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Abstract. Filter pruning is one of the most effective methods to com-
press deep convolutional networks (CNNs). In this paper, as a key com-
ponent in filter pruning, We first propose a feature discrimination based
filter importance criterion, namely Receptive Field Criterion (RFC). It
turns the maximum activation responses that characterize the recep-
tive field into probabilities, then measure the filter importance by the
distribution of these probabilities from a new perspective of feature dis-
crimination. However, directly applying RFC to global threshold pruning
may lead to some problems, because global threshold pruning neglects
the differences between different layers. Hence, we propose Distinguish-
ing Layer Pruning based on RFC (DLRFC), i.e., discriminately prune the
filters in different layers, which avoids measuring filters between different
layers directly against filter criteria. Specifically, our method first selects
relatively redundant layers by hard and soft changes of the network out-
put, and then prunes only at these layers. The whole process dynamically
adjusts redundant layers through iterations. Extensive experiments con-
ducted on CIFAR-10/100 and ImageNet show that our method achieves
state-of-the-art performance in several benchmarks.

Keywords: Model Compression; Filter Pruning; Receptive Field Crite-
rion; Distinguishing Layer Pruning

1 Introduction

In the past few years, CNNs have achieved the most excellent performance in
various computer vision tasks, such as target classification [15,9], object detec-
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Fig. 1: Feature discrimination. On ImageNet, we randomly select 9 images and
visualize the 20th filter in the last convolutional layer of VGG16. If the filter
responds more uniformly to each class, then the features learned by the filter
will play a small role in discriminating those classes, i.e., contribute less to the
classification. We also experimentally demonstrate the effectiveness of this new
pruning angle in subsection 4.7

tion [1] and super-resolution [16]. However, over-parameterization is still a severe
challenge to the CNNs’ deployment in the edge intelligent device. For this rea-
son, many network compression methods have been proposed at present, such
as quantification [7], knowledge distillation [12], and network pruning [17,25,28].
Network pruning, as one of the most widely used methods, has attracted ex-
tensive attention. According to the pruned objects, network pruning methods
are mainly divided into two types: unstructured pruning [8,29] and structured
pruning [17,23]. Unstructured pruning removes the specific weights in a filter
to obtain a sparse network, which requires special hardware and software for
acceleration. Structured pruning directly removes the entire filter without any
specially designed acceleration. Therefore, we focus on structured pruning in this
paper.

In structured pruning, the filter importance criterion plays a vital role to
determine which filters need to be pruned. Previous pruning methods design the
filter importance criteria from various perspectives, such as heuristic experience
[17], mathematical statistics [28], and network loss [4,26]. In this paper, we cre-
ate a novel filter importance criterion named Receptive Field Criterion (RFC)
from the view of feature discrimination (as illustrated in Fig 1). Inspired by the
receptive field analysis of network interpretability [5,42], we convert the max-
imum activation responses of a receptive field into probabilities that represent
the filter’s contribution to each class. Then, from the perspective of feature dis-
crimination, we introduce the information entropy to represent the uniformity of
the filter’s contribution to all class. Thus, filters with higher information entropy
is prone to be pruned. We also compared the RFC with other criterion , and the
results show that RFC can better measure filter importance.

Many existing works directly conduct pruning according to a global threshold
determined by filtering criteria. However, we find that global threshold prun-
ing ignores the relative importance between layers. To address this problem,
we propose a new pruning method: distinguishing layer pruning based on RFC
(DLRFC). We select redundant layers by comparing the impact of each layer on



Filter Pruning via Feature Discrimination in Deep Neural Networks 3

network performance. This effect is quantified by both hard and soft labels of the
network output vector, and then we prune filters only within redundant layers.
The redundant layers are dynamically adjusted in the whole process iteratively.
Our contributions are summarized as follows:

– We propose a new filter criterion that utilizes network interpretability to
construct a filter maximum response set, and then judges redundancy based
on the consistency of filter’s response to the class.

– We propose a discriminative layer pruning method that avoids direct global
comparison of importance according to filter criteria, which results in better
network structures.

– We evaluate the effectiveness of our method on various networks and datasets.
Experiment results show that our method achieves state-of-the-art perfor-
mance.

