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Abstract. Automated augmentation is an emerging and effective tech-
nique to search for data augmentation policies to improve generalizability
of deep neural network training. Most existing work focuses on construct-
ing a unified policy applicable to all data samples in a given dataset,
without considering sample or class variations. In this paper, we propose
a novel two-stage data augmentation algorithm, named Label-Aware Au-
toAugment (LA3), which takes advantage of the label information, and
learns augmentation policies separately for samples of different labels.
LA3 consists of two learning stages, where in the first stage, individ-
ual augmentation methods are evaluated and ranked for each label via
Bayesian Optimization aided by a neural predictor, which allows us to
identify effective augmentation techniques for each label under a low
search cost. And in the second stage, a composite augmentation policy is
constructed out of a selection of effective as well as complementary aug-
mentations, which produces significant performance boost and can be
easily deployed in typical model training. Extensive experiments demon-
strate that LA3 achieves excellent performance matching or surpass-
ing existing methods on CIFAR-10 and CIFAR-100, and achieves a new
state-of-the-art ImageNet accuracy of 79.97% on ResNet-50 among auto-
augmentation methods, while maintaining a low computational cost.

1 Introduction

Data augmentation has proven to be an effective regularization technique that
can improve the generalization of deep neural networks by adding modified copies
of existing samples to increase the volume and diversity of data used to train
these networks. Traditional ways of applying data augmentation in computer
vision include using single augmentation techniques, such as rotation, flipping
and cutout [4], adopting randomly selected augmentations [2], and employing a
manually crafted augmentation policy consisting of a combination of transfor-
mations. However, these methods either do not reach the full potential of data
augmentation, or require human expertise in policy design for specific tasks.

Recently, automated learning of augmentation policies has become popular
to surpass the limitation of manual design, achieving remarkable advances in
both the performance and generalization ability on image classification tasks.
Different search algorithms such as reinforcement learning [1], population-based
training [9], and Bayesian Optimization [16] have been investigated to search
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Fig. 1: The effects of different augmentation operations on each class in CIFAR-
10, demonstrated by the test accuracy change in each class after each single
augmentation is applied to training WRN-40-2.

effective augmentation policies from data to be used to train target networks.
Dynamic augmentation strategies, e.g., PBA [9], AdvAA [25], are also proposed
to learn non-stationary policies that vary during model training.

However, most existing methods focus on learning a single policy that is
applied to all samples in the dataset equally, without considering variations be-
tween samples, classes or labels, which may lead to sub-optimal solutions. Fig-
ure 1 demonstrates the effects of different augmentation operations on different
classes of samples in CIFAR-10, from which we can see that the effectiveness
of augmentations is different on each class. For example, when the operation
“Posterize” is applied in training, the test accuracy of “dog” class increases by
3.8%, whereas the test accuracy of “cat” drops significantly by 5%. It is possible
that a certain augmentation used in training has completely different impacts
on different labels. This observation implies the limitation of label or sample-
invariant dataset-level augmentation policies. MetaAugment [26] proposes to
learn a sample-aware augmentation policy by solving a sample re-weighting prob-
lem. It uses an augmentation policy network to take an augmentation operation
and the corresponding augmented image as inputs, and outputs a weight to ad-
just the augmented image loss computed by the task network. Despite the benefit
of a fine-grained sample-dependent policy, MetaAugment is time-consuming and
couples policy network learning with target model training, which may not be
convenient in some production scenarios that require functional decomposition.

In this paper, we propose an efficient data augmentation strategy named
Label-Aware AutoAugment (LA3), which produces label-aware augmentation
policies to overcome the limitation of sample-invariant augmentation while still
being computationally efficient as compared to sample-aware or dynamic aug-
mentation strategies. LA3 achieves competitive performance matching or out-
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performing a wide range of existing static and dynamic auto-augment methods,
and attains the highest ImageNet accuracy on ResNet-50 among all existing
augmentation methods including dynamic ones. In the meantime, LA3 is also a
simple scheme which separates augmentation policy search from target network
model training, and produces stationary augmentation policies that can easily
be applied to enhance deep learning with minimum perturbation to the original
target model training routine.

LA3 adopts a two-staged design, which first explores a search space of combi-
nations of operations and evaluates the effectiveness of promising augmentation
operations for each class, while in the second stage, forms a composite policy to
be used in target model training.

