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Abstract. Dynamic Time Warping (DTW) is used for matching pairs of se-
quences and celebrated in applications such as forecasting the evolution of time
series, clustering time series or even matching sequence pairs in few-shot action
recognition. The transportation plan of DTW contains a set of paths; each path
matches frames between two sequences under a varying degree of time warp-
ing, to account for varying temporal intra-class dynamics of actions. However,
as DTW is the smallest distance among all paths, it may be affected by the fea-
ture uncertainty which varies across time steps/frames. Thus, in this paper, we
propose to model the so-called aleatoric uncertainty of a differentiable (soft) ver-
sion of DTW. To this end, we model the heteroscedastic aleatoric uncertainty of
each path by the product of likelihoods from Normal distributions, each captur-
ing variance of pair of frames. (The path distance is the sum of base distances
between features of pairs of frames of the path.) The Maximum Likelihood Esti-
mation (MLE) applied to a path yields two terms: (i) a sum of Euclidean distances
weighted by the variance inverse, and (ii) a sum of log-variance regularization
terms. Thus, our uncertainty-DTW is the smallest weighted path distance among
all paths, and the regularization term (penalty for the high uncertainty) is the ag-
gregate of log-variances along the path. The distance and the regularization term
can be used in various objectives. We showcase forecasting the evolution of time
series, estimating the Fréchet mean of time series, and supervised/unsupervised
few-shot action recognition of the articulated human 3D body joints.
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1 Introduction

Dynamic Time Warping (DTW) [6] is a method popular in forecasting the evolution
of time series, estimating the Fréchet mean of time series, or classifying generally un-
derstood actions. The key property of DTW is its sequence matching transportation
plan that allows any two sequences that are being matched to progress at different
‘speeds’ not only in the global sense but locally in the temporal sense. As DTW is
non-differentiable, a differentiable ‘soft’ variant of DTW, soft-DTW [7], uses a soft-
minimum function which enables backpropagation.

The role of soft-DTW is to evaluate the (relaxed) DTW distance between a pair of
sequences ¥ = [ty ..., ¢, | e RY*T W' =[op/, ..., 00" ] €R*" of lengths 7 and 7,
respectively. Under its transportation plan A, ;+, each path IT € A, .+ is evaluated to
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Fig. 1: Supervised few-shot action recognition of the articulated human 3D body joints
with the uncertainty-DTW (uDTW). Frames from a query and support sequences are
split into short-term temporal blocks X, ..., X, and X/, ..., X!, of length M given
stride S. We pass all skeleton coordinates via Encoding Network to obtain feature ten-
sors ¥ and ¥’, which are directed to the Supervised Comparator with uDTW. For each
query-support pair (¥,,, &, ), uDTW computes the base-distance matrix D,, reweighted
by uncertainty X to compare 7x7’ blocks, and SigmaNet generates underlying block-
wise uncertainty parameters 3/,,. uDTW finds the warping path with the smallest dis-
tance, and returns its {2,, penalty (uncertainty aggregated along the path).

ascertain the path distance, and the smallest distance is ‘selected’ by the soft minimum:
Ay (¥, ) = SoftMin, ([(I, D, ¥ )|ges ). (M

where SoftMin,, (o) = —vlog ), exp(—c; /) is the soft minimum, v > 0 controls its
relaxation (hard vs. soft path selection), and D € R:_XT/E [d2 . (Ym, Y] (m,n)€Z, xT,,

base
contains pair-wise distances between all possible pairings of frame-wise feature repre-
sentations of sequences ¥ and ¥’, and d2,.. (-, -) may be the squared Euclidean distance.
However, the path distance (IT, D(%,W¥')) of path IT ignores the observation un-
certainty of frame-wise feature representations by simply relying on the Euclidean dis-
tances stored in D. Thus, we resort to the notion of the so-called aleatoric uncertainty

known from a non-exhaustive list of works about uncertainty [28, 18, 15, 14, 17].

Specifically, to capture the aleatoric uncertainty of the Euclidean distance (or re-
gression, efc.), one should tune the observation noise parameter of sequences. Instead
of the homoscedastic model (constant observation noise), we opt for the so-called het-
eroscedastic aleatoric uncertainty model (the observation noise may vary with each
frame/sequence). To this end, we model each path distance by the product of likelihoods
of Normal distributions (we also investigate other distributions in Appendix Sec. F).

p
Our (soft) uncertainty-DTW takes the following generalized form:

diprw (D, X7) =SOftMin'v( (1T, D®2T>] IIcA, )
w 2
() =SoftMinSel, (w, [(IT,108.3)] j7e . ) : 3)

where D=D(¥, W), X=X (¥, ¥') and X' =inv(X),
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where ©® is the Hadamard product, X7 (¥, ¥’) is the element-wise inverse of matrix
X eRTT = [0%(Pm, ¥, ) (m.n)ez, xz., Which contains pair-wise variances between
all possible pairings of frame-wise feature representations from sequences ¥ and ¥’.

