
SSBNet: Improving Visual Recognition
Efficiency by Adaptive Sampling

Ho Man Kwan and Shenghui Song

The Hong Kong University of Science and Technology
hmkwan@connect.ust.hk eeshsong@ust.hk

Abstract. Downsampling is widely adopted to achieve a good trade-off
between accuracy and latency for visual recognition. Unfortunately, the
commonly used pooling layers are not learned, and thus cannot preserve
important information. As another dimension reduction method, adap-
tive sampling weights and processes regions that are relevant to the task,
and is thus able to better preserve useful information. However, the use
of adaptive sampling has been limited to certain layers. In this paper,
we show that using adaptive sampling in the building blocks of a deep
neural network can improve its efficiency. In particular, we propose SS-
BNet which is built by inserting sampling layers repeatedly into existing
networks like ResNet. Experiment results show that the proposed SS-
BNet can achieve competitive image classification and object detection
performance on ImageNet and COCO datasets. For example, the SSB-
ResNet-RS-200 achieved 82.6% accuracy on ImageNet dataset, which is
0.6% higher than the baseline ResNet-RS-152 with a similar complexity.
Visualization shows the advantage of SSBNet in allowing different layers
to focus on different positions, and ablation studies further validate the
advantage of adaptive sampling over uniform methods.

Keywords: Convolutional neural networks, Image recognition, Network
architecture, Adaptive sampling, Attention mechanism

1 Introduction

Deep learning models such as convolutional neural networks (CNNs) [7,13,22,24]
and Transformers [5] have made unprecedented successes in computer vision.
However, achieving efficient inference with stringent latency constraints in real-
world applications is very challenging. To obtain a good trade-off between ac-
curacy and latency, downsampling is normally used to reduce the number of
operations. Most existing CNNs [7, 13, 22, 24] perform downsampling between
stages, coupled with the increase in channel dimension to balance the represen-
tation power and computational cost. Typical downsampling operations include
strided average/max pooling and convolutions [7, 13, 14, 18, 22, 24], which are
uniformly applied in the spatial dimension.

Besides uniform sampling, there are also non-uniform or adaptive approaches
[4,11,12,20,26,32], with which different transformations including zooming, shift-
ing, and deforming can be utilized to selectively focus on the important regions

https://orcid.org/0000-0002-8283-4513
https://orcid.org/0000-0001-6316-8415


2 H.M. Kwan, S.H. Song

(a) (b)

Fig. 1: Comparison between the SSB-ResNet-RS and ResNet-RS [2], SSB-
BoTNet-S1 and BoTNet-S1 [23] on ImageNet [21] dataset. The proposed SSB-
ResNet-RS/SSB-BoTNet-S1 outperforms ResNet-RS and BoTNet-S1 in terms
of accuracy to FLOPS ratio. Results of ResNet-RS are from the original paper,
where the results of BoTNet-S1 are from reimplementation. See section 4.1.

during downsampling. However, the use of adaptive sampling has been limited to
certain layers and its application in backbone networks has not been well inves-
tigated. Backbone networks are usually pre-trained in some large scale datasets,
which are agnostic to the end task like object detection [31]. The challenge for
applying adaptive sampling in backbone networks lies in the possible informa-
tion loss. In particular, later layers cannot access pixels that were skipped by
earlier layers, which is quite possible due to the stacking of sampling layers.

Another approach to improve efficiency is to reduce the number of channels.
In ResNet [7], the bottleneck layers reduce the channel dimension by using a 1×1
convolution and then perform a costly 3× 3 convolution on the low dimensional
features to reduce computational complexity. After that, another 1× 1 convolu-
tion is utilized to restore the dimension and match the shortcut connection. It
is noteworthy that residual networks can preserve informative features after the
bottleneck operations because the shortcut connection allows signal to bypass
the bottleneck.

The bottleneck structure with shortcut connection can be utilized to enable
adaptive sampling on backbone networks. In this paper, we propose Saliency
Sampling Bottleneck Network (SSBNet), which applies saliency sampler [20,32]
in a bottleneck structure to reduce the spatial dimension before costly operations.
An inverse operation is then used to restore the feature maps to match the spatial
structure of the input that passes through the shortcut connection. Like other
bottleneck structures, computationally expensive operations like convolution are
applied in a very compact space to save computations. There are two major
advantages for applying adaptive sampling over the bottleneck structure. First,
by zooming into important regions, SSBNet can better extract features than
uniform downsampling. More importantly, with the shortcut connection, each
intermediate layer with adaptive sampling can focus on different regions of the
feature maps in a very deep network, without loss of information.