In the first stage of LA3, a neural predictor is designed to estimate the effec-
tiveness of operation combinations on each class and is trained online through
density matching as the exploration process iterates. We use Bayesian Optimiza-
tion with a predictor-based sampling strategy to guide search into meaningful
regions, which greatly improves the efficiency and reduces search cost.

In the second stage, rather than only selecting top augmentation operations,
we introduce a policy construction method based on the minimum-redundancy
maximum-reward (mRMR) principle [17] to enhance the performance of the
composite augmentation policy when applied to the target model. This is in
contrast to most prior methods [1], [16], which simply put together best per-
forming augmentations in evaluation, ignoring their complementary effects.

Extensive experiments show that using the same set of augmentation oper-
ations, the proposed LA3 achieves excellent performance outperforming other
low-cost static auto-augmentation strategies, including FastAA and DADA, on
CIFAR-10 and CIFAR-100, in terms of the accuracy. On ImageNet, LA3, using
stationary policies, achieves a new state-of-the-art top-1 accuracy of 79.97% on
ResNet-50, which outperforms prior auto-augmentation methods including dy-
namic strategies such as AdvAA and MetaAug, while being 2× and 3× more
computationally efficient, respectively.

2 Related Work

Data augmentation is a popular technique to alleviate overfitting and improve
the generalization of neural network models by enlarging the volume and diver-
sity of training data. Various data augmentation methods have been designed,
such as Cutout [4], Mixup [24], CutMix [22], etc. Recently, automated augmen-
tation policy search has become popular, replacing human-crafted policies by
learning policies directly from data. AutoAugment [1] adopts a reinforcement
learning framework that alternatively evaluates a child model and trains an
RNN controller to sample child models to find effective augmentation policies.
Although AutoAugment significantly improves the performance, its search pro-
cess can take thousands of GPU hours which greatly limits its usability.

Multiple strategies are proposed to lower the search cost. Fast AutoAugment
[16] proposes a density matching scheme to avoid training and evaluating child
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models, and uses Bayesian Optimization as the search algorithm. Weight-sharing
AutoAugment [18] adopts weight-sharing settings and harvests rewards by fine-
tuning child models on a shared pre-trained target network. Faster AutoAugment
[7] further reduces the search time by making the search of policies end-to-end
differentiable through gradient approximations and targeting to reduce the dis-
tance between the original and augmented image distributions. Similarly, DADA
[15] relaxes the discrete policy selection to a differentiable optimization problem
via Gumbel-Softmax [12] and introduces an unbiased gradient estimator.

Instead of producing stationary augmentation policies that are consistent
during the target network training, PBA [9] learns a non-stationary augmen-
tation schedule, inspired by population based training [11], by modeling the
augmentation policy search task as a process of hyperparameter schedule learn-
ing. AdvAA [25] adopts an adversarial framework that jointly optimizes target
network training and augmentation search to find harder augmentation policies
that produce the maximum training loss. However, AdvAA must rely on the
batch augment trick, where each training batch is enlarged by multiple times
with augmented copies, which significantly increases its computational cost. In
general, one concern of these dynamic strategies is that they intervene the stan-
dard model training procedure, causing extra deployment overhead and may not
be applicable in many production environments.

While most previous studies focus on learning augmentation policies for the
entire dataset, MetaAugment [26] proposes to learn sample-aware augmentation
policies during model training by formulating the policy search as a sample re-
weighting problem, and constructing a policy network to learn the weights of
specific augmented images by minimizing the validation loss via meta learning.
Despite its benefits, MetaAugment is computationally expensive, requiring three
forward and backward passes of the target network in each iteration. LB-Aug
[19] is a concurrent work that also searches policies dependent on labels, but
focuses on a different task under multi-label scenarios, where each sample has
multiple labels rather than a single classification label. LB-Aug uses an actor-
critic reinforcement learning framework and policy gradient approach for policy
learning. Despite the benefits from label-based policies, LB-Aug has potential
stability issues due to the use of reinforcement learning, which is generally harder
and computational costly to train. In fact, the search cost of LB-Aug is not re-
ported. In contrast, LA3 targets the classical single-label image classification
tasks, e.g., on CIFAR-10/100 and ImageNet benchmarks, on which most other
auto-augmentation methods are evaluated. It adopts Bayesian Optimization cou-
pled with a neural predictor to sample and search for label-dependent augmen-
tation policies efficiently. In addition, a policy construction stage is proposed to
further form a more effective composite policy for target network training.

3 Methodology

In this section, we first review the task of conventional augmentation search
and introduce the formulation of the proposed label-aware augmentation search
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task. Then we describe the two-stage design of LA3, and present the algorithm
in detail.