; — __exp(—(@ita) /) : :
SoftMin, (&) =", a4 S exb(— (e, 12)/7) with p, (the mean over coefficients of )

subtracted from each coefficient «; to attain stability of the softmax (into which we

feed (v — 1o )). Moreover, SoftMinSel, (a, 8) = >, f; Zengp_((f(i;’f j‘ﬂ)/ ;’/)7) is a soft-
J J o

selector returning (5;+«: ¢* =arg min; «; ) if v approaches zero.

Eq. (2) yields the uncertainty-weighted time warping distance d2ppw (D, XT) be-
tween sequences ¥ and ¥’ because D and X are both functions of (¥, ¥’).

Eq. (3) provides the regularization penalty 2(X) for sequences ¥ and ¥’ (as X' is
a function of (¥, ¥’)) which is the aggregation of log-variances along the path with the
smallest distance, i.e., path matrix ((IT;» € {0,1}7*7): i* = arg min, wy,) if y=0, and
vector w contains path-aggregated distances for all possible paths of the plan A, ;.

Contributions. The celebrated DTW warps the matching path between a pair of se-
quences to recover the best matching distance under varying temporal within-class dy-
namics of each sequence. The recovered path, and the distance corresponding to that
path, may be suboptimal if frame-wise (or block-wise) features contain noise (frames
that are outliers, contain occlusions or large within-class object variations, efc.)

To this end, we propose several contributions:

i. We introduce the uncertainty-DTW, dubbed as uDTW, whose role is to take into
account the uncertainty of in frame-wise (or block-wise) features by selecting the
path which maximizes the Maximum Likelihood Estimation (MLE). The parame-
ters (such as variance) of a distribution (i.e., the Normal distribution) are thus used
within MLE (and uDTW) to model the uncertainty.

ii. As pairs of sequences are often of different lengths, optimizing the free-form vari-
able of variance is impossible. To that end, we equip each of our pipelines with
SigmaNet, whose role is to take frames (or blocks) of sequences, and generate the
variance end-to-end (the variance is parametrized by SigmaNet).

iii. We provide several pipelines that utilize uDTW for (1) forecasting the evolution of
time series, (2) estimating the Fréchet mean of time series, (3) supervised few-shot
action recognition, and (4) unsupervised few-shot action recognition.

Notations. 7. is the index set {1, 2, ..., 7}. Concatenation of «; into a vector  is de-
noted by [;];c7,. Concatenation of c;; into matrix A is denoted by [a;](; j)ez, xz, -
Dot-product between two matrices equals the dot-product of vectorized IT and D, that
is (IT, D) = (vec(II),vec(D)). Mathcal symbols are sets, e.g., A is a transportation
plan, capitalized bold symbols are matrices, e.g., D is the distance matrix, lowercase
bold symbols are vectors, e.g., w contains weighted distances. Regular fonts are scalars.

1.1 Similarity learning with uDTW

In further chapters, based on the distance in Eq. (2) and the regularization term in Eq.
(3), we define specific loss functions for several problems such as forecasting the evo-
lution of time series, clustering time series or even matching sequence pairs in few-shot
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(@) SDTW,—g.01 (b)sDTW,—0.1 (c)uDTW,—p.01 (d)uDTW,—0.1 (e) uDTW uncert.

Fig. 2: Plots (a)-(d) show paths of sDTW and uDTW (in white) for a pair of sequences.
We power-normalized pixels of plots (by the power of 0.1) to see also darker paths
better. With higher ~ that controls softness, in (b) & (d) more paths become ‘active’
(fuzzy effect). In (c), uDTW has two possible routes vs. SDTW (a) due to uncertainty
modeling. In (e), we visualise uncertainty 3. We binarize plot (c) and multiply it by
the 3 to display uncertainty values on the path (white pixels = high uncertainty). The
middle of the main path is deemed uncertain, which explains why an additional path
merges in that region with the main path. See also the histogram of values of 3.