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 3

In the experiments, we built SSBNets by inserting lightweight convolutional
layers and samplers into existing networks to estimate the saliency map and per-
form down/upsampling. The results in Figure 1 show that SSBNet can achieve
better accuracy/FLOPS ratio than ResNet-RS [2] and BoTNet-S1 [23]. For ex-
ample, with only 4.4% more FLOPS, the SSB-ResNet-RS-200 with input size
of 256 × 256 achieved 82.6% accuracy on ImageNet dataset [21], which is 0.6%
higher than the baseline ResNet-RS-152 with input size of 192× 192. The SSB-
BoTNet-S1-77 with input size of 320 × 320 obtained 82.5% accuracy, which is
0.4% higher than BoTNet-S1-110 with input size of 224× 224, and required 6%
less computation. The contributions of this paper include:

– We investigate the use of adaptive sampling in the building blocks of a deep
neural network. By applying adaptive sampling in the bottleneck structure,
we propose SSBNet which can be utilized as a backbone network and trained
in an end-to-end manner. Note that existing networks only utilized adaptive
sampling in specific tasks, where a pre-trained backbone is required for fea-
ture extraction.

– We show that the proposed SSBNet can achieve better image classification
and object detection performance than the baseline models, and visualize its
capability in adaptively sampling different locations at different layers.

– Experiment results and ablation studies validate the advantage of adaptive
sampling over uniform sampling. The result in this paper may lead to a new
direction of research on network architecture.

2 Related Works

In the following, we explain the connection between the proposed SSBNet and
existing works, and highlight the innovation.

Attention Mechanisms. Different types of attention mechanisms have been
explored in computer vision tasks. One category of work utilizes attention mech-
anism to predict a softmask that scales the feature maps. Squeeze-and-Excitation
[9] utilizes global context to refine the channel dimension. CBAM [29] uses at-
tention mask to emphasize the important spatial positions.

Besides improving feature maps, another direction of research applies atten-
tion as a stand-alone layer that can extract features and act as a replacement for
the convolutional layer. Stand-alone self-attention [19] replaces the spatial con-
volutional layer to efficiently increase the receptive field. Vision Transformer [5]
adapts the Transformer [28] structure and takes non-overlapped patches as in-
dividual tokens, instead of a map representation that is normally used in vision
tasks.

The proposed SSBNet follows the first approach and inserts attention layers
to improve efficiency. However, instead of utilizing attention to scale features,
SSBNet performs weighted downsampling by the attention map to save compu-
tations.



4 H.M. Kwan, S.H. Song

Adaptive Sampling. There are some works [4, 11, 12, 20, 26, 32] that perform
adaptive geometric sampling on the images or feature maps rather than scal-
ing the features, as is done by attention mechanisms. Spatial transformer net-
work [11] uses localization network to predict transformation parameters and
performs geometric transformation on the image or feature maps. Saliency sam-
pler [20] applies saliency map estimator to compute the attention map and
distorts the input based on this map. Trilinear attention sampling network
(TASN) [32] applies trilinear attention to compute the attention map and uses
the map to perform sampling in a less distorted way. The sampling mechanism
of the proposed SSBNet is inspired by TASN, but with two major differences: 1)
SSBNet can be used as a backbone and trained end-to-end, but TASN requires
a pre-trained backbone; 2) SSBNet performs different sampling at different lay-
ers to extract useful features, where TASN only performs sampling once on the
image input.

There are only very few works that apply adaptive sampling in the backbone
network, which is the core feature extractor for computer vision tasks. One of the
exceptions is the Deformable convolutional neural network (DCNN) [4]. DCNN
computes the sampling offset to deform the sampling grid of convolutions and
RoI poolings, which provides significant performance improvement for object
detection and semantic segmentation tasks. Different from DCNN which deforms
the convolutions and RoI poolings, SSBNet samples the feature map into a lower
dimension to improve efficiency.

In summary, the proposed SSBNet utilizes adaptive sampling in most of its
building blocks and allows different sampling at different layers, where most
existing works only perform adaptive sampling several times. SSBNet can be
used as a backbone network for different tasks like classification and object
detection.

Dimension Reduction. Dimension reduction is commonly used in different
architectures. Reducing spatial dimensions can save a large amount of compu-
tation and increase the effective receptive field of the convolution operations.
For example, many CNNs reduce the spatial dimension when they increase the
number of channels [7, 13,22,24].

There are networks that temporarily reduce the channel dimension. Inception
[24] applies 1 × 1 convolutions to reduce the channel dimension and lower the
cost of the following 3 × 3 and 5 × 5 convolutions. ResNet [7] has a bottleneck
layer design, which reduces the number of channels before the 3× 3 convolution
and restores the channel dimension afterwards.

There are also applications of the bottleneck structure in the spatial dimen-
sion. Spatial bottleneck [18] replaces spatial convolution by a pair of strided
convolution and deconvolution to reduce the sampling rate and achieve speed-
up. HBONet [14] utilizes depthwise convolution and bilinear sampling to perform
down/upsampling, where the costly operations are applied in between.

The proposed SSBNet has a similar structure as HBONet, but utilizes adap-
tive sampling instead of strided convolution or pooling for downsampling. Fur-



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 5

Fig. 2: Left: The structure of SSB layer. Middle: The instantiation of SSB
layer built from the bottleneck layer of ResNet [7]. Right: SSB-ResNet, where
N1, N2, N3, N4 follow the configurations of ResNet [7].

thermore, the adaptive sampling can perform spatial transformation like zoom-
ing, which could better preserve useful information for feature extraction.

