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Below we provide additional analyses, protocols and details of our work.

A Datasets and their statistics

Table 6: UCR archive (the latest version from 2018) which we use for time series anal-
ysis. The information is grouped based on the type of time series.

Dataset type Avg. #train Avg. #test Total #classes Avg. length

Device 1261 1135 44 895
ECG 708 1755 95 326
EOG 362 362 24 1250
EPG 40 249 6 601
Hemodynamics 104 208 156 2000
HRM 18 186 18 201
Image 595 1157 334 360
Motion 347 1057 99 517
Power 180 180 2 144
Sensor 420 1286 177 410
Simulated 203 1021 32 267
Spectro 179 147 24 553
Spectrum 305 388 17 1836
Traffic 607 1391 12 24
Trajectory 208 130 78 360

The UCR time series archive [56]. UCR, introduced in 2002, is an important resource
in the time series analysis community with at least 1,000 published papers making use
of at least 1 dataset from this archive. We use 128 datasets from the latest version of
UCR from 2018, encompassing a wide variety of fields and lengths. Table 6 details the
statistics of this archive by grouping the whole dataset into different types.
Few-shot action recognition datasets. Table 7 contains statistics of datasets used in our
experiments. Smaller datasets listed below are used for more evaluations of supervised
and unsupervised few-shot action recognition:
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Table 7: Popular benchmark datasets which we use for few-shot action recognition.

Datasets Year Classes Subjects #views #clips Sensor #joints

MSR Action 3D 2010 20 10 1 567 Kinect v1 20
3D Action Pairs 2013 12 10 1 360 Kinect v1 20
UWA 3D Activity 2014 30 10 1 701 Kinect v1 15
NTU RGB+D 2016 60 40 80 56,880 Kinect v2 25
NTU RGB+D 120 2019 120 106 155 114,480 Kinect v2 25
Kinetics-skeleton 2018 400 - - ∼ 300,000 - 18

– MSR Action 3D [57] is an older AR dataset captured with the Kinect depth camera.
It contains 20 human sport-related activities such as jogging, golf swing and side
boxing.

– 3D Action Pairs [59] contains 6 selected pairs of actions that have very similar
motion trajectories, e.g., put on a hat and take off a hat, pick up a box and put down
a box, etc.

– UWA 3D Activity [61] has 30 actions performed by 10 people of various height at
different speeds in cluttered scenes.

As MSR Action 3D, 3D Action Pairs, and UWA 3D Activity have not been used
in FSAR, we created 10 training/testing splits, by choosing half of class concepts for
training, and half for testing per split per dataset. Training splits were further subdivided
for crossvalidation. Section C.1 details the class concepts per split for small datasets.

B Table of notations

Table 8 (next page) shows the notations used in this paper with their short descriptions.
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Table 8: Notations and their descriptions.

Notation Description

Ψ Query feature maps
Ψ ′ Support feature maps
Π Path matrix

D(·, ·) Pair-wise distances
d2∗(·, ·) Distance functions and * can be base (squared Euclidean), DTW, sDTW or uDTW

γ The relaxation parameter of sDTW/uDTW
τ The number of temporal blocks for query
τ ′ The number of temporal blocks for support
Σ Pair-wise variances between all possible pairs of two sequences
Σ† Element-wise inverse of Σ

f(·; ·) Encoder function
P The set of parameters to learn
β Regularization parameter
σ Uncertainty parameter
X Query frames per block
X′ Support frames per block
K The size of dictionary
K′ The subset size for K′ nearest anchors
x Time series for training
x′ Time series for testing
µc Class prototype for class c
Ω(·) Regularization penalty
α Coding vector
λDL Learning rate for dictionary learning
λEN Learning rate for encoder
M Dictionary anchors
B The number of training episodes
N The number of classes
Z The number of samples from each class
J The number of human body joints
d Feature dimension after MLP
d′ Feature dimension (output of EN)
δ The similarity label
Nc The number of samples for class c
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C Evaluation Protocols

Below, we detail our new/additional evaluation protocols used in the experiments on
few-shot action recognition.