2 Related work

Many previous works studied pruning methods and their filter importance cri-
teria. Li [17] used the L1 norm of filters while Liu [23] proposed SD score as
the importance score of filters to prune the unimportant filters. Yu [40] applied
the feature ranking technique to measure the importance of filters in final re-
sponse layer. Meng [27] used the stripe of filter as the granularity and took
L1 norm of each stripe as the importance criterion to obtain irregular filters.
Ding [3] proposed a centripetal SGD to train the network in the hyperspace
of parameters and prune the similar filters after training. He [10] proposed a
pruning method to prune filters closed to the geometric center of the network.
Besides filter importance, Liu [25] considered the scale factor in BN layer as the
channel importance to determine which channel to be pruned. Molchanov [28]
proposed a new criterion based on the Taylor expansion of network loss change.
After scoring all filters using importance criteria, many methods directly per-
form global pruning. But Wang [39] claimed that pruning in layers with the most
structural redundancy outperforms pruning the least important filters across all
layers. Therefore, it is better to prune in relatively redundant layers every time.
Recently, some researchers have introduced network structure search into prun-
ing. Liu [24,36] applied meta learning to pruning and Lin [21] used artificial bee
colony.

Insight into network interpretability can help researchers better understand
the network behavior. Zeiler and Fergus [41] use a multi-layer deconvolutional
network to project feature activation back to pixel space to learn the representa-
tion. Experiments showed that filters of low layers learn low-level features such
as color and edge, while filters of high layers learn high-level features such as
body parts. Therefore, different layers may not be well pruned according to the
filter criterion alone. Zhou [42] visualized the receptive fields by the images with
top 5% activation response to filters. Girshick [6] demonstrated that convolu-
tional layers complete most of the learning ability of a CNN and the extracted
features are universal.
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3 Method

3.1 Receptive Field Criterion (RFC)

Let N ∈ R be the number of input images and C ∈ R be the number of classes.
Mij(k) ∈ Rhi×wj is the channel generated from the k -th image by the j -th
filter in the i -th layer after the activation function. Sij = {(Mij(k), vk), k =
1, 2, · · · , N} is a set consisting of channel-label pairs, where vk is the class label
of the k-th image. Next, we define the filter’s response score to the input image.
Define the response score set Aij to represent the activation response of the j -th
filter to all images, then the stronger the filter response to the image, the higher
the response score is, as shown below:

Aij = {∥Mij(k)∥ , k = 1, 2, · · · , N} (1)

where ∥Mij(k)∥ =
∑hi×wj

n=1

∥∥mn
ij(k)

∥∥ and n is the component of the correspond-
ing channel. Zhou et al. [42] used 5% of images with the largest filter response to
detect the filter’s receptive field, which means that these images reflect the filter’s
learned features. Therefore, after obtaining all responses in Aij , we construct a
maximum response set A∗

ij consisting of the top 5% activation responses. With
the channel-label pairs corresponding to the responses in A∗

ij , we construct the
channel-label set:

S∗
ij = {(Mij(k), vk)| ∥Mij(k)∥2 ∈ A∗

ij , k = 1, 2, · · · , N}. (2)

Then we extract the label set Vij from S∗
ij as follows:

Vij = {vk|(Mij(k), vk) ∈ S∗
ij , k = 1, 2, · · · , N} (3)

Here, Vij is used to generate the probability distribution of maximum response
of the corresponding filter. We convert Vij to the maximum response probability
as follows:

pnij =
e|V

n
ij |

C∑
n=1

e|V n
ij |

, n = 1, 2, ..., C (4)

where |Vij | is the number of elements in set Vij and
∣∣V n

ij

∣∣ represents the number
of elements belong to class n. Note that only when pnij > 0 will it be added
to the next calculation. From the perspective of feature discrimination, we take
information entropy as our RFC. With those positive pnij , we calculate their
information entropy [33]:

Hij =

C∑
n=1

pnij · log
1

pnij
(5)

where Hij is the RFC score of the j -th filter in the i -th layer. The greater RFC
score indicates the more average contribution to each class, and vice versa. We
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Fig. 2: The upper part is a boxplot of the filter scores (L1[17], NS[25]) of each
layer of VGG16 on CIFAR-10. The middle of the boxplot shows the measured
accuracy after only the index layer is selected for trimming. For example, when
the index of the middle graph is 5, L1-50% represents the accuracy after pruning
only 50% filters of the fifth layer of VGG16 according to the L1 criterion.

demonstrate the effectiveness of RFC in Section 4.7, showing that RFC is a good
measure of filter importance. Besides, we state in Section 4.5 that most of the
filters with uniform response are redundant because of their invalid response to
the common background of the picture.