3.1 Conventional Augmentation Search

Given an image recognition task with a training dataset Dtr = {(xi, yi}|D
tr|

i=1 ,
with xi and yi representing the image and label respectively, augmented sam-
ples T (xi) are derived by applying augmentation policy T to sample xi. Usually,
the policy T is composed of multiple sub-policies τ , and each sub-policy is made
up by K augmentation operations O, optionally with their corresponding prob-
abilities and magnitudes, which are adopted in the original design of AutoAug-
ment [1], but not included in some of the recent methods such as Weight-sharing
AutoAugment [18] and MetaAugment [26].

Conventional augmentation search methods focus on the task whose goal is
to construct the optimal policy T ∗ from given augmentations so that the per-
formance R of the task network θT on the validation dataset Dval is maximized:

T ∗ = argmax
T

R(θT |Dval),

where θT = argmin
θT

1

|Dtr|

|Dtr|∑
i=1

Lθ(T (xi), yi),

(1)

and Lθ is the loss function of target network θ.

3.2 Label-Aware Augmentation Search

Though learning a dataset-level policy achieves considerable improvements, it is
unlikely the optimal solution due to the lack of consideration of sample variations
and utilization of label information.

In this paper, we aim to learn a label-aware data augmentation policy T ∗ =
{T ∗

y0
, · · · , T ∗

yn
}, where for samples of each label yj , an individual policy Tyj is

learned by maximizing the label-specific performance Ryj
of label yj :

T ∗
yj

= argmax
Tyj

Ryj
(θT |Dval),

where θT = argmin
θT

1

|Dtr|

|Dtr|∑
i=1

Lθ(Tyi
(xi), yi).

(2)

Similar to conventional augmentation, in our label-aware setting, we define
that each policy for a label is composed of multiple augmentation triples, each
consisting of three augmentation operations. The magnitude of each augmen-
tation operation is chosen randomly from ranges defined in AutoAugment [1],
and is excluded from the search space in order to introduce randomness and
diversity into the policy, and allocate more computational resources to assessing
the fitness of operations to different classes of samples.
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Fig. 2: An overview of the proposed LA3 method. It contains two stages, where
in the first stage, augmentation triples are individually evaluated for each label
via Bayesian Optimization with the help of an label-aware neural predictor. In
the second stage, the best combination of complementary augmentation triples
is selected based on the minimum-redundancy maximum-reward principle.

In this paper, we propose a label-aware augmentation policy search algo-
rithm called LA3, composed of two stages as presented in Figure 2. The first
augmentation exploration stage aims to search for effective augmentation triples
with density matching, and train a neural predictor to provide evaluations on
all seen and unseen augmentation triples in the search space. And the goal of
the second policy construction stage is to build a composite policy for each label
based on the evaluation results from stage 1 by selecting a subset of complemen-
tary augmentation triples based on the minimum-redundancy maximum-reward
principle.

3.3 Stage 1: Augmentation Exploration

Density Matching is an efficient mechanism originally proposed by Fast Au-
toAugment [16] to simplify the search process for effective augmentations, since
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the problem defined by Equation (1) and Equation (2) is a bi-level optimization
problem, and is extremely hard to solve directly. It calculates the reward of each
augmentation triple without the need of repeatedly training the target network.
Specifically, given a model θ pre-trained on the training set Dtr and a validation
set Dval, the performance of a certain augmentation triple τ can be evaluated by
approximately measuring the distance between the density of Dtr and density
of augmented validation set τ(Dval) with the model performance R(θ|τ(Dval)).
And the reward r is measured by the performance difference caused by applying
the augmentation triple τ :

rτ = R(θ|τ(Dval))−R(θ|Dval). (3)

Similarly, in our label-aware setting, the reward r for a certain augmentation
triple τy at label y is given by

rτ,y = Ry(θ|τy(Dval))−Ry(θ|Dval). (4)

Bayesian Optimization with a Neural Predictor is a widely adopted
framework in many applications such as neural architecture search [21,20] to
find the optimal solution within a search space. In standard BO setting, over
a sequence of iterations, the results from previous iterations are used to model
a posterior distribution to guide the candidate selection of next iteration. And
a neural predictor is a neural network that is repeatedly trained on the history
evaluated candidates, and provides evaluations on unseen candidates, which in-
creases the utilization efficiency of history evaluations and notably accelerates
the search process.