action recognition. Below is an example of a generic similarity learning loss:

arg min E 14 (dﬁDTW(D(W,L,W;l), >, w)), on) + BR(X (P, 9})), 4
P n
or

arg IHiIlZ 0 (2w (D (¥, W), B7), 6,) + BR(Z), 3)

P.X>0

where ¥,, = f(X,,; P) and ¥,, = f(X! ; P) are obtained from some backbone encoder

f(+;P) with parameters P and (X,,, X! ) € X is a sequence pair to compare with the

similarity label 6,, € {0, 1} (where §,, =0 if y,, = y/, and §,, = 1 otherwise), (yn,y,,)
is a pair of class labels for (¥,,, ¥,,), and 3 > 0 controls the penalty for high matching
uncertainty. Figure 2 illustrates the impact of uncertainty on uDTW.

e “
Note that minimizing Eq. (5) w.r.t. (P, X') assumes that X € Rl”l is a free
variable to minimize over (derivation in Section 1.2). However, as sequence
pairs vary in length, i.e., 7 # 7/, optimizing one global X' is impossible (its
size changes). Thus, for problems we tackle, we minimize loss functions with
the distance/penalty in Eq. (4) and (5) where X is parametrized by (¥&,,, &,,):

Airwe (O, W) =diry (D(P,¥), XH(@, &), (6)
0@, 0= (S0, T)). %)

To that end, we devise a small MLP unit o (-; P, ) or o(+, -; P, ) and obtain:

=05 [(0'2 (tm; Ps) + 02("/’;3 PU))](m,n)EI,. xZT./ 3
or
5 = [0 (W, Y3 Po )l (mom)e, x T, 9)

where Eq. (8) uses additive variance terms generated for individual frames
., and 1P/, whereas (9) is a jointly generated variance for (¢, 1,).
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1.2 Derivation of uDTW

We proceed by modeling an arbitrary path IT; from the transportation plan of A, , as
the following Maximum Likelihood Estimation (MLE) problem:

arg max H p(me—d’%HaU?nn)v (10)

{omn}m.nyem, (m,n)ell;

where p may be some arbitrary distribution, o are distribution parameters, and || - || is an
arbitrary norm. For the Normal distribution A" which relies on the squared Euclidean
distance || - ||3, we have:

arg max H N @m; ¥, 02,) (11)

{omn}m,nyem; (m,n)ell;

1 i — /112
= argmax log H ———— exp (_ M) (12)
{omn}(m.nyem, (m,n)cI; (27‘(‘) T od Omn
d ! |2
= argmax Z ——log(2m) — d'log(o) — ||¢27¢n”2 (13)
{omn}(m.nyem; (m.m)e T, 2 Orn
ol |12
= argmin Z d'log(o) + 7”1%1 5 d}nllz, 14)
{(Tnln}('rn,n)eﬂi (m,n)eI; Omn

where d’ is the length of feature vectors v. Having recovered uncertainty parameters
{@mn}(mn)em,» we obtain a combination of penalty terms and reweighted squared
Euclidean distances:
’l/J _ 1;[]/ 2
B, +di, = Y Blog(omn) + HT’:ﬂi"”?

(m,n)ell; mn

s)

where 8> 0 (generally /3 # d’) adjusts the penalty for large uncertainty. Separating the
uncertainty penalty log(o,,,,) from the uncertainty-weighted distance (both aggregated
along path IT;) yields:

{d%;(IIi,D(W,!P’)@E*) (16)

Qni = <Hia 1Og2> s

T _ M
where D € R, :[ o2 ](m,n)eLxL/

Derivations for other distributions, i.e., Laplace or Cauchy, follow the same reasoning.

' [42
and X € R:_XT = [a'nm](m,n)EITXIT/'

2 Related Work

Different flavors of Dynamic Time Warping. DTW [6], which seeks a minimum cost
alignment between time series is computed by dynamic programming in quadratic time,
is not differentiable and is known to get trapped in bad local minima. In contrast, soft-
DTW (sDTW) [7] addresses the above issues by replacing the minimum over align-
ments with a soft minimum, which has the effect of inducing a ‘likelihood’ field over all
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possible alignments. However, sDTW has been successfully applied in many computer
vision tasks including audio/music score alignment [31], action recognition [39, 4], and
end-to-end differentiable text-to-speech synthesis [10]. Despite its successes, SDTW
has some limitations: (i) it can be negative when used as a loss (ii) it may still get
trapped in bad local minima. Thus, soft-DTW divergences (SDTW div.) [3], inspired by
sDTW, attempts to overcome such issues.