C.1 Few-shot AR protocols (the small-scale datasets)

As we use several class-wise splits for small datasets, these splits will be simply released
in our code. Below, we explain the selection process that we used.
FSAR (MSR Action 3D) . As this dataset contains 20 action classes, we randomly
choose 10 action classes for training and the rest 10 for testing. We repeat this sampling
process 10 times to form in total 10 train/test splits. For each split, we have 5-way and
10-way experimental settings. The overall performance on this dataset is computed by
averaging the performance over the 10 splits.
FSAR (3D Action Pairs) . This dataset has in total 6 action pairs (12 action classes),
each pair of action has very similar motion trajectories, e.g., pick up a box and put down
a box. We randomly choose 3 action pairs to form a training set (6 action classes) and
the half action pairs for the test set, and in total there are

(
n
k

)
=
(
6
3

)
=20 different combi-

nations of train/test splits. As our train/test splits are based on action pairs, we are able
to test whether the algorithm is able to classify unseen action pairs that share similar
motion trajectories. We use 5-way protocol on this dataset to evaluate the performance
of FSAR, averaged over all 20 splits.
FSAR (UWA 3D Activity) . This dataset has 30 action classes. We randomly choose
15 action classes for training and the rest half action classes for testing. We form in total
10 train/test splits, and we use 5-way and 10-way protocols on this dataset, averaged
over all 10 splits.

C.2 One-shot protocol on NTU-60

Following NTU-120 [58], we introduce the one-shot AR setting on NTU-60. We split
the whole dataset into two parts: auxiliary set (on NTU-120 the training set is called as
auxiliary set, so we follow such a terminology) and one-shot evaluation set.
Auxiliary set contains 50 classes, and all samples of these classes can be used for learn-
ing and validation. Evaluation set consists of 10 novel classes, and one sample from
each novel class is picked as the exemplar (terminology introduced by authors of NTU-
120), while all the remaining samples of these classes are used to test the recognition
performance.
Evaluation set contains 10 novel classes, namely A1, A7, A13, A19, A25, A31, A37,
A43, A49, A55.

The following 10 samples are the exemplars:
(01)S001C003P008R001A001, (02)S001C003P008R001A007,
(03)S001C003P008R001A013, (04)S001C003P008R001A019,
(05)S001C003P008R001A025, (06)S001C003P008R001A031,
(07)S001C003P008R001A037, (08)S001C003P008R001A043,
(09)S001C003P008R001A049, (10)S001C003P008R001A055.
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Auxiliary set contains 50 classes (the remaining 50 classes of NTU-60 excluding the
10 classes in evaluation set).

D Effectiveness of SigmaNet

In this section, we introduce several variants of howΣ is computed to verify the effec-
tiveness of our proposed SigmaNet.

Firstly, we investigate whether SigmaNet is needed in its current form (as in taking
features to produce the uncertainty variable), or ifΣ could be learnt as the so-called free
variable. To this end, we create a vector of parameters of size τ(0)·τ(0) which we register
as one of parameters of the network (we backpropagate w.r.t. this parameter among
others). We set τ(0) to be the average integer of numbers of blocks over sequences.
We then reshape this vector into τ(0)×τ(0) matrix and initialize with 0±0.1 uniform
noise. We then apply a 2D bilinear interpolation to the matrix to obtain Σ of desired
size τ×τ ′, where τ and τ ′ are the number of temporal blocks for query and support
samples, respectively. The τ × τ ′ matrix is then passed into the sigmoid function to
produce theΣ matrix.

For classification of time series, we create a vector of parameters of size t(0) which
we register as one of parameters of the network (we backpropagate w.r.t. this parameter
among others). We set τ(0) to be the average integer of numbers of time steps of input
time series. We initialize that vector with 0±0.1 uniform noise, and we then use a 1D
bilinear interpolation to interpolate the vector into desired length τ . The interpolated
vector is passed into the sigmoid function to generate σx for the input sequence x of
length τ . For sequence x′ (exhaustive search via nearest neighbor) or µc (via nearest
centroid), we use exactly the same process to generate σx′ or σµc

but of course they
have their own vector of length τ(0) that we minimize over. We obtainΣ=σ2

x1
⊤+1σ⊤

x′
2

(or Σ=σ2
x1

⊤+1σ⊤
µc

2 if we use the nearest centroid), where squaring is performed in
the element-wise manner.

Table 9: Comparisons of two different ways of generatingΣ for few-shot action recog-
nition. Evaluations on the NTU-60 dataset.