In our LA3 algorithm, we incorporate a label-aware neural predictor f(r|τ, y)
which takes in an augmentation triple τ and the label y it is evaluated on, and
predicts the reward r. In each iteration, the sampled augmentation triples for
different labels are evaluated according to Equation (4), and together with the
previous evaluated augmentation triples, are passed to train a new predictor.

Next, we select 100 candidate augmentation triples at the balance of explo-
ration and exploitation, based on the following selection procedure: 1) Generate
10 new candidates by randomly mutating 1 or 2 operations in the chosen aug-
mentation triples of the previous iteration; 2) Randomly sample 50 candidates
from all unexplored augmentation triples; 3) Sample 40 candidates from the ex-
plored augmentation triples according to their real reward values. Then, for each
label y, we choose the augmentation triple τ with the highest predicted reward
r̃τ,y for evaluation.

Overall workflow of the first stage is summarized in Algorithm 1. To be-
gin with, a warm-up phase of T0 iterations is incorporated to randomly explore
the search space, and retrieve the initial training data for learning a label-aware
neural predictor f(r|τ, y). Then, for the following T − T0 iterations, the search
phase is adopted. In each iteration, we first train a neural predictor from scratch
with data collected from previous iterations. Then, for each label, we apply the
fore-mentioned selection procedure to select a set of candidate augmentation
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Algorithm 1: Stage 1: Augmentation Exploration

Input: Pre-trained target network θ, warm up iterations T0, total iterations T
Output: Well-trained predictor fT (r|τ, y)
/* warm-up phase */

1 for t = 0, · · · , T0 do
2 randomly generate augmentation triples {τ t

y0 , · · · , τ
t
yn} for all labels

{y0, · · · , yn}
3 obtain rewards {rtτ,y0 , · · · , r

t
τ,yn} by Equation (4)

/* search phase */

4 for t = T0, · · · , T do
5 train f t(r|τ, y) with data collected from previous t iterations {(τ, y, rτ,y)}t
6 for yi = y0, · · · , yn do
7 generate 100 candidate augmentation triples by exploration and

exploitation
8 obtain predicted rewards r̃τ,yi = f t(τ, yi) for 100 candidates
9 τ t

yi = argmaxτ (r̃τ,yi)

10 obtain real rewards {rtτ,y0 , · · · , r
t
τ,yn} for {τ

t
y0 , · · · , τ

t
yn} by Equation (4)

11 train predictor fT (r|τ, y) with all collected data {(τ, y, rτ,y)}T

triples, and use the trained predictor to choose the augmentation triple for eval-
uation. After enough training data is collected, a well-trained label-aware neural
predictor can be derived to provide accurate evaluations on all augmentation
triples for different labels.

3.4 Stage 2: Policy Construction

Policy construction is a process of mapping the evaluation results of stage 1 to
the final augmentation policy for training target networks. It is needed because
augmentation policies are usually searched on light-weight proxy tasks such as
density matching, but are evaluated on the complete tasks of image classifica-
tion. Even for methods that search on complete tasks such as AutoAugment [1],
they still naively concatenate multiple searched policies into a final policy. How-
ever, the policies for concatenation usually share a great potion of overlapped
transformations, resulting in a high degree of redundancy.

In this paper, we propose an effective policy construction method to itera-
tively select candidate augmentation triples for the final policy, based on the mu-
tual information criteria of minimum-redundancy maximum-relevance (mRMR)
[17]. Specifically, in LA3, the relevance metric is defined as the predicted reward
r̃ as it provides a direct evaluation on the performance of a certain augmenta-
tion triple. And the redundancy of an augmentation triple τ is defined as the
average number of intersecting operations between it and the already selected
augmentation triples Ts. Formally, in each iteration of policy construction, we
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Algorithm 2: Stage 2: Policy Construction

Input: Well-trained predictor fT (r|τ, y), search space A, number of
candidates Ncand

Output: Label-aware policy T ∗

1 for yi = y0, · · · , yn do
2 for τ ∈ A do
3 predict the reward r̃τ,yi = fT (τ, yi)

4 initialize label-specific policy Tyi ← ∅
5 for k = 0, · · · , Ncand do
6 for τ ∈ (A \ Tyi) do
7 calculate v(τ, yi) using Equation (5)

8 find augmentation triple with highest score τk = argmaxτ (v(τ, yi))

9 Tyi ← Tyi ∪ τk

10 T ∗ = {Ty0 , · · · , Tyn}

define the score v(τ, y) of each unselected augmentation triple τ at label y as

v(τ, y) = r̃τ,y − α× r × 1

|Ts|
∑
τs∈Ts

|τ ∩ τs|, (5)

where |τ ∩ τs| refers to the number of overlapped operations between τ and τs, r
is the average predicted reward of all augmentation triples in search space and is
used to scale the redundancy, and α is a hyper-parameter adjusting the weight
between the reward value and the redundancy value.