Other approaches inspired by DTW have been used to improve the inference or
adapt to modified or additional constraints, i.e., OPT [38] and OWDA [40] treat the
alignment as the optimal transport problem with temporal regularization. TAP [39] di-
rectly predicts the alignment through a lightweight CNN, thus is does not follow a
principled transportation plan, and is not guaranteed to find a minimum cost path.

Our uDTW differs from these methods in that the transportation plan is executed
under the uncertainty estimation, thus various feature-level noises and outliers are less
likely to lead to the selection of a sub-optimal cost path.

Alignment-based time series problems. Distance between sequences plays an im-
portant role in time series retrieval [40], forecasting [7, 3], classification [7, 3, 9, 49],
clustering [12, 35], etc. Various temporal nuisance noises such as initial states, different
sampling rates, local distortions, and execution speeds make the measurement of dis-
tance between sequences difficult. To tackle these issues, typical feature-based methods
use RNNs to encode sequences and measure the distance between corresponding fea-
tures [34]. Other existing methods [43, 45, 20] either encode each sequence into features
that are invariant to temporal variations [1, 26] or adopt alignment for temporal corre-
spondence calibration [38]. However, none of these methods is modeling the aleatoric
uncertainty. As we model it along the time warping path, the observation noise may
vary with each frame or block.

Few-shot action recognition. Most existing few-shot action recognition methods [44,
47, 46] follow the metric learning paradigm. Signal Level Deep Metric Learning [30]
and Skeleton-DML [29] one-shot FSL approaches encode signals into images, extract
features using a deep residual CNN and apply multi-similarity miner losses. TAEN [2]
and FAN [41] encode actions into representations and apply vector-wise metrics.

Most methods identify the importance of temporal alignment for handling the non-
linear temporal variations, and various alignment-based models are proposed to com-
pare the sequence pairs, e.g., permutation-invariant spatial-temporal attention reweighted
distance in ARN [50], a variant of DTW used in OTAM [4], temporal attentive rela-
tion network [32], a two-stage temporal alignment network (TA2N) [22], a temporal
CrossTransformer [33], a learnable sequence matching distance called TAP [39].

In all cases, temporal alignment is a well-recognized tool, however lacking the un-
certainty modeling, which impacts the quality of alignment. Such a gap in the literature
inspires our work on uncertainty-DTW.

3 Pipeline Formulations

Below we provide our several pipeline formulations for which uDTW is used as an
indispensable component embedded with the goal of measuring the distance for warped
paths under uncertainty.
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Fig. 3: In (a) is the unsupervised comparator for unsupervised few-shot action recogni-
tion. The unsupervised head is wired with the Encoding Network from Figure 1, and
trained from scratch without labels. In (b) is the pipeline for forecasting the evolution
of time series (a.k.a. multistep-ahead prediction).

3.1 Few-shot Action Recognition

For both supervised and unsupervised few-shot pipelines, we employ the Encoder Net-
work (EN) and the Supervised Comparator (similarity learning) as in Figure 1, or Un-
upervised Comparator (based on dictionary learning) as in Figure 3a.

Encoding Network (EN). Our EN contains a simple 3-layer MLP unit (FC, ReLU,
FC, ReL.U, Dropout, FC), GNN, with transformer [11] and FC. The MLP unit takes M
neighboring frames, each with J skeleton body joints given by Cartesian coordinates
(7,y, z), forming one temporal block'. In total, depending on stride .S, we obtain some
7 temporal blocks (each block captures the short temporal dependency), whereas the
long temporal dependency will be modeled by uDTW. Each temporal block is encoded
by the MLP into a d x J dimensional feature map. Subsequently, query feature maps
of size 7 and support feature maps of size 7’ are forwarded to a simple linear GNN
model, and transformer, and an FC layer, which returns ¥ € R *7 query feature maps
and &' € RY > support feature maps. Such encoded feature maps are passed to the
Supervised Comparator with uDTW.

Specifically, let support maps ¥’ =[f(X{;P), ..., f(XL,;P)] and query maps ¥ =
[f(X1;P), ..., f(Xr;P)] (where &, %’ € RY*7), for query and support frames per
block X, X' € R3*/ XM ‘We define f(X; P)=FC(Transf(S’GC(MLP(X; Parrp); Ps2ce);
Prranss); Prc), where P=[Pryrp, Ps2co, Prranst, Pro, Psw] is the set of param-
eters of EN, where Pgy are parameters of SigmaNet, and S2GCis a Simple Spectral
Graph Convolution (S?GC) [51] whose details are in Sec. H.3 of the Appendix.