For conducting pruning, we define an RFC-score set Ti of all Hij in the i -th
layer as follows:

Ti = {Hij , j = 1, 2, ..., Oi} (6)

whereOi is the number of filters in the i -th layer. We denote T ∗
i as a set consisting

of low RFC values (corresponding to the retained filters). Then the retained filter
set K∗

i is defined as follows:

K∗
i = {Kij |Hij ∈ T ∗

i , j = 1, 2, · · · , Oi} (7)

where Kij is the correspond filter of Hij . In our pruning procedure, we retain
the filters in K∗

i to rebuild the network.

3.2 Distinguishing layer pruning based on RFC

Thoughts on directly using criterion pruning for global pruning: Tra-
ditional global threshold pruning methods combine all Ti into a global set T =⋃W

i=1 Ti, where W is the total number of convolutional layers in the network. In
this case, we cannot simply measure all filters at the same level to construct T ∗.
As shown in Fig 2, we observe that the value range of the pruning criterion is
usually significantly different between layers. If the global set pruning is simply
used, a certain layer may be completely pruned. In addition, we found that cri-
teria for this difference do not compare the importance of filters across layers.
As observed in the L1 boxplot of Fig 2, layer 5 is considered more redundant
than layer 6 under global threshold pruning. But from the plot in the middle of
the boxplot we know that layer 5 has a bigger impact on network performance,
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which is more important. The same situation exists in NS. This means that some
filters are considered equally important in global threshold pruning, but their
importance to the network varies greatly from layer to layer.

The above shows that there are obvious differences in the pruning situation
of different layers. Therefore, we cannot directly compare the filter importance
of each layer according to the criteria, but first select the relatively redundant
layers, and then prune only in these layers. To this end, we consider each Ti in
T =

⋃W
i=1 Ti separately during pruning using RFC, first select redundant lay-

ers, and then perform pruning. Moreover, the redundant layers are dynamically
adjusted in the whole process iteratively.
Distinguishing Layer Pruning based on RFC: Inspired by the filter redun-
dancy measurement in [26,40,4], we remove each layer in rotation and calculate
the network output change to determine the redundant layer.

For a network F = (K1,K2, · · · ,KW ), where Ki represents the filter set of
the i -th layer and corresponds to the RFC score set Ti. We remove the same
ratio λ of filters in each layer according to Ti to obtain T ∗

i as follows:

T ∗
i = sort0.5(Ti) (8)

where sort0.5 represents removing 50% of the elements in Ti with the highest H
values (50% for a trade-off between effect and efficiency [4]). Thus, T ∗

i represents
the set of the lowest part of H values in Ti. Corresponding to T ∗

i , we construct
our network by replacing Ki with K∗

i as presented in Eq. (7):

Fi = (K1, · · · ,K∗
i , · · · ,KW ) (9)

where Fi represents the network obtained by only pruning the i -th layer of
F . Denote gi(g) and yi(y) as the output probability vector and class value of
Fi(F). Since calculating the change of network output on the entire training
dataset is time-consuming, we randomly select 5% images from the training set
to construct a proxy dataset Dproxy. To measure output changes before and after
pruning, we measure hard and soft changes. A hard change is a change in the
output target class, and a soft change is a change in the output of all classes.
We introduce cosine similarity as a soft change, which is widely used to measure
similarity [37,34] between vectors. A hard change is combined with the change
of target class. We define the layer redundancy Ri as follows:

Ri = γEk

[
sign(|yk − yki |)

]
+(1− γ) (1−Ek

[
gk · gki
|gk|

∣∣gki ∣∣
]
), i = 1, 2, . . . ,W (10)

where k is the index of the image in Dproxy and γ is the balance coefficient
between [0,1]. The smaller the value of Ri, the smaller the change of the network
performance, the higher the redundancy of the i -th layer. If Ri is large, the
corresponding layer will be considered important. We introduce a redundancy
threshold ε to control redundant layers in this iteration, so we only prune layers
with high redundancy. as follows:

F←

{
K∗

i , Ri < ε

Ki, Ri ≥ ε
(11)
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Fig. 3: Distinguishing layer pruning procedure. Conv represents the convolutional
layer. Input the proxy dataset to original network F . Then “prune” each layer
respectively to obtain each layer’s redundancy Ri.If min{Ri}Wi=1 ≥ ε holds when
halved pruning granularity re-enters redundant layer selection. Otherwise, prune
the layer of Ri smaller than ε to obtain the network F . Repeat this process until
the constraint φ is satisfied.