#classes 10 20 30 40 50

uDTW (Σ via the free variable) 54.1 56.5 61.0 64.1 68.0
uDTW (Σ via SigmaNet) 56.9 61.2 64.8 68.3 72.4

In conclusion, the above steps facilitate the direct minimization w.r.t. the variable
tied withΣ instead of learningΣ through our SigmaNet whose input are encoded fea-
tures etc. Tables 9 and 10 show that using SigmaNet is a much better choice than trying
to infer the uncertainty by directly minimizing the free variable. The result is expected
as SigmaNet learns to associate feature patterns of sequences with their uncertainty
patterns. Minimizing w.r.t. the free variables cannot learn per se.
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Table 10: Comparisons of two different ways of generatingΣ for classification of time
series. Evaluations on the UCR archive. K denotes the number of nearest neighbors
used by the K nearest neighbors based classification.

Nearest neighbor Nearest centroid
K = 1 K = 3 K = 5

uDTW (Σ via the free variable) 77.0 77.3 78.0 70.9
uDTW (Σ via SigmaNet) 80.0 81.2 83.3 72.2

E Additional Visualizations of Forecasting the Evolution of Time
Series

We provide additional visualizations of forecasting the evolution of time series in Fig-
ure 7. We notice that our uDTW produces predictions that are better aligned with the
ground truth (see Fig. 7a). Moreover, our uDTW generates better shape of the pre-
dictions compared to sDTW, and the predictions from sDTW have more perturba-
tions/fluctuations (see Fig. 7b). Quantitative results for the whole UCR archive can be
found in the main paper.

F Additional Evaluations for Few-shot Action Recognition

Table 11: uDTW derived under the Normal, Laplacian and Cauchy distributions. Eval-
uations of few-shot action recognition on small-scale datasets.

Supervised Unsupervised
MSR 3D Action Pairs UWA 3D MSR 3D Action Pairs UWA 3D

TAP (HM) [62] 67.40 77.22 37.13 - - -
TAP (Lifted) [62] 65.20 78.33 34.80 - - -
TAP (Bino.) [62] 66.67 78.33 36.55 - - -
sDTW [55] 70.59 81.67 44.74 62.63 48.33 39.47
uDTW (Laplace) 72.24 82.89 45.64 66.00 55.00 41.22
uDTW (Cauchy) 70.88 84.44 45.03 65.12 50.32 40.50
uDTW (Normal) 72.66 83.33 47.66 65.00 52.22 41.74

We also evaluate our proposed uDTW versus sDTW on smaller datasets for both
supervised and unsupervised settings. As uDTW was derived in Section 1.2 under mod-
eling the MLE of the product of the Normal distributions, we investigate modeling each
pathΠi by replacing the Normal distribution with the Laplace or Cauchy distributions.
By applying MLE principles in analogy to Section 1.2, we arrive at βΩΠi

+ d2Πi
for
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Fig. 7: Additional visualizations for forecasting the evolution of time series. Given the
first part of a time series, we train the pipeline from Fig. 3b to predict the remaining
part of the time series. We compare the use of the Euclidean, sDTW or uDTW dis-
tances within the pipeline. We use CBF and ShapesAll in UCR archive, and display
the prediction obtained for the given test sample with either of these 3 distances, and
the ground truth (GT). Oftentimes, we observe that uDTW helps predict the sudden
changes well. (a) Our uDTW aligns well with the ground truth compared to sDTW. (b)
Our uDTW generates better shape of prediction compared to sDTW (for example note
the red curve following much closer the rising gray slope). Quantitative results of MSE
and ‘shape’ metrics for the whole UCR archive are given in the main paper.

Table 12: uDTW derived under the Normal, Laplacian and Cauchy distributions. Eval-
uations of few-shot action recognition on the large-scale NTU-60 dataset.