3 Methodology

In this section, we first introduce the SSBNet and then present the details of the
building block for SSBNet, i.e. the SSB layer.

3.1 Saliency Sampling Bottleneck Networks

Since the focus of this work is to apply adaptive sampling to improve network
efficiency, we modify existing networks to reduce the searching space. To build
SSBNet, we insert samplers to the building blocks of the original model such
as ResNet [7]. To this end, we only need to determine the sampling size and
the position to insert the sampler. In the experiments, we follow the standard
approach that shares configuration in a group of building blocks, i.e. same sam-
pling size in one group. Without native implementation of the sampler, some
earliest groups that have high spatial dimension will significantly slow down the
training. So we skip those earliest groups.

We also skip the first block of each group, i.e. the block that reduces the
spatial dimension and increases the number of channels, due to the fact that they
usually utilize shortcut connection with strided pooling or/and 1×1 convolution
for downsampling [2, 7, 8], or do not contain shortcut connection [25]. Thus,
adding samplers to the first block of each group could lead to loss of information.
For example, SSB-ResNet is shown in Figure 2 (right).



6 H.M. Kwan, S.H. Song

3.2 Saliency Sampling Bottleneck Layer

The SSB layer is the main building block of the SSBNet and is constructed by
wrapping a set of layers with the samplers. The SSB layer has a similar structure
as the bottleneck layer from ResNet [7], with two branches, i.e., the shortcut
branch and the residual branch. The function of the two branches are similar to
those in ResNet. Specifically, the shortcut branch passes the signal to the higher
level layer and the residual branch performs operations to extract features. The
difference is that the residual branch in the SSB layer adaptively samples features
in the spatial dimension, but the bottleneck layer of ResNet reduces the channel
dimension, and both of them perform the most costly operations in the reduced
space. Figure 2 (left) shows the structure of the SSB layer. Next, we introduce
the key operations of the SSB layer.

Saliency Map: Given the input feature map X ∈ RHin×Win×D, where Hin,
Win, D denote the height, the weight and the number of channels, respectively,
we first compute the saliency map by S = fs(X), where S has dimensions
of Hin × Win. There are many possible choices of fs. In this paper, we use a
1 × 1 convolutional layer with one filter, a batch normalization layer [10] and
the sigmoid activation, followed by a reshape operation which change the map
of Hin ×Win × 1 to a 2D matrix of Hin ×Win. The whole process has negligible
overhead in the number of operations and parameters. To stabilize the training,
we always initialize the scaling weight γ in the batch normalization layer to zero,
such that the network performs uniform sampling at the beginning.

Sampling Output Computation: For a target sampling size of Hr ×Wr,
we compute the sampling output Xr = g(X,S) with Xr ∈ RHr×Wr×D. Our
approach is close to TASN [32]. Specifically, we apply inverse transform to con-
vert the saliency map into the weights of sampling, where features having higher
scores in the saliency map will be sampled with a larger weight into the output
feature maps. Unlike TASN, our implementation does not involve bilinear sam-
pling [11]. Instead, we directly compute the sampling weights between the input
and output pixels.

To compute Xr with a saliency map S ∈ RHin×Win , we first obtain the
elements of the saliency vectors Sy ∈ RHin and Sx ∈ RWin as

Sy
j =

∑Win

w=1 Sj,w∑Hin

h=1

∑Win

w=1 Sh,w

∀1 ≤ j ≤ Hin (1)

and

Sx
i =

∑Hin

h=1 Sh,i∑Hin

h=1

∑Win

w=1 Sh,w

∀1 ≤ i ≤ Win. (2)

Note that both Sy and Sx are normalized.

We also compute uniform vectors, Uy ∈ RHr and Ux ∈ RWr , where

Uy
j =

1

Hr
∀1 ≤ j ≤ Hr (3)



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 7

Ux
i =

1

Wr
∀1 ≤ i ≤ Wr. (4)

Then, we calculate the cumulative sums CSy

, CSx

, CUy

and CUx

. For example,
in the y-axis, we first compute

CSy

j =

j−1∑
h=1

Sy
h ∀1 ≤ j ≤ Hin + 1 (5)

CUy

j =

j−1∑
h=1

Uy
h ∀1 ≤ j ≤ Hr + 1 (6)

and then the sampling weights can be determined as

Gy
i,j = max(min(CSy

j+1, C
Uy

i+1)−max(CSy

j , CUy

i ), 0)

∀1 ≤ j ≤ Hin, 1 ≤ i ≤ Hr.
(7)

The weight matrix in the x-axis, Gx, can be computed similarly. Weight matrices
Gy and Gx have dimensions of Hr ×Hin and Wr ×Win, respectively.

Finally, we can compute the sampling output Xr by

Xr
i,j,d =

Hin∑
h=1

Win∑
w=1

HrWrG
y
i,hG

x
j,wXh,w,d

∀1 ≤ i ≤ Hr, 1 ≤ j ≤ Wr, 1 ≤ d ≤ D.