Supervised Few-shot Action Recognition. For the N-way Z-shot problem, we have
one query feature map and N x Z support feature maps per episode. We form a mini-
batch containing B episodes. We have query feature maps {¥; },c7,, and support fea-
ture maps {lIlgnZ} beTp nely ze1, - Moreover, ¥, and !1’1;,1,; share the same class (drawn
from N classes per episode) forming the subset C* = {cy, ... cN} CZc =C. Tobe
precise, labels y(¥,) =y(¥; ; ), Vb€ Lp, z€ Ly whiley(¥,) #y(¥; ,, .), Vb E€Ip,ne
In\{1}, z€Z4. Thus the s1m11ar1ty label 6; = 0, whereas 0,21 = 1. Note that the se-
lection of C'* per episode is random. For the N-way Z-shot protocol, the Supervised

! We use temporal blocks as they were shown more robust than frame-wise FSAR [50] models.
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Comparator is minimized w.r.t. P (¥, and ¥’ depend on P) as:

argmm Z Z Z orwe (T, ¥y ) — 5n)2+ B(y, Wy, ). (1T)

beZp n€ln z€Ly

Unsupervised Few-shot Action Recognition. Below we propose a very simple unsu-
pervised variant with so-called Unsupervised Comparator. The key idea is that with
uDTW, invariant to local temporal speed changes can be used to learn a dictionary
which, with some dictionary coding method should outperform at reconstructing the se-
quences. This means we can learn an unsupervised comparator by projecting sequences
onto the dictionary space. To this end, let the protocol remain as for the supervised few-
shot learning with the exception that class labels are not used during training, and only
support images in testing are labeled for sake of evaluation the accuracy by deciding
which support representation each query is the closest to in the nearest neighbor sense.

Firstly, in each training episode, we combine the query sequences ¥; with the sup-
port sequences EPZ;MZ into episode sequences denoted as !Ilg ,, Where b€ Tp enumerates
over B episodes, and n € Z( .z 1). For the feature coding, we use Locality-constrained
Soft Assignment (LCSA) [25, 19, 21] and a simple dictionary update based on the least
squares computation.

For each episode b € 7, we iterate over the following three steps:

i. The LCSA coding step which expresses each 5[’5 n S Qo € Rf that assign 5[’5 n
into a dictionary with K sequences M, ..., Mg € R <7’ (dictionary anchors):

exp (*%i?mw' ('I/g n’ Mk))

1 M(g K/ixp( 57 Borwe (lpb ,L:Mz))
emerd

0 otherwise, (18)

if M e M (&}

b,n

K'),
Vins Okbn=

where 0 < K’ < K is a subset size for K’ nearest anchors of !'Ibin retrieved by
operation M( pns K o) (based on uDTW) from My, ..., M, 7’ is set to the mean
of 7 (over trammg set), and 7' =0.7 is a so-called smoothing factor;

ii. The dictionary update step updates M, ..., M given oy, ,, from Eq. (18):

for i=1,...,dict_iter:
NZ+1 K
Vi My i= Mi=dou Y Vg, e (2,0 v Mi),  (19)
n=1 =

where dict_iterissetto 10 and A\pp, =0.001;
iii. The main loss for the Feature Encoder update step is given as (Agny =0.001):

NZ+1
P :=P—XeN Z Vediprwe (!I'bn’M/) +0892 ( bn’M,) 20)
n=1 K
where M/:Zal,b,an-
1=1
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During testing, we use the learnt dictionary, pass new support and query sequences
via Eq. (18) and obtain o codes. Subsequently, we compare the LCSA code of the query
sequence with LCSA codes of support sequences via the histogram intersection kernel.
The closest match in the support set determines the test label of the query sequence.

3.2 Time Series Forecasting and Classification

One of key applications of DTW and sDTW is learning with time series, including
forecasting the evolution of time series as in Figure 3b and time series classification.

Forecasting the Evolution of Time Series. Let x € R? and x’ € R™~ be the training
and testing parts of one time series corresponding to timesteps 1,...,¢ and t+1, ..., 7,
respectively. The goal is to learn encoder f(x;P) € R™~! which will be able to take x as
input, learn to translate it to x’. Figure 3b show the full pipeline. We took the Encoding
Network from the original soft-DTW pipeline [7]. Our training objective is:

argmin Y diprwe ($n, X))+ B2 (P, X)), @1)
neln
where ¥ = f(x;P) and N is the number of training time series, P = [Parp, Psn]
is the set of parameters of EN and SigmaNet. In order to obtain X, vectors 1 and x’
are passed via SigmaNet. After training, at the test time, for a previously unseen testing
sample x, f(-) has to predict the remaining part of the time series given by x’.