#classes 10 20 30 40 50

Supervised
sDTW(baseline) [55] 53.7 56.2 60.0 63.9 67.8
uDTW(Cauchy) 56.1 61.1 62.9 68.3 69.9
uDTW(Laplace) 55.3 59.2 63.3 67.7 70.3
uDTW(Normal) 56.9 61.2 64.8 68.3 72.4

Unsupervised
sDTW(baseline) [55] 35.6 45.2 53.3 56.7 61.7
uDTW(Cauchy) 36.7 47.9 54.9 57.3 63.3
uDTW(Laplace) 36.2 48.2 54.3 57.8 63.1
uDTW(Normal) 37.0 48.3 55.3 58.0 63.3

i. Laplace:
∑

(m,n)∈Πi
β log(σmn) +

∥ψm−ψ′
n∥1

σmn
;

ii. Cauchy:
∑

(m,n)∈Πi
β log(σmn) + log

(
1 +

∥ψm−ψ′
n∥

2
2

σ2
mn

)
.

Table 11 shows that uDTW achieves better performance than sDTW, and the Laplace
distribution is performing particularly well on the unsupervised few-shot action recog-
nition. Table 12 shows that uDTW based on the Normal distribution is overall better
than other distributions on large-scale datasets such as NTU-60. For this very reason
we use uDTW based on the Normal distribution.
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G Additional Visualizations on Barycenters

Figure 8 shows more visualizations of barycenters of time series. With our SigmaNet,
we obtain much better barycenters with our uDTW compared to sDTW.
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Fig. 8: Comparison of barycenters based on our uDTW vs. sDTW. We visualize un-
certainty around the barycenters in red color for uDTW. Our uDTW with SigmaNet
generates reasonable barycenters even when higher γ values are used, e.g., γ = 10.0.
Higher γ value leads to smooth barycenters but introducing higher uncertainty.
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H Network Configuration and Training Details

Below we provide the details of network configuration and training process.

H.1 Skeleton Data Preprocessing

Before passing the skeleton sequences into MLP and a simple linear graph network
(e.g., S2GC), we first normalize each body joint w.r.t. to the torso joint vf,c:

v′
f,i=vf,i−vf,c, (23)

where f and i are the index of video frame and human body joint respectively. After
that, we further normalize each joint coordinate into [-1, 1] range:

v̂f,i[j] =
v′
f,i[j]

max([abs(v′
f,i[j])]f∈Iτ ,i∈IJ

)
, (24)

where j is for selection of the x, y and z axes, τ is the number of frames and J is the
number of 3D body joints per frame.

For the skeleton sequences that have more than one performing subject, (i) we nor-
malize each skeleton separately, and each skeleton is passed to MLP for learning the
temporal dynamics, and (ii) for the output features per skeleton from MLP, we pass
them separately to the graph neural network, e.g., two skeletons from a given video se-
quence will have two outputs obtained from the graph neural network, and we aggregate
the outputs through average pooling before passing to sDTW or uDTW.

H.2 Network Configuration

SigmaNet. It is composed of an FC layer and a scaled sigmoid function which translate
the learned features of either actions or time series into desired Σ. The input to FC is
of the size of feature dimension (depends on the encoder) and the output is a scalar.
SigmaNet with the scaled sigmoid function can be defined as:

σ(ψ)=
κ

1+exp(−FC(ψ))
+η, (25)

where η>0 is the offset and κ≥0 is the maximum magnitude of sigmoid. For an entire
sequence with τ blocks, the SigmaNet produces vector σx for sequence x and σx′ for
sequence x′ (we concatenate per-block scalars to form these vectors), and we typically
obtainΣ=σ2

x1⊤+1σ2
x′
⊤.

Forecasting of the evolution of time series. The MLP for this task consists of two FC
layers with a tanh layer in between. The input to the first FC layer is t and output size
is t′, and after the tanh layer, the input to the second FC layer is t′ and output (τ−t)
dimensional prediction. We set t′= 30 or 50 depending on the length of time series in
each dataset.
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Few-shot action recognition. Given the temporal block size M (the number of frames
in a block) and desired output size d, the configuration of the 3-layer MLP unit is:
FC (3M → 6M ), LayerNorm (LN) as in [11], ReLU, FC (6M → 9M ), LN, ReLU,
Dropout (for smaller datasets, the dropout rate is 0.5; for large-scale datasets, the dropout
rate is 0.1), FC (9M → d), LN. Note that M is the temporal block size and d is the
output feature dimension per body joint. We set M=10 for experiments.