(8)

We applied scaling with a factor of HrWr, such that the average value of the
output map is independent of the sampling size.

Feature Extraction: After computing the sampled feature maps Xr, we
can extract features by costly operations like convolutions with Y r = ft(X

r).
When building SSBNet from existing networks with shortcut connections [7], we
use the original residual branch as ft. Figure 2 (middle) shows the SSB layer
built from the (channel) bottleneck layer of ResNet.

Inverse Sampling: After the feature extraction stage, an inverse sampling
is applied to restore the spatial dimension. For that purpose, we apply the same
sampling method, except that the transposed weight matrices, i.e. (Gy)T and
(Gx)T , are utilized. Together with the shortcut connection and the activation
function σ, the final output of the SSB layer can be expressed as

Yi,j,d = σ(Xi,j,d +

Hr∑
h=1

Wr∑
w=1

HinWin(G
y)Ti,h(G

x)Tj,wY
r
h,w,d)

∀1 ≤ i ≤ Hin, 1 ≤ j ≤ Win, 1 ≤ d ≤ D.

(9)

Instead of using bilinear sampling [11], we compute the weights between the
input and output pixels, and directly use the weighted sum as the output value.



8 H.M. Kwan, S.H. Song

This approach can simplify the calculation, as it does not involve calculation of
the coordinates. Furthermore, bilinear sampling may skip some pixels due to the
possible non-uniform downsampling, but the proposed method takes all input
pixels into account.

Note that the sampling function can be simply implemented by two batch ma-
trix multiplications, which gives a complexity of O(HrHinWinD+HrWrWinD)
(when computed in y-axis first). The complexity is higher than bilinear sampling
that has a complexity of O(HrWrD). However, the weight matrices Gy and Gx

contain at most Hin + Hr and Win + Wr non-zero elements 1 , respectively.
If the sampling sizes scaled linearly with the input sizes, the complexity of the
sampling function can be reduced to O(HrWrD). Thus, an optimized implemen-
tation which considers the sparsity of the matrices could significantly reduce the
complexity and latency, and allow SSBNet to scale well with high dimension
input.

4 Experiments

In this section, we first train SSBNet and the baseline models for image classi-
fication tasks on the ImageNet dataset [21], and then fine-tune the models to
the object detection and instance segmentation tasks on the COCO dataset [16].
After that, we report the inference performance of SSBNet. All experiments were
conducted with TensorFlow 2.6 [1] and Model Garden [30], and ran on TPU v2-
8/v3-8 with bfloat16, except for Section 4.3. For ease of presentation, we denote
the configurations for the last L groups of SSBNets by (M1, ...,ML). Here, Ml

indicates that the sampling size of the last (L− l + 1)-th group is Ml ×Ml.

4.1 Image Classification

For image classification, we trained SSBNets and the baseline models on the
ImageNet [21] dataset, which contains 1.28M training and 50k validation sam-
ples. We built SSBNets based on ResNet-D [8], ResNet-RS [2], EfficientNet [25]
and BoTNet-S1 [23], and compare their performance with the original models.
Due to limited resources, we only trained some variants of ResNet-RS and found
that the results are close to the original work [2]. Thus, we will report other re-
sults directly from the original paper. For EfficientNet and BotNet-S1, we were
not able to reproduce the same results from the papers [23, 25]. For fair com-
parison, we trained and reported all variants that have similar complexity as
SSB-EfficientNet and SSB-BoTNet-S1.

Note that in this paper, we focus on the theoretical improvement regarding
the accuracy-FLOPS trade-off. In Section 4.3, we will compare the inference time
between SSBNet and the baselines, which shows that real speedup is achievable.

1 Consider a weight matrix Gy with dimensions Hr ×Hin. If the (i, j)-th element of
the weight matrix is non-zero, the next non-zero index will be (i+∆i, j+∆j), where
∆i, ∆j are non-negative integers with either i+∆i > i or j +∆j > j. As a result,
there are at most Hin +Hr non-zero elements. The same is true for Gx.



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 9

Table 1: ImageNet results of (SSB-)ResNet-D and (SSB-)ResNet-RS

Model Input size Params FLOPS Top-1(%)

R-50 224 × 224 25.6M 4.3G 78.1
S-50 224 × 224 25.6M 3.0G 78.1

R-101 224 × 224 44.6M 8.0G 79.5
S-101 224 × 224 44.6M 4.3G 78.9

R-152 224 × 224 60.2M 11.8G 80.1
S-152 224 × 224 60.3M 5.6G 79.2

R: ResNet-D [8] S: SSB-ResNet-D

Model Input size Params FLOPS Top-1(%)

R-50 224 × 224 25.6M 4.3G 78.2
S-50 224 × 224 25.6M 3.0G 78.2

R-101 224 × 224 44.6M 8.0G 80.0
S-101 224 × 224 44.6M 4.3G 79.5

R-152 224 × 224 60.2M 11.8G 80.6
S-152 224 × 224 60.3M 5.6G 80.1

R: ResNet-D [8] + RandAugment [3]
S: SSB-ResNet-D + RandAugment [3]