Time Series Classification. Below we follow the setting for this classical task accord-
ing to the original soft-DTW paper [7], and define the nearest centroid classifier. We
estimate the Fréchet mean of training time series of each class separately. We do not
use any Encoding Network but the raw features. Let x € R” be training samples and
pne R™ be class prototypes (7' is set to average of T across all classes). We have:

Vc> arg min Z dEDTW° (Xn7 Nc) + B'QO (Xn> Nc)> (22)
n€In,

where N, is the number of samples for class ¢ € Z and P =[Pgy, te). During testing,
we apply argmin .7, d2yrwe (X, pe) + 3524 (x, pc) for x to find its nearest neighbor
and label it. The variances of x are recovered through SigmaNet while variances of
. were obtained during training (adding both yields X of testing sample). As in soft-
DTW paper [7], we use uDTW to directly find the nearest neighbor of x across training
samples to label x (for uncertainty, we use SigmaNet from the nearest centroid task).

4 Experiments

Below we apply uDTW in several scenarios such as (i) forecasting the evolution of time
series, (ii) clustering/classifying time series, (iii) supervised few-shot action recogni-
tion, and (iv) unsupervised few-shot action recognition.
Datasets. The following datasets are used in our experiments:

i. UCR archive [8] is a dataset for time series classification archive. This dataset con-

tains a wide variety of fields (astronomy, geology, medical imaging) and lengths,
and can be used for time series classification/clustering and forecasting tasks.
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(a) B (where A=1) (b) A (where 5=10)

Fig. 4: Interpolation between two time series (grey and black dashed lines) on the Gun
Point dataset. We compute the barycenter by solving arg min Zi,:l d2orw (D, ET) +
0oy

BR(X) + M2 (X) where D= (x,1" —1p")? and ¥ =11"+10,] where x,, is the
given n-th time series. 3 > 0 controls the penalty for high matching uncertainty, 2’ is
defined as in Eq. (3) but element-wise log X is replaced by element-wise (X —1)2 so
that A > 0 favours uncertainty to remain close to one. 5 and A control the uncertainty
estimation and yield different barycenters than the Euclidean (green color) and sSDTW
(blue color) distances. As {2 and {2’ act similar, we only use {2 in our experiments.

ii. NTU RGB+D (NTU-60) [36] contains 56,880 video sequences and over 4 million
frames. NTU-60 has variable sequence lengths and high intra-class variations.

iii. NTU RGB+D 120 (NTU-120) [24], an extension of NTU-60, contains 120 action
classes (daily/health-related), and 114,480 RGB+D video samples captured with
106 distinct human subjects from 155 different camera viewpoints.

iv. Kinetics [16] is a large-scale collection of 650,000 video clips that cover 400/600/700
human action classes. It includes human-object interactions such as playing instru-
ments, as well as human-human interactions such as shaking hands and hugging.
We follow approach [48] and use the estimated joint locations in the pixel coor-
dinate system as the input to our pipeline. As OpenPose produces the 2D body
joint coordinates and Kinetics-400 does not offer multiview or depth data, we use
a network of Martinez et al. [27] pre-trained on Human3.6M [5], combined with
the 2D OpenPose output to estimate 3D coordinates from 2D coordinates. The 2D
OpenPose and the latter network give us (x, y) and z coordinates, respectively.

4.1 Fréchet Mean of Time Series

Below, we visually inspect the Fréchet mean for the Euclidean, sDTW and our uDTW
distance, respectively.

Experimental setup. We follow the protocol of soft-DTW paper [7]. For each dataset
in UCR, we choose a class at random, pick 10 time series from the selected class to com-
pute its barycenter. We use L-BFGS [23] to minimise the proposed uDTW barycenter
objective. We set the maximum number of iterations to 100.
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y=0.1 y=1.0 y=10.0

(b) Synthetic Control

Fig.5: Comparison of barycenter based on sDTW or uDTW on CBF and Synthetic
Control. We visualize uncertainty around the barycenters in red color for uDTW. Our
uDTW generates reasonable barycenters even when higher v values are used, e.g., v =
10.0. Higher ~ value leads to smooth barycenter but introducing higher uncertainty.

Qualitative results. We first perform averaging between two time series (Figure 4). We
notice that averaging under the uDTW yields substantially different results than those
obtained with the Euclidean and sDTW geometry.