Here K∗
i represents the layer that has been pruned, and Ki represents the layer

that has not been pruned. The network F is then reconstructed using these lay-
ers. The fixed pruning rate in Eq. (8) may result in redundant layers satisfying
Eq. (11) not appearing later in the iteration. Therefore, we adjust the ratio by
ε, reducing the pruning rate by half to reduce the network output change, and
thus perform better pruning. Therefore, when min{Ri}Wi=1 ≥ ε is satisfied, we
permanently halve the pruning rate in Eq. (8) to automatically adjust the prun-
ing granularity. After we prune the redundant layer, we fine-tune the network
for one epoch to maintain its stability, which is the same as [13]. The entire pro-
cedure (named as DLRFC) is illustrated in Fig. 3 and its pseudocode is shown
in Algorithm 1.

4 Experimental setup

4.1 Experimental setup

Dataset and Models: As stated in [43], for different size of datasets, a pruning
method may lead to different results. We use CIFAR-10/100 [14] and ImageNet
[15] for our experiments, which are three popular datasets for pruning evalu-
ation. On CIFAR datasets, we evaluate our method through two classic types
of network structures: VGG16 without shortcut connection and ResNet56 with
shortcut connection. On ImageNet, we use ResNet50 [9] and MobileNetV2 [31].
Baseline Setting: Our baseline settings are consistent with those in [25,27,21].
On CIFAR-10/100, the model is trained for 160 epochs and the batch size is
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Algorithm 1 Distinguishing Layer Pruning based on RFC

Input: Proxy dataset Dproxy, redundancy threshold ε, network F = (K1, · · · ,KW ),
and balance coefficient γ.
Output: Pruned network.

1: repeat
2: Calculate all gk and yk of F on the proxy dataset Dproxy

3: for i = 1 to W do
4: Obtain Ti by RFC
5: T ∗

i ← sort0.5(Ti)
6: K∗

i ← {Kij |Hij ∈ T ∗
i }

7: Fi ← (K1, · · · ,K∗
i , · · · ,KW )

8: Calculate all gk
i and yk

i of Fi on the proxy dataset Dproxy

9: Ri = γEk

[
sign(|yk − yk

i |)
]
+ (1− γ) (1− Ek

[
gk·gki
|gk||gki |

]
)

10: end for
11: if min{Ri}Wi=1 ≥ ε then
12: go to 3 and halve the pruning granularity in step (5)
13: end if
14: prune only redundant layers for F
15: Stablize the network, return to 3.
16: until Pruned network satisfies the predefined constraint.

64. The initial learning rate is set to 0.1 and divided by 10 at 50% and 75% of
the epoch. Simple data augmentation (random cropping and random horizontal
flip) is used for training images. On ImageNet, our settings are as same as the
popular settings [11,26].
Pruning Setting: We complete all experiments on NVIDIA RTX 2080 Ti and
NVIDIA RTX 3090. We set the balance coefficient γ = 0.8 and the redundancy
threshold ε =0.1. When pruning ResNet and MobileNetV2, our strategy is sim-
ilar to [26], i.e. consider all shortcuts at each stage and prune shortcuts and
non-shortcuts separately. On CIFAR-10/100, we train the pruned model from
scratch using the same FLOPs. On ImageNet, the fine-tuning settings for the
pruned model are the same as those in [43].

4.2 Experimental results on CIFAR-10/100

We prune VGG16 and ResNet56 on CIFAR-10/100 datasets and comprehen-
sively compare our method with other state-of-the-art methods. On CIFAR-10,
we obtain two structures (DLRFC-1 and DLRFC-2) from VGG16 and one struc-
ture from ResNet56; on CIFAR-100, we obtain one structure for VGG16 and
ResNet56, respectively. We record the basline accuracy, pruned model accuracy,
accuracy drop, FLOPs and parameters reduction of each model and compare
them with other state-of-the-art pruning methods. Comparison results are sum-
marized in Tab. 1 and Tab. 2, respectively.