For the encoding network, let us take the query input X∈R3×J×M for the temporal
block of length M as an example, where 3 indicates that Cartesian coordinates (x, y, z)
were used, and J is the number of body joints. As alluded to earlier, we obtain X̂T =
MLP(X;PMLP )∈Rd×J .

Subsequently, we employ a simple linear graph network, S2GC from Section H.3,
and the transformer encoder [11] which consists of alternating layers of Multi-Head
Self-Attention (MHSA) and a feed-forward MLP (two FC layers with a GELU non-
linearity between them). LayerNorm (LN) is applied before every block, and residual
connections after every block. Each block feature matrix X̂ ∈ RJ×d encoded by a sim-
ple linear graph network S2GC (without learnable Θ) is then passed to the transformer.
Similarly to the standard transformer, we prepend a learnable vector ytoken ∈ R1×d to
the sequence of block features X̂ obtained from S2GC, and we also add the positional
embeddings Epos ∈ R(1+J)×d based on the sine and cosine functions (standard in trans-
formers) so that token ytoken and each body joint enjoy their own unique positional
encoding. We obtain Z0∈R(1+J)×d which is the input in the following backbone:

Z0 = [ytoken;S2GC(X̂)] +Epos, (26)
Z′

k = MHSA(LN(Zk−1)) + Zk−1, k = 1, ..., Ltr (27)
Zk = MLP(LN(Z′

k)) + Z′
k, k = 1, ..., Ltr (28)

y′ = LN
(
Z

(0)
Ltr

)
where y′ ∈ R1×d (29)

f(X;P) = FC(y′T ;PFC) ∈ Rd′
, (30)

where Z
(0)
Ltr

is the first d dimensional row vector extracted from the output ma-
trix ZLtr of size (J +1) × d which corresponds to the last layer Ltr of the trans-
former. Moreover, parameter Ltr controls the depth of the transformer, whereas P ≡
[PMLP ,PS2GC ,PTransf ,PFC ] is the set of parameters of EN. In case of S2GC,
|PS2GC | = 0 because we do not use their learnable parameters Θ (i.e., think Θ is
set as the identity matrix in Eq. (31)).

We can define now a support feature map as Ψ ′ = [f(X1;P), ..., f(Xτ ′ ;P)] ∈
Rd′×τ ′

for τ ′ temporal blocks, and the query map Ψ accordingly.
The hidden size of our transformer (the output size of the first FC layer of the MLP

depends on the dataset. For smaller datasets, the depth of the transformer is Ltr = 6
with 64 as the hidden size, and the MLP output size is d = 32 (note that the MLP
which provides X̂ and the MLP in the transformer must both have the same output
size). For NTU-60, the depth of the transformer is Ltr = 6, the hidden size is 128 and
the MLP output size is d= 64. For NTU-120, the depth of the transformer is Ltr = 6,
the hidden size is 256 and the MLP size is d = 128. For Kinetics-skeleton, the depth
for the transformer is Ltr =12, hidden size is 512 and the MLP output size is d=256.
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The number of Heads for the transformer of smaller datasets, NTU-60, NTU-120 and
Kinetics-skeleton is set as 6, 12, 12 and 12, respectively.

The output sizes d′ of the final FC layer are 50, 100, 200, and 500 for the smaller
datasets, NTU-60, NTU-120 and Kinetics-skeleton, respectively.

H.3 Linear Graph Network (S2GC)

Based on a modified Markov Diffusion Kernel, Simple Spectral Graph Convolution
(S2GC) is the summation over l-hops, l=1, ..., L. The output of S2GC is given as:

ΦS2GC=
1

L

L∑
l=1

((1−α)SlX+αX)Θ, (31)

where L ≥ 1 is the number of linear layers and α ≥ 0 determines the importance of
self-loop of each node (we use their default setting α=0.05 and L=6). Choice of other
graph embeddings are possible, including contrastive models COLES [67] or COSTA
[66], adversarial Fisher-Bures GCN [63] or GCNs with rectifier attention [65]. One may
also use kernels on 3D body joints as in [64] or even use CNN to encode 3D body joints
as COLTRANE [60].