Model Input size Params FLOPS Top-1(%)

R-50 160 × 160 35.7M 2.3G 78.8
S-50 160 × 160 35.7M 1.6G 78.2

R-101 160 × 160 63.6M 4.2G 80.3∗

S-101 160 × 160 63.6M 2.3G 79.3

R-101 192 × 192 63.6M 6.0G 81.3
S-101 192 × 192 63.6M 3.2G 80.6

R-152 192 × 192 86.6M 9.0G 82.0∗

S-152 192 × 192 86.7M 4.3G 81.0

R-152 224 × 224 86.6M 12.0G 82.5
S-152 224 × 224 86.7M 5.8G 81.7

R-152 256 × 256 86.6M 15.5G 83.0∗

S-152 256 × 256 86.7M 7.5G 82.1

R-200 256 × 256 93.2M 20.0G 83.4∗

S-200 256 × 256 93.3M 9.4G 82.6

R: ResNet-RS [2] S: SSB-ResNet-RS
∗: from the original paper

Comparison with ResNet-D. For ResNet-D [8] and SSB-ResNet-D, we trained
three scales with the configuration of ResNet50/101/152 [7]. We followed the
training and testing settings of [8] with batch size of 1024 and input size of
224 × 224. The sampling sizes of SSB-ResNet-D are (16, 8, 4). The results are
shown in the top-left table of Table 1, which clearly demonstrate the advantage
of SSB-ResNet-D. For example, SSB-ResNet-D-50 achieved similar accuracy as
ResNet-D-50, where the FLOPS is reduced by 30%. SSB-ResNet-D-101 has the
same FLOPS as ResNet-D-50, but achieved 0.8% higher performance. The deep-
est SSB-ResNet-D-152 also performed only 0.3% worse than ResNet-D-101, with
30% less FLOPS.

In addition, we conducted experiments with RandAugment [3] as data aug-
mentation. The number of transformations and the magnitude were 2 and 5,
respectively. It can be observed from the bottom-left table of Table 1 that
SSB-ResNet-D-101 outperformed ResNet-D-50 by 1.3% accuracy with the same
FLOPS, and SSB-ResNet-D-152 achieved similar accuracy as ResNet-D-101 but
saved 30% operations. This indicates that SSBNets can benefit more from stronger
regularization.

Comparison with ResNet-RS. We also conducted experiments with ResNet-
RS [2] by followed the same training settings in the original paper. We trained
(SSB-)ResNet-RS-50/101/152/200, with different input sizes of 160×160/192×
192/224 × 224/256 × 256, and the sampling sizes are scaled to (12, 6, 3)/(14,
7, 3)/(16, 8, 4)/(18, 9, 5), respectively. The performance comparison between
SSB-ResNet-RS and ResNet-RS is shown Table 1(right). The SSB-ResNet-RS
achieved competitive results. For example, the SSB-ResNet-RS-200 with input
size of 256× 256 achieved 0.6% higher accuracy than ResNet-RS-152 with input



10 H.M. Kwan, S.H. Song

Table 2: ImageNet results of (SSB-)EfficientNet and (SSB-)BoTNet-S1

Model Input size Params FLOPS Top-1(%)

E-B0 224 × 224 5.3M 0.4G 76.4
S-B0 224 × 224 5.3M 0.3G 75.4

E-B1 240 × 240 7.9M 0.7G 78.5
S-B1 240 × 240 7.9M 0.5G 77.4

E-B2 260 × 260 9.2M 1.0G 79.6
S-B2 260 × 260 9.2M 0.7G 78.6

E-B3 300 × 300 12.3M 1.8G 81.0
S-B3 300 × 300 12.3M 1.3G 80.1

E: EfficientNet [25] S: SSB-EfficientNet

Model Input size Params FLOPS Top-1(%)

B-59 224 × 224 30.5M 7.3G 81.1
S-59 224 × 224 30.5M 3.8G 80.3

B-110 224 × 224 51.7M 10.9G 82.1
S-110 224 × 224 51.8M 5.1G 81.2

B-128 256 × 256 69.1M 19.3G 82.9
S-128 256 × 256 69.1M 8.1G 82.0

B-77 320 × 320 47.9M 23.3G −
S-77 320 × 320 47.9M 10.2G 82.5

B: BoTNet-S1 [23] S: SSB-BoTNet-S1

size of 192 × 192, where the FLOPS is only 4.4% higher. Figure 1a compares
SSB-ResNet-RS with ResNet-RS with less than 10 GFLOPS and shows that
SSB-ResNet-RS achieved better accuracy to FLOPS ratio in different scales.

Comparison with EfficientNet. For EifficientNet [25], we followed the orig-
inal setting, except that we used a batch size of 1024. Due to the use of 5 × 5
convolutions, we applied larger sampling size for EfficientNet. Specifically, we
used (20, 10, 10, 5, 5)/(22, 11, 11, 5, 5)/(24, 12 ,12 ,6, 6) and (26, 13 ,13 ,7, 7)
for SSB-EfficientNet-B0/1/2/3, respectively.