Figure 5 shows the barycenters obtained using SDTW and our uDTW. We observe
that our uDTW yields more reasonable barycenters than SDTW even when large y are
used, e.g., for v=10 (right column of plots in Figure 5), the change points of red curve
look sharper. We also notice that both uDTW and sDTW with low smoothing parameter
v =0.1 can get stuck in some bad local minima, but our uDTW has fewer sharp peaks
compared with sDTW (barycenters of uDTW are improved by the uncertainty measure).
Moreover, higher v values smooth the barycenter but introducing higher uncertainty
(see uncertainty visualization around the barycenters by comparing, e.g., v = 0.1 vs.
v =10.0). With v =1, the barycenters of sSDTW and uDTW match well with the time
series. More visualizations can be found in Appendix Sec. D.

4.2 Classification of Time Series

In this section, we devise the nearest neighbor and nearest centroid classifiers [13] with
uDTW, as detailed in Section 3. For the K -nearest neighbor classifier, we used softmax
for the final decision. See Appendix Sec. H.4 for details.

Experimental setup. We use 50% of the data for training, 25% for validation and 25%
for testing. We report K = 1, 2 and 3 for the nearest neighbor classifier.
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Table 1: Classification accuracy (mean=+std) on UCR archive by the nearest neighbor
and the nearest centroid classifiers. In the column we indicate which distance was used
for computing the class prototypes. K is the number of nearest neighbors in this context.

Nearest neighbor Nearest centroid

Euclidean 71.2£17.5 72.3£18.1 73.0£16.7  61.3+20.1
DTW [6] 74.2+16.6 75.0£17.0 75.4£15.8  65.9+18.8
sDTW [7] 76.2+£16.6 77.2£15.9 78.0£16.5  70.5+17.6
sDTW div. [3] 78.6£16.2 79.5+16.7 80.1£16.5  70.9£17.8

uDTW 80.0+15.0 81.2+17.8 83.3+£16.2  72.2£16.0

Quantitative results. Table | shows a comparison of our uDTW versus Euclidean,
DTW, sDTW, and sDTW div. Unsurprisingly, the use of uDTW for barycenter compu-
tation improves the accuracy of the nearest centroid classifier, and it outperforms sSDTW
div. by ~ 2%. Moreover, uDTW boosts results for the nearest neighbor classifier given
K=1,2 and 3 by 1.4%, 1.7% and 3.2%, respectively, compared to sDTW div.

4.3 Forecasting the Evolution of Time Series

Experimental setup. We use the training and test sets pre-defined in the UCR archive.
For both training and test, we use the first 60% of timesteps of series as input and the
remaining 40% as output, ignoring the class information.

Qualitative results. The visualization of the predictions are given in Figure 6. Although
the predictions under the SDTW and uDTW losses sometimes agree with each other,
they can be visibly different. Predictions under uDTW can confidently predict the abrupt
and sharp changes. More visualizations can be found in Appendix Sec. E.

Quantitative results. We also provide quantitive results to validate the effectiveness of
uDTW. We use ECG5000 dataset from the UCR archive which is composed of 5000
electrocardiograms (ECG) (500 for training and 4500 for testing) of length 140. To
better evaluate the predictions, we use 2 different metrics (i) MSE for the predicted
errors of each time step (ii)) DTW, sDTW div. and uDTW for comparing the ‘shape’
of time series. We use such shape metrics for evaluation as the length of time series
generally varies, and the MSE metric may lead to biased results which ignore the shape
trend of time series. We then use the Student’s ¢-test (with significance level 0.05) to
highlight the best performance in each experiment (averaged over 100 runs). Table 2
shows that our uDTW achieves almost the best performance on both MSE and shape
evaluation metrics (lower score is better).

4.4 Few-shot Action Recognition

Below, we use uDTW as a distance in our objectives for few-shot action recognition
(AR) tasks. We implement supervised and unsupervised pipelines (which is also novel).
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Fig. 6: Given the first part of a time series, we train 3 multi-layer perception (MLP) to
predict the remaining part, we use the Euclidean, SDTW or uDTW distance per MLP.
We use ECG200 and ECG5000 in UCR archive, and display the prediction obtained
for the given test sample with either of these 3 distances and the ground truth (GT).
Oftentimes, we observe that uDTW helps predict the sudden changes well.

Table 2: Time series forecasting results evaluated with MSE, DTW, sDTW div. and
uDTW metrics on ECG5000, averaged over 100 runs (mean=std). Best method(s) are
highlighted in bold using Student’s ¢-test. Column-wise distances indicate the distance
used during training. Row-wise distances indicate the distance used to compare predic-
tion with the groundtruth at the test time (lower values are better).