H.4 K-NN classifier with SoftMax

For the K-NN classifier, instead of using K best weights proportional to the inverse
of the distance from the query sample x∗ to the closest samples xn (as is done in the
soft-DTW paper [55]) and expressed by

w(xn|x∗) =
1

d2
(
x∗,xn

) , (32)

we weigh the neighbors xn of x∗ using

w(xn|x∗) =
exp

(
− 1

γ′′ d
2
(
x∗,xn

))∑
n′∈N (x∗;K) exp

(
− 1

γ′′ d2
(
x∗,xn′

)) (33)

such that N (x∗;K) produces K nearest samples xn′ of x∗ according to distance d(·, ·),
e.g., the Euclidean distance, sDTW or uDTW. Parameter γ′′ > 0 (in our case, we set
γ′′=6) further controls the impact of each sample xn on the classifier based on the bell
shape of Radial Basis Function in the above equation.

Table 13 shows the comparisons. We notice that the use of SoftMax in the K-NN
classifier improves the performance for all the methods when K=3 and K=5.

H.5 Training Details

For both time series and few-shot action recognition pipelines, the weights are initial-
ized with the normal distribution (zero mean and unit standard deviation). We use 1e-3
for the learning rate, and the weight decay is 1e-6. We use the SGD optimizer.
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Table 13: Classification accuracy (mean±std) on UCR archive using nearest neighbor.
K denotes the number of nearest neighbors in the K-NN classifier. Highlighted rows
are the based on SoftMax from Eq. (33). Non-highlighted rows are based on Eq. (32).

Nearest neighbor
K = 1 K = 3 K = 5

Euclidean 71.2±17.5 69.5±18.0 67.5±17.6
Euclidean (SoftMax) 71.2±17.5 72.3±18.1 73.0±16.7
DTW [54] 74.2±16.6 72.8±16.9 71.4±16.8
DTW [54] (SoftMax) 74.2±16.6 75.0±17.0 75.4±15.8
sDTW [55] 76.2±16.6 74.0±15.6 70.5±17.6
sDTW [55] (SoftMax) 76.2±16.6 77.2±15.9 78.0±16.5
sDTW div. [53] 78.6±16.2 76.5±16.4 74.8±15.8
sDTW div. [53] (SoftMax) 78.6±16.2 79.5±16.7 80.1±16.5
uDTW 80.0±15.0 78.0±15.8 76.2±15.0
uDTW (SoftMax) 80.0±15.0 81.2±17.8 83.3±16.2

For time series, we set the training epochs to 30, 50 and 100 depending on the
dataset in the UCR archive (due to many datasets, the epoch settings will be provided
in the code directly).

For few-shot action recognition, we set the number of training episodes to 100K for
NTU-60, 200K for NTU-120, 500K for 3D Kinetics-skeleton, 10K for small datasets
such as UWA 3D Multiview Activity II.

I Hyperparameters Evaluation

In this section, we evaluate the impact of key hyperparameters. Remaining hyperparam-
eters are obtained through Hyperopt [52] for hyperparameter search on the validation
set.

I.1 Evaluation ofΣ

We compare results given different formulations of Σ in Tables 14 and 15. We notice
that on smaller datasets, it is hard to determine which variant of Σ is better (as these
earlier datasets have fewer limited reliable skeletons compared to the new datasets).
However, on bigger datasets,Σ=σ2

ψ1
⊤+1σ⊤

ψ′
2 performs the best in all cases; thus we

choose this formulation ofΣ for large-scale datasets.

I.2 Evaluation of κ and η of SigmaNet

Figures 9a and 9b show the impact of κ and η of the scaled sigmoid function in Sig-
maNet on both small-scale datasets and the large-scle NTU-60 dataset. We notice that
κ=1.5 performs the best on the three small-scale datasets and κ=1.8 works the best on
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Table 14: Evaluation of different variants of Σ computation on small-scale datasets
(supervised few-shot action recognition). Operator ⊙ is the Hadamart product.

σψ1
⊤⊙1σ⊤

ψ′ σ2
ψ1

⊤⊙1σ⊤
ψ′

2
σψ1

⊤+1σ⊤
ψ′ σ2

ψ1
⊤+1σ⊤

ψ′
2

MSR Action 3D 72.32 68.51 70.59 69.20
3D Action Pairs 82.78 80.56 82.22 85.00
UWA 3D Activity 43.86 45.91 45.91 45.03

Table 15: Evaluation of different variants ofΣ computation on the large-scale NTU-60
dataset (supervised few-shot action recognition).