However, adaptive sampling did not improve EfficientNet in our experiments
as shown in Table 2(left). For example, SSB-EfficientNet-B2 has less number
of operations than EfficientNet-B2, but nearly the same number of operations
and accuracy as EfficientNet-B1. This may be due to the fact that EfficientNet
is designed by neural architecture search, thus the network configurations and
training parameters do not transfer well to SSB-EfficientNet. We also note that
the speed-up in EfficientNet is limited when compared with ResNet. This is
because EfficientNet has more groups of layers and we didn’t replace the first
layer in each group, due to the reason discussed in Section 3.1.

Comparison with BoTNet-S1. The recent development of Visual Trans-
formers [5] has gained attention in the research community. However, training
Transformers is challenging. For example, larger dataset or additional augmenta-
tion is required [5, 27]. To evaluate the compatibility of adaptive sampling with
self-attention layer, we built SSBNet from BoTNet-S1 [23], which is a hybrid
network composed of both convolutional and self-attention layers. It inherited
the techniques from modern CNNs, including the choice of normalization layers,
optimizers, and training setting.

Results in Table 2(right) show that SSB-BoTNet-S1 achieved better accu-
racy to FLOPS trade-off. For example, SSB-BoTNet-S1-110 performed simi-
lar as BoTNet-S1-59, but with 30% less FLOPS; SSB-BoTNet-S1-77 achieved
0.4% higher accuracy than BoTNet-S1-110, but 6% less FLOPS. The results also
suggest that adaptive sampling does not only improve CNNs, but also hybrid



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 11

(a) Example 1 (b) Example 2

Fig. 3: Examples of the saliency map and sampling output. (a) and (b) are the
samples from different layers of the SSB-ResNet-RS-152.

Table 3: COCO-2017 [16] results of SSB-ResNet-D/ResNet-D [8] with FPN [15]
and Mask R-CNN [6]

Model APbox APmask

12 Epochs ResNet-D-50 40.14 35.72
SSB-ResNet-D-50 40.67 35.98

24 Epochs ResNet-D-50 41.95 37.17
SSB-ResNet-D-50 42.36 37.41

Model APbox APmask

36 Epochs ResNet-D-50 42.50 37.56
SSB-ResNet-D-50 42.89 37.84

networks that utilize self-attention. Figure 1b shows the comparison between
SSB-BoTNet-S1 and BoTNet-S1 that have less than 11 GFLOPS, where SSB-
BoTNet-S1 achieved better accuracy to FLOPS ratio.

Visualization. The outputs of two sampled layers of SSBNet are shown in Fig-
ure 3. While the high dimension features are hard to visualize, we first resized the
original images to the same size as the sampler input, and then applied sampling
on the resized images for visualization. Figure 3a shows that the first reported
layer samples from the whole image, where the background is weighted heavier;
Figure 3b shows that the second reported layer is able to zoom into smaller
regions when performing downsampling, which can better preserve the discrim-
inative features in these regions. The results also suggest that different layers
of the SSBNet zoom into different regions, which justifies the use of adaptive
sampling in multiple layers.

4.2 Object Detection and Instance Segmentation

We also evaluated the performance of SSBNet for object detection and instance
segmentation tasks on the COCO-2017 dataset [16] which contains 118K images
in the training set and 5K images for validation. For that purpose, we used



12 H.M. Kwan, S.H. Song

Table 4: Latency comparison between (SSB-)ResNet-RS and (SSB-)BoTNet-S1

Model Input size Params FLOPS Latency(ms)

R-50 160 × 160 35.7M 2.3G 130/163
S-50 160 × 160 35.7M 1.6G 117/138

R-101 192 × 192 63.6M 6.0G 298/381
S-101 192 × 192 63.6M 3.2G 235/267

R-152 224 × 224 86.6M 12.0G 565/726
S-152 224 × 224 86.7M 5.8G 427/472

R-200 256 × 256 93.2M 20.0G 988/1244
S-200 256 × 256 93.2M 9.4G 744/822

R: ResNet-RS [2] S: SSB-ResNet-RS
First number: Latency on V100 GPU
Second number: Latency on 3090 GPU

Model Input size Params FLOPS Latency(ms)

B-59 224 × 224 30.5M 7.3G 404/469
S-59 224 × 224 30.5M 3.8G 291/301

B-110 224 × 224 51.7M 10.9G 559/674
S-110 224 × 224 51.8M 5.1G 386/406

B-128 256 × 256 69.1M 19.3G 925/1127
S-128 256 × 256 69.1M 8.1G 612/639

B-77 320 × 320 47.9M 23.3G 1234/1487
S-77 320 × 320 47.9M 10.2G 773/784

B: BoTNet-S1 [23] S: SSB-BoTNet-S1
First number: Latency on V100 GPU
Second number: Latency on 3090 GPU

the pre-trained ResNet-D-50 [8] and SSB-ResNet-D-50 with FPN [15] as the
backbone, and applied Mask R-CNN [6] for object detection and segmentation.
The same was applied to the baseline models for comparison purposes. We used
the default setting of Mask R-CNN in Model Garden [30], with input size of
1024× 1024, batch size of 64 and a learning rate of 0.01. Horizontal flipping and
Scale jitter with a range between 0.8 and 1.25 were applied. For SSB-ResNet-D,
we used the sampling sizes of (72, 36, 18) for the last 3 groups. The results of
training with 12/24/36 epochs are reported.