MSE DTW sDTW div. uDTW
Euclidean 32.1£1.62 20.0£0.18 15.3+0.16 14.4+0.18
sDTW [7] 38.61+6.30 17.2+0.80 22.6£3.59 32.14£2.25
sDTW div. [3] 24.6£1.37 38.9+£5.33 20.0+£2.44 15.4+1.62
uDTW 23.0+1.22 16.7+0.08 16.8+1.62 8.27+0.79

Experimental setup. For NTU-120, we follow the standard one-shot protocols [24].
Base on this protocol, we create a similar one-shot protocol for NTU-60, with 50/10
action classes used for training/testing respectively (see Appendix Sec. C for details).
We also evaluate the model on both 2D and 3D Kinetics-skeleton. We split the whole
Kinetics-skeleton into 200 actions for training (the rest is used for testing). We choose
Matching Nets (MatchNets) and Prototypical Net (ProtoNet) as baselines as these two
models are very popular baselines, and we adapt these methods to skeleton-based action
recognition. We reshape and resize each video block into 224 x224 color image, and
pass this image into MatchNets and ProtoNet to learn the feature representation per
video block. We compare uDTW vs. Euclidean, sSDTW, sDTW div. and recent TAP.

Quantitative results. Table 3, 4 and 5 show that our uDTW performs better than sSDTW
and sDTW div. on both supervised and unsupervised few-shot action recognition. On
Kinetics-skeleton dataset, we gain 2.4% and 4.4% improvements on 3D skeletons for
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Table 3: Evaluations on NTU-60. Table 4: Evaluations on NTU-120.
#classes 10 20 30 40 50 #classes 20 40 60 80 100
Supervised Supervised

MatchNets [42] 46.1 48.6 53.3 56.3 58.8 MatchNets [42] 20.5 23.4 25.1 28.7 30.0
ProtoNet [37] 47.2 51.1 54.3 58.9 63.0 ProtoNet [37] 21.7 24.0 25.9 29.2 32.1
TAP [39] 54.2 57.3 61.7 64.7 68.3 TAP [39] 31.237.740.9 44.5 47.3

Euclidean 38.542.245.1 48.3 50.9 Euclidean 18.7 21.3 24.9 27.5 30.0
sDTW [7] 53.7 56.2 60.0 63.9 67.8 sDTW [7] 30.3 37.2 39.7 44.0 46.8
sDTW div. [3] 54.0 57.3 62.1 65.7 69.0 sDTW div. [3] 30.8 38.1 40.0 44.7 47.3

uDTW 56.9 61.2 64.8 68.3 72.4 uDTW 32.239.0 41.2 45.3 49.0
Unsupervised Unsupervised
Euclidean 20.9 23.7 26.3 30.0 33.1 Euclidean 13.5 16.3 20.0 24.9 26.2

sDTW [7] 35.6 45.2 53.3 56.7 61.7 sDTW [7] 20.1 25.3 32.0 36.9 40.9
sDTW div. [3] 36.0 46.1 54.0 57.2 62.0 sDTW div. [3] 20.8 26.0 33.2 37.5 42.3
uDTW 37.0 48.3 55.3 58.0 63.3 uDTW 22.7 28.3 35.9 39.4 44.0

Table 5: Evaluations on 2D and 3D Kinetics-skeleton.

Supervised Unsupervised
2D 3D 2D 3D

Euclidean 21.2 23.1 127 133
TAP [39] 329 360 - -

sDTW [7] 347 39.6 233 283
sDTW div. [3] 35.0 40.1 24.0 28.9
uDTW 355 420 259 327

supervised and unsupervised settings. On supervised setting, we outperform TAP by ~
4% and 2% on NTU-60 and NTU-120 respectively. Moreover, we outperform sDTW by
~ 2% and 3% on NTU-60 and NTU-120 for the unsupervised setting. More evaluations
on few-shot action recognition are in Appendix Sec. F.

5 Conclusions

We have introduced the uncertainty-DTW which handles the uncertainty estimation
of frame- and/or block-wise features to improve the path warping of the celebrated
soft-DTW. Our uDTW produces the uncertainty-weighted distance along the path and
returns the regularization penalty aggregated along the path, which follows sound prin-
ciples of classifier regularization. We have provided several pipelines for time series
forecasting, and supervised and unsupervised action recognition, which use uDTW as a
distance. Our simple uDTW achieves better sequence alignment in several benchmarks.
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