For VGG16, DLRFC-2 reduces 77% FLOPs and 94% parameters; DLRFC-1
reduces 61% FLOPs and 92% parameters on CIFAR-10. Compared with others,
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Table 1: Comparison result of VGG16 and ResNet56 on CIFAR-10. Acc↓ is
the accuracy drop of pruned model compared to the baseline model. FLOPs↓
and Param↓ represent the reduction of FLOPs and parameters in percentage,
respectively.

Model Method
Baseline Pruned Acc. FLOPs Param.
Acc.(%) Acc.(%) ↓ (%) ↓ (%) ↓ (%)

VGG16

Hinge [18] 93.59 94.02 -0.43 39.07 19.95
NSPPR [43] 93.88 93.92 -0.04 54.00 -
AOFP [4] 93.38 93.84 -0.46 60.17 -
DLRFC-1 93.25 93.93 -0.68 61.23 92.86
DPFPS [30] 93.85 93.67 0.18 70.85 93.92
PFF [27] 93.25 93.65 -0.40 71.16 92.66
ABC [21] 93.02 93.08 -0.06 73.68 88.68
HRank [22] 93.96 91.23 2.73 76.50 92.00
AOFP [4] 93.38 93.28 0.10 75.27 -
DLRFC-2 93.25 93.64 -0.39 76.95 94.38

ResNet56

NISP [40] 93.04 93.01 0.03 43.60 42.60
FPGM [11] 93.59 93.49 0.10 53.00 -
NSPPR [43] 93.83 93.84 -0.03 47.00 -
ABC [21] 93.26 93.23 0.03 54.13 54.20

SRR-GR [39] 93.38 93.75 -0.37 53.80 -
DPFPS [30] 93.81 93.20 0.61 52.86 46.84
DLRFC 93.06 93.57 -0.51 52.58 55.63

Table 2: Comparison result of VGG16 and ResNet56 on CIFAR-100.

Model Method
Baseline Pruned Acc. FLOPs Param.
Acc.(%) Acc.(%) ↓ (%) ↓ (%) ↓ (%)

VGG16

NS [25] 73.83 74.20 -0.37 38.00 -
COP [38] 72.59 71.77 0.82 43.10 73.20

NSPPR [43] 73.83 74.25 -0.42 43.00 -
DLRFC 73.54 74.09 -0.55 43.40 82.50

ResNet56
NS [25] 72.49 71.40 1.09 24.00 -

NSPPR [43] 72.49 72.46 0.03 25.00 -
DLRFC 71.14 71.41 -0.27 25.50 25.90

DLRFC has the best result, which is higher by 0.49% in accuracy gain than
AOFP [4]. On CIFAR-100, DLRFC reduces 43% FLOPs and 82% parameters.
In addition, the accuracy gain under the same FLOPs is better than NSPPR.

For ResNet56, DLRFC reduces 52% FLOPs and 55% parameters on CIFAR-
10. Compared with ABC [21], our model achieves a higher accuracy gain. On
CIFAR-100, DLRFC reduces 25% FLOPs and 26% parameters, which outper-
forms other methods. In brief, DLRFC can produce a more compact model and
give better performance.
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Table 3: Comparison results of the Top-1 ImageNet accuracy of our method and
state-of-the-art pruning methods on ResNet50 and MobileNetV2.

Model Method
Baseline Pruned Acc. FLOPs Param.
Acc.(%) Acc.(%) ↓ (%) ↓ (%) ↓ (%)

ResNet50

G-SD-B [23] 76.15 75.85 0.30 44 23
MetaPruning [24] 76.60 75.40 1.20 50 -

NSPPR [43] 76.15 75.63 0.52 54 -
DPFPS [30] 76.15 75.55 0.60 46 -
S-COP [35] 76.15 75.26 0.89 54 52
LRF-60 [13] 76.15 75.71 0.50 56 53
DLRFC 76.13 75.84 0.29 54 40

MobileNetV2

W-Gates [20] 71.80 70.90 0.90 25 -
DPFPS [30] 72.00 71.10 0.90 25 -
ManiDP [43] 71.80 71.41 0.39 30 -

CC [19] 71.88 70.91 0.97 29 -
DLRFC 71.80 71.88 -0.08 30 -

Table 4: Comparison results of the Top-1 accuracy and latency of Resnet34 and
Resnet50 on ImageNet. Uniform means we set the same pruning ratio for each
layer. The network input test batch is set to 100.