#classes σψ1
⊤⊙1σ⊤

ψ′ σ2
ψ1

⊤⊙1σ⊤
ψ′

2
σψ1

⊤+1σ⊤
ψ′ σ2

ψ1
⊤+1σ⊤

ψ′
2

10 56.6 56.0 55.6 56.9
20 60.4 61.0 61.2 61.2
30 64.2 64.1 63.5 64.8
40 68.1 66.9 67.2 68.3
50 72.0 72.3 72.0 72.4
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Fig. 9: Evaluation of (a) κ which controls the maximum magnitude and (b) η offset from
Eq. (25) in SigmaNet and (c) β from Eq. (17). Note that β=0 means no regularization
term of uDTW in use. We notice that with the regularization term added to the uDTW,
the overall performance is improved.

NTU-60. We choose κ=1.8 in the experiments for the large-scale datasets. Moreover,
η ∈ [0.003, 0.01] works better on NTU-60, and on the small-scale datasets, η = 0.01
achieves the best performance; thus we choose η=0.01 for the experiments.

I.3 Evaluation of β

Figure 9c shows the evaluations of β for both small-scale datasets and NTU-60. Firstly,
note that β = 0 means lack of the regularization term of uDTW, which immediately
causes the performance deterioration. As shown in the figure, β = 0.05 performs the
best on UWA 3D Activity, β=0.03 achieves the best performance on MSR Action 3D
and β = 0.007 works the best on 3D Action Pairs dataset. We use the corresponding
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best β values for the smaller datasets. On NTU-60, β ∈ [0.01, 0.05] performs the best
compared to other β values, thus we choose β=0.03 for the experiments on all large-
scale datasets.

I.4 Evaluation of warping window width

Table 16 on ECGFiveDays (from UCR) and NTU-60 (50-class, supervised / un-
sup. settings) shows that uDTW does not break quicker than sDTW (window size is
parametrized by r). Very small r may preclude backpropagating through some paths (of
large distance). For such paths ‘beyond window’, learning uncertainty is limited but this
is normal. For similar reasons, choosing the right window size is required by other DTW
variants too. Also, if r is very large, large uncertainty score may decrease the distance
on multitude of paths by downweighting parts of paths (could lead to strange matching)
but as the uncertainty is aggregated into the regularization penalty, this penalty prevents
uDTW from unreasonable solutions. Lack of regularization penalty (w/o reg.) affects
the most the unsupervised few-shot learning, while supervised loss can still drive Sig-
maNet to produce meaningful results.

Table 16: Experimental results on ECGFiveDays (from UCR) and NTU-60 (50-class,
supervised / unsup. settings) for different warping window widths.

γ = 0.001 γ = 0.01 γ = 0.1 γ = 1
r=1.0r=3.0r=5.0 r=1.0r=3.0r=5.0 r=1.0r=3.0r=5.0 r=1.0r=3.0r=5.0

ECG
FiveDays

sDTW 83.4 82.8 82.0 79.7 76.8 77.8 75.4 69.0 65.3 62.5 61.7 60.2
uDTW 85.6 91.2 81.0 93.5 82.8 80.6 79.7 73.9 67.3 69.0 65.3 62.5
uDTW
w/o reg. 75.4 74.0 69.0 79.7 77.9 76.8 65.3 62.5 61.5 61.2 62.0 60.2

NTU-60
(sup.)

sDTW 65.7 64.7 64.8 65.2 67.8 63.9 60.0 58.9 54.3 54.0 52.2 52.3
uDTW 71.5 71.0 70.0 72.4 72.4 70.0 68.3 66.7 67.8 65.7 64.8 66.8
uDTW
w/o reg. 66.3 65.0 65.5 66.4 68.0 65.2 62.0 59.2 55.0 52.0 52.0 51.2

NTU-60
(unsup.)

sDTW 56.7 53.2 50.0 61.7 61.7 60.0 54.4 52.5 52.1 48.3 45.2 40.9
uDTW 61.0 61.5 60.7 63.3 63.0 62.5 59.2 59.0 57.3 58.0 57.2 55.7
uDTW
w/o reg. 50.1 49.3 47.0 55.3 54.0 51.3 44.1 42.0 40.7 42.3 40.1 35.6
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