The results in Table 3 show that SSBNet is transferable to new tasks with
high performance. While the pre-trained ResNet-D-50 and SSB-ResNet-D-50
have similar accuracy on ImageNet [21], the SSB-ResNet-D-50 performs slightly
better than ResNet-D-50 on COCO-2017, with less operations. This may be due
to two reasons: 1.) there are paddings to the images, but SSBNet can zoom into
the non-padding regions such that no computation is wasted, 2.) the images from
COCO dataset have higher resolution than those from ImageNet.

4.3 Latency Comparison between SSBNet and the Original
Networks

To explore the actual speed-up by adaptive sampling, we implemented the sam-
pling function in TensorFlow 2.6 [1] and CUDA [17], and performed comparison
between ResNet-RS [2], SSB-ResNet-RS, BoTNet-S1 [23], and SSB-BoTNet-S1.
Experiments were conducted on V100 and 3090 GPU with float16. We report the
results from two GPUs as we noticed the difference in performance. Specifically,
V100 is commonly used in the literatures, but our implementation performs bet-
ter in 3090, which is possibly due to the degree of optimization. The results are
reported by the batch latency with size of 1024.

The results in Table 4 show that actual speed-up is achievable with adaptive
sampling. For example, the latency of SSB-ResNet-RS-200 is reduced by up
to 34% when compared with ResNet-RS-200, where ideally the latency can be
reduced by 53%. The latency of SSB-BoTNet-S1-77 is 47% lower than BoTNet-
S1-77, which is close to the theoretical improvement, i.e. 56%. We would like to



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 13

(a) Normal (b) With RandAugment [3]

Fig. 4: Comparison between uniform and adaptive sampling. In each line, the
three points denote SSB-ResNet-D-50/101/152, respectively.

highlight that we only did limited implementation optimization over SSBNet.
We expect further improvement with better optimization.

5 Ablation study

In this section, we provide results of additional experiments to justify the use of
adaptive sampling in deep neural networks.

5.1 Comparison between Uniform and Adaptive Sampling

To validate the effectiveness of adaptive sampling utilized in SSBNet, we com-
pared the performance of two SSB-ResNet-D networks, which applied adaptive
and uniform sampling, respectively. For a fair comparison, the two networks used
the same sampling mechanism (Equation 8).

The results in Figure 4a show that, in general, the networks with adaptive
sampling outperform the networks that applied uniform sampling. We observed
the largest difference from SSB-ResNet101-D, where the adaptive model achieved
0.2% higher accuracy. In Figure 4b, results with RandAugment [3] are shown,
where models with adaptive sampling obtain larger improvement than those with
uniform sampling. For example, at sampling sizes (16, 8, 4), the SSB-ResNet152-
D with adaptive sampling achieved 0.4% higher accuracy.

The results suggest that adaptive sampling is a better choice for downsam-
pling in SSBNet. In addition, the results show that the SSB-ResNet-D with
sampling sizes of (16, 8, 4) achieved a good trade-off between accuracy and
FLOPS at different depths. Thus, we used this configuration as default.

5.2 Comparison with Other Sampling Methods

To compare different down/upsampling mechanisms, we conducted experiments
with different sampling methods that can be applied in the bottleneck structure:
1) the proposed adaptive sampling; 2) the uniform sampling used in Section
5.1; 3) the uniform sampling with bilinear interpolation; and 4) the depthwise



14 H.M. Kwan, S.H. Song

(a) Normal (b) With RandAugment [3]

Fig. 5: Comparison between adaptive sampling and other sampling methods. In
each line, the three points denote SSB-ResNet50/101/152-D, respectively.

convolution for downsampling with bilinear sampling for upsampling [14]. For
bilinear sampling, we used sampling sizes of (16, 8, 4) as it is the common choice
in our paper. For 4), the kernel size and stride of depthwise convolutions are 5
and 2 respectively, with sampling sizes of (14, 7, 4). For a fair comparison, we
included the results of adaptive sampling with sizes (16, 8, 4) and (12, 6, 3), such
that the cost of 4) falls between them.

Figure 5a shows the results with basic training setting and Figure 5b shows
the results with RandAugment [3]. In both settings, adaptive sampling outper-
formed other methods, especially when the model is deeper and additional data
augmentation is used. Surprisingly, although method 2) is also a uniform sam-
pling method, it outperformed the widely utilized method 3).