DLRFC Uniform

Model FLOPs(G) Acc(%) Latency(ms) FLOPs(G) Acc(%) Latency(ms)

ResNet34

- - - 3.7(1X) 73.88 54.04
2.9 73.86 46.70 2.9 72.56 49.23
2.3 73.28 40.65 2.4 72.05 44.27
2.0 72.99 37.13 2.1 71.32 43.47

ResNet50

- - - 4.1(1X) 76.15 105.75
3.0 76.33 95.52 3.1 75.59 97.87
2.5 76.18 87.66 2.6 74.77 91.53
1.9 75.81 79.83 2.1 74.42 85.20

Compared with ResNet56 on both CIFAR-10/100 datasets, we observe that
even at a higher pruning ratio, the pruned VGG16 model can still achieve good
performance. A possible explanation is that VGG16 is an extra-large model for
CIFAR-10/100, resulting in excessive redundancy. Consequently, pruning can
make the model more perfect to fit different datasets.

4.3 Experimental results on ImageNet

We prune ResNet50 and MobileNetV2 on ImageNet, record the performance of
our pruned model and compare it with other methods. As shown in Tab. 3, our
pruned model achieved the best performance. The FLOPs of ResNet50 dropped
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Table 5: Results of ablation study. This table shows the results of VGG16 on
CIFAR-10 and CIFAR-100 datasets according to different pruning criteria and
pruning methods. Different dataset distributions are compared fairly under the
same pruning rate.

cifar10 cifar100
criterion L1(%) NS(%) RFC(%) L1(%) NS(%) RFC(%)

GTP 90.56 92.64 92.25 70.90 71.12 71.25
DLP 93.12 93.25 93.38 73.49 73.55 73.82

by 54%, and the accuracy dropped by 0.29%, which was 0.60% lower than S-
COP [35] and 0.91% lower than MetaPruning [24]. The FLOPs of MobileNetV2
dropped by 30% and the accuracy increased by 0.08%. This shows that the
experimental results still demonstrate the effectiveness of our method on more
complex datasets.

Moreover, we demonstrate the effectiveness of our method for wall-clock time
speedup on ImageNet. As set by [20], we set the same compression ratio for each
layer as a uniform baseline and measure latency using Pytorch on an NVIDIA
RTX 2080 Ti GPU. As shown in Tab. 4, the results show that under the same
FLOPs conditions, ResNet50 and ResNet34 pruned by our method can save 17%
and 14% of hardware latency without notable accuracy loss. And the model is
significantly better than the Uniform baseline in terms of both accuracy and
latency.

4.4 Ablation studies

In this subsection, we investigate the importance of RFC and discriminative
layer pruning (called DLP) separately. The results of the ablation studies are
summarized in Tab. 5. For the purpose of ablation experiments, we use the L1
norm [17] (denoted as L1) and the BN scale factor [25] (denoted as NS) to replace
the RFC criterion to investigate its importance. We use global threshold pruning
(denoted as GTP) to replace DLP to study its importance.
Distinguishing Layer Pruning (DLP): We first study our distinguishing
layer pruning algorithm with the fixed criterion RFC. In the RFC column of
Tab. 5, the accuracy of our method is significantly higher than the global thresh-
old pruning of CIFAR-10 and CIFAR-100. This result indicates the effectiveness
of our distinguishing layer pruning method. Moreover, we observe that the accu-
racy of other filter criteria on the DLP method is higher than the global threshold
pruning. It shows that the filter criterion alone cannot be used for global com-
parison, so it is correct that we care about the difference in importance between
different layers.
Receptive Field Criterion (RFC): We fixed the pruning method and then
replaced RFC with L1 and BN as criteria during pruning. The resulting RFC for
the DLP row in Tab. 5 has better accuracy than L1 and BN, showing that RFC
can select filters that should be pruned more to achieve better pruning effect.
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4.5 Visualization of filter selection
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(a) Large H value.
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(b) Small H value.

Fig. 4: GradCAM and GradCAM++ visualization for filter selection.