Algorithm 2 illustrates the overall process of the policy construction stage
where the goal is to find a label-aware policy containing a collection of aug-
mentation triples that maximizes the rewards while keeping a low degree of
redundancy. Specifically, for each label yi, we retrieve the predicted reward r̃τ,yi

for each augmentation triple τ in the search space A. Afterwards, a label-specific
policy Tyi

is constructed iteratively by calculating the score v(τ, yi) of unselected
augmentation triples with Equation (5) and add the augmentation triple with the
highest score to the policy until the required number of candidates Ncand is met.
Eventually, the label-aware policy T ∗ is built with each label yi corresponding
to a label-specific policy Tyi

.

4 Experiments

In this section, we first describe the details of our experiment settings. Then we
evaluate the proposed method, and compare it with previous methods in terms
of both performance and search cost. Finally, we perform thorough analysis on
the design of different modules in our algorithm. Code and searched policies are
released at https://github.com/Simpleple/LA3-Label-Aware-AutoAugment.

https://github.com/Simpleple/LA3-Label-Aware-AutoAugment
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4.1 Datasets, Metrics and Baselines

Following previous work, we evaluate our LA3 method on CIFAR-10/100 [14]
and ImageNet [3], across different networks including ResNet [8], WideResnet
[23], Shake-Shake [5] and PyramidNet [6]. Test accuracy is reported to assess the
effectiveness of the discovered policies, while the cost is assessed by the number
of GPU hours measured on Nvidia V100 GPUs. For a fair comparison, we list
results of stationary policies produced by static strategies, AutoAugment [1],
FastAA [16], and DADA [15]. We also include results from dynamic strategies,
PBA [9], AdvAA [25], and MetaAug [26], producing non-stationary policies as
target model training progresses.

4.2 Implementation Details

Policy Composition. For a fair comparison, we use the same 15 augmenta-
tion operations as PBA and DADA do, which is also the same set used by AA
and FastAA with SamplePairing [10] excluded. Additionally, “Identity” opera-
tion that returns the original image is introduced in our search space to prevent
images from being excessively transformed. Each label-specific policy consists of
Ncand = 100 augmentation triples, while in evaluation, each sample is augmented
by an augmentation triple randomly selected from the policy with random mag-
nitudes.

Neural Predictor. The network structure of the neural predictor is com-
posed of two embedding layers of size 100 that map labels and augmentation
operations to latent vectors and three fully-connected layers of hidden size 100
with Relu activation function. The representation of an augmentation triple is
constructed by combining the three augmentation operation embedding vectors
with mean-pooling and concatenating it with the label embedding vector. Then
it is passed into the FC layers to derive the predicted reward. The predictor
network is trained for 100 epochs with Adam optimizer [13] and a learning rate
of 0.01.

Search Details. For CIFAR-10/100, we split the original training set of
50, 000 samples into a training set Dtr of size 46, 000 to pre-train the model θ,
and a valid set Dval of 4, 000 for density matching. We search our policy on
WRN-40-2 network and apply the found policy to other networks for evaluation.
For ImageNet, we randomly sample 50 examples per class from the original
training set, and collect 50, 000 examples in total to form the valid set, where the
remaining examples are used as the training set. In the augmentation exploration
stage, the total number of iterations is set to T = 500, and the warm-up iterations
is set to T0 = 100. In the policy construction stage, α = 2.5 is used to calculate
the reward values of augmentation triples.

Evaluation. The evaluation is performed by training target networks with
the searched policies, and the results are reported as the mean test accuracy
and standard deviation over three runs with different random seeds. We do not
specifically tune the training hyperparameters and use settings consistent with
prior work. We include the details in the supplementary materials.



LA3 11

Table 1: Top-1 test accuracy (%) on CIFAR-10 and CIFAR-100. We mainly com-
pare our method LA3 with methods that also produce stationary augmentation
policies, including AA, FastAA and DADA. Results of dynamic policies (PBA,
AdvAA and MetaAug) are also provided for reference.