6 Conclusion

In this paper, we proposed a novel architecture to apply adaptive sampling in
the main building block of deep neural networks. The proposed SSBNet outper-
formed other benchmarks in both image classification and object detection tasks.
Different from most existing works that applied adaptive sampling for specific
tasks [4, 11, 12, 20, 26, 32] and performed very few sampling operations, the pro-
posed structure can work as a backbone network and be transferred to different
tasks. Visualization illustrated SSBNet’s capability in sampling different regions
at different layers and ablation studies demonstrated that adaptive sampling is
more efficient than uniform sampling.

The results in this paper suggest that adaptive sampling is a promising mech-
anism in deep neural networks. We expect that designing the network with adap-
tive sampling from scratch and fine-tuning the training process may provide
further performance improvement.

Acknowledgement

This work was supported by the Cloud TPUs from Google’s TPU Research
Cloud (TRC) and the HKUST-WeBank Joint Lab under Grant WEB19EG01-L.



SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 15

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow, Large-scale machine learning on heterogeneous systems (11 2015).
https://doi.org/10.5281/zenodo.4724125 8, 12

2. Bello, I., Fedus, W., Du, X., Cubuk, E.D., Srinivas, A., Lin, T.Y., Shlens, J., Zoph,
B.: Revisiting resnets: Improved training and scaling strategies. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural
Information Processing Systems. vol. 34, pp. 22614–22627. Curran Associates, Inc.
(2021) 2, 3, 5, 8, 9, 12

3. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.: Randaugment: Practical automated
data augmentation with a reduced search space. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing
Systems. vol. 33, pp. 18613–18624. Curran Associates, Inc. (2020) 9, 13, 14

4. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV) (Oct 2017) 1, 4, 14

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
International Conference on Learning Representations (2021) 1, 3, 10

6. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (Oct 2017) 11, 12

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2016) 1, 2, 4, 5, 6, 7, 9

8. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image clas-
sification with convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019) 5,
8, 9, 11, 12

9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2018) 3

10. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448–456. PMLR (2015) 6

11. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer
networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 28. Curran Associates,
Inc. (2015) 1, 4, 6, 7, 14

12. Jin, C., Tanno, R., Mertzanidou, T., Panagiotaki, E., Alexander, D.C.: Learning
to downsample for segmentation of ultra-high resolution images. In: International
Conference on Learning Representations (2022) 1, 4, 14

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger,

https://doi.org/10.5281/zenodo.4724125


16 H.M. Kwan, S.H. Song

K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012) 1, 4

14. Li, D., Zhou, A., Yao, A.: Hbonet: Harmonious bottleneck on two orthogonal di-
mensions. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV) (October 2019) 1, 4, 14

15. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (July 2017) 11, 12

16. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 740–755 (2014) 8, 11

17. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with cuda: Is cuda the parallel programming model that application developers
have been waiting for? Queue 6(2), 40–53 (2008) 12

18. Peng, J., Xie, L., Zhang, Z., Tan, T., Wang, J.: Accelerating deep neural networks
with spatial bottleneck modules. arXiv preprint arXiv:1809.02601 (2018) 1, 4

19. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens,
J.: Stand-alone self-attention in vision models. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural
Information Processing Systems. vol. 32. Curran Associates, Inc. (2019) 3

20. Recasens, A., Kellnhofer, P., Stent, S., Matusik, W., Torralba, A.: Learning to
zoom: a saliency-based sampling layer for neural networks. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 51–66 (2018) 1, 2, 4, 14

21. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet
large scale visual recognition challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y 2, 3,
8

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations (2015)
1, 4

23. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck
transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 16519–16529 (June
2021) 2, 3, 8, 10, 12

24. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2015) 1, 4

25. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning. pp. 6105–6114. PMLR
(2019) 5, 8, 10

26. Thavamani, C., Li, M., Cebron, N., Ramanan, D.: Fovea: Foveated image magnifi-
cation for autonomous navigation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 15539–15548 (October 2021) 1, 4, 14

27. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021) 10

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,

https://doi.org/10.1007/s11263-015-0816-y


SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling 17

S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017) 3

29. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 3–19 (2018) 3

30. Yu, H., Chen, C., Du, X., Li, Y., Rashwan, A., Hou, L., Jin, P., Yang, F., Liu,
F., Kim, J., Li, J.: TensorFlow Model Garden. https://github.com/tensorflow/
models (2020) 8, 12

31. Zhao, Z.Q., Zheng, P., Xu, S.t., Wu, X.: Object detection with deep learning: A
review. IEEE transactions on neural networks and learning systems 30(11), 3212–
3232 (2019) 2

32. Zheng, H., Fu, J., Zha, Z.J., Luo, J.: Looking for the devil in the details: Learning
trilinear attention sampling network for fine-grained image recognition. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (June 2019) 1, 2, 4, 6, 14

https://github.com/tensorflow/models
https://github.com/tensorflow/models

	SSBNet: Improving Visual Recognition Efficiency by Adaptive Sampling