Recall in Sec. 3.1 that H represents the distribution uniformity of the re-
sponses. We randomly select 6 animal images in ImageNet. Since the last layer
learns the highest-level semantics, we use GradCAM [32] and GradCAM++ [2]
to make an visualization analysis of the filter selection in the last layer of the
pretrained VGG16, as shown in Fig. 4.

Large H value: As shown in Fig. 4a, the filters with large H value make
high response to most classes, which indictes that the features learned by these
filters are not distinguishable and contribute less to classification. Moreover,
the response region of these filters with large H values is not on the object. A
possible reason is that these filers tend to extract common information of the
similar background in the images of different classes.

Small H value: As shown in Fig. 4b, filters with small H value do not
respond to most classes, which shows that these features are distinguishable and
contributive to classification. Meanwhile, the response regions generated by the
filters with small H values are roughly located on the object, i.e., these features
are relevant to the object. This phenomenon further confirms the reasonability
of RFC.

4.6 Hyperparameters

Our DLRFC contains two hyperparameters: (1) balance coefficient γ controlling
the relative proportion of soft change and hard change, as shown in Eq. (10); and
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Fig. 5: Hyperparameter analysis of VGG16 on CIFAR10 (left) and CIFAR100
(right).

(2) The redundancy threshold ε controls the network change size and redundancy
layer relationship, as shown in Eq. (11).

As shown in Fig. 5, when ε is small, the network selects redundant layers
with strict criteria each time. Though this may lead to an increase in accuracy,
the entire pruning process will take more time. When ε is too large, the network
selects more layers as redundant layers, which will result in the existence of very
important layers in the redundant layers and cause accuracy serious decline.
So we need to choose ε within a reasonable range to ensure a balance between
accuracy and speed. Although different ε may have different fluctuation curves,
we found that when γ = 0.8, there will be better results, that is, we should
probably pay more attention to hard changes. But γ = 0.9 shows that we can’t
focus too much on hard changes either.

4.7 Other studies

Feature discrimination angle effectiveness: The level of feature discrimi-
nation also represents the uniformity of the filter’s response to all class, so we
prune filters with high and low uniformity respectively. Figure 6 (left) shows
a slight decrease in network performance when pruning the Unif-unimportant
filter. However, pruning Unif-important filters wreaks havoc on network perfor-
mance, suggesting that they are indeed able to measure filter importance. The
figure also shows that NS-important has higher accuracy in stage 3 than NS-
unimportant, suggesting that NS-important chooses less important filters than
NS-unimportant, which is contradictory. It seems that NS cannot distinguish
the importance of filters in stage 3 and stage 4, but Unif can distinguish well.
The above shows that the idea of class uniformity can be used to judge the
redundancy of the filter.
RFC measuring redundancy: Recall that the RFC measures redundancy
from a new perspective, which is expressed as the H value, as shown in Eq. (5).
The higher the H value, the more redundant the filters and the less they con-
tribute to classification. We prune filters with different criteria: RFC, L1 norm,
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Fig. 6: Left: We divide VGG16 into 5 stages according to the pooling layer, stage
x means that the filter of each layer in stage x is only pruned by half, and
then the accuracy is obtained. unif-unimportant means to prune all filters that
uniformity considers unimportant (that is, filters with high uniformity), unif-
important means to prune filters that uniformity considers important, and the
same is true for NS. Right: The accuracy of different criteria under the same
network pruning structure.

BN, and random selection. After pruning the network by the above criteria, we
directly record the accuracy. Figure 6 (right) shows the change in accuracy as
the pruning rate increases. When pruning the RFC’s filters, the accuracy drop
was the smallest among these criteria, i.e. the RFC found the most redundant
filters. This result further demonstrates the validity of the RFC guidelines.

5 Conclusion

In this paper, we propose a novel filter importance criterion named as Recep-
tive Field Criterion from the feature discrimination. Our criterion scientifically
measures the filter redundancy and effectively guides the pruning procedure.
The distinguishing layer pruning based on RFC proposed by us can effectively
consider the relative redundancy between the layers of the network. Extensive
experiments conducted on CIFAR-10/100 and ImageNet show that our method
achieves the state-of-the-art performance in some benchmarks. In the future, we
will further explore the more intrinsic relationship between pruning and response
class distribution.
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