Dataset Model
Baseline AA FastAA DADA LA3 PBA AdvAA MetaAug

static static static static dynamic dynamic dynamic

CIFAR-10 WRN-40-2 94.7 96.3 96.4 96.4 97.08± 0.08 − − 96.79
WRN-28-10 96.1 97.4 97.3 97.3 97.80± 0.15 97.42 98.10 97.76
Shake-Shake (26 2x96d) 97.1 98.0 98.0 98.0 98.07± 0.11 97.97 98.15 98.29
Shake-Shake (26 2x112d) 97.2 98.1 98.1 98.0 98.12± 0.08 97.97 98.22 98.28
PyramidNet+ShakeDrop 97.3 98.5 98.3 98.3 98.55± 0.02 98.54 98.64 98.57

CIFAR-100 WRN-40-2 74.0 79.3 79.4 79.1 81.09± 0.28 − − 80.60
WRN-28-10 81.2 82.9 82.8 82.5 84.54± 0.03 83.27 84.51 83.79
Shake-Shake (26 2x96d) 82.9 85.7 85.4 84.7 85.17± 0.13 84.69 85.90 85.97
PyramidNet+ShakeDrop 86.0 89.3 88.3 88.8 89.02± 0.03 89.06 89.58 89.46

4.3 Experimental Results

CIFAR-10/100. Table 1 summarizes the CIFAR-10 and CIFAR-100 results of
different auto-augmentation methods on a wide range of networks. Among all
static methods that produce stationary policies, LA3 achieves the best perfor-
mance for all 5 target networks on CIFAR-10 and for 2 out of 4 target net-
works on CIFAR-100. When extending the comparison to also include dynamic
strategies, LA3 still achieves the best CIFAR-10 and CIFAR-100 accuracies on
WRN-40-2, which is the original network on which policy search was performed.
When transferring these augmentation policies found on WRN-40-2 to other
target network models for evaluation, LA3 also achieves excellent performance
comparable to the current best methods. In particular, LA3 achieves the highest
score for WRN-28-10 on CIFAR-100. These results evidently proves the effec-
tiveness of LA3 as an augmentation strategy to improve model performance,
and demonstrates the strong transferability of our label-aware policies across
different neural networks.

ImageNet Performance. In Table 2, we list the top-1 accuracy of different
methods evaluated on ResNet-50, as well as their computational cost. For a fair
comparison, we also indicate whether the Batch Augment (BA) trick [25], which
forms a large batch with multiple copies of transformed samples, is used for
each method, with “(BA)” after the method name. We also indicate the number
of transformations used in the batch augment. Note that the search cost for
dynamic methods is included in the training cost, since they learn a dynamic
augmentation policy during the training of the target model. We include the
results for LA3 both with and without batch augment.

From Table 2 we can observe that among all methods without the batch
augment trick, LA3 achieves the best ImageNet top-1 accuracy of 78.71%, while
the search only took 29.3 GPU hours, which is 15 times faster than FastAA.
Although DADA is faster, LA3 is substantially better in terms of the ImageNet
accuracy achieved.
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Table 2: ResNet-50 top-1 test accuracy (%) and computational cost on ImageNet.
Batch Augment (BA) trick is used in the training of LA3 (BA), AdvAA (BA)
and MetaAug (BA). The number of transformations used in batch augment is
also given in the table.

Baseline AA FastAA DADA LA3 LA3 (BA) AdvAA (BA) MetaAug (BA)
static static static static static dynamic dynamic

Batch Augment (BA) n/a n/a n/a n/a n/a ×4 ×8 ×4

ResNet-50 Acc (%) 76.3 77.6 77.6 77.5 78.71± 0.07 79.97± 0.07 79.40 79.74

Search Cost (h) − 15, 000 450 1.3 29.3 29.3 − −
Train Cost (h) 160 160 160 160 160 640 1, 280 1, 920

Total Cost (h) 160 15, 160 610 161.3 189.3 669.3 1, 280 1, 920

Meanwhile, LA3 (BA) achieves a new state-of-the-art ImageNet accuracy of
79.97% surpassing all existing auto-augmentation strategies including dynamic
strategies AdvAA and MetaAug, with a total computational cost 2 times and 3
times lower than theirs, respectively. The high cost of these dynamic policies is
due to the fact that augmentation policies may vary for each sample or batch
and must be learnt together with model training. By generating static policies,
LA3 is a simpler solution that decouples policy search from model training and
evaluation, which is easier to deploy in a production environment, without intro-
ducing specialized structures, e.g., the policy networks in AