin loss [2] to regress the heading. We also add a IoU loss [4]. These losses
are only active for elements that have ground truth heatmap values greater than

a threshold §.

A.2 Inference Phase

After the forward pass produces the predicted heatmap }~L7 the predicted object
centers are the elements whose predicted heatmap value exceeds a threshold and
is the local maximum. The latter is achieved by max pooling (possible on both
dense grids and sparse) within a local window (3 x 3 or 3 x 3 x 3). The box
parameters prediction on these elements complete the inference.

We conclude by reiterating that when the view is voxel and the format is
sparse, this detection head exactly follows RSN [3].

B Randomly Generated Architectures

We describe our procedure of randomly generating architectures stage by stage.

For the first stage, we add each view with probability 0.5 independently. For
views that may have either dense or sparse formats, the format is selected with
equal probability. The pillar / voxel size is 0.32m to avoid voxelization mismatch
complications. The number of channels is 32 multiplied by either 0.8 or 1.0 or
1.2. The layer progression is randomly chosen between five choices. If the layer
type is point, this means the number of dense-normalization-ReLU is between
1 and 5. For the other layer types, this means the number of downsampling /
upsampling scales choose between (0,0), (1,0), (2,0), (2,1), (2,2).

For the second stage, we again add each view with probability 0.5 indepen-
dently. For each added view, we iterate through the views selected in the first
stage, and add it to the ancestor with probability 0.5 independently. The gener-
ation process for the other parameters (pillar / voxel size, number of channels,
layer progression) is the same as the first stage.

The third stage should only contain one view. We select the view among
voxel, perspective, pillar with equal probability. For views that may have either
dense or sparse formats, the format is selected with equal probability. For this
selected view, all the views selected in the second stage are its ancestors. The
generation process for the other parameters is the same as the preceding stages.

The randomly generated architecture may be invalid for several reasons. Ex-
amples include: no branches are added in a particular stage; no ancestors are
selected for a second stage view; there may be views in the first stage that are
not selected by any view in the second stage. If any of these situations happen,
we reject the sample and sample again until it succeeds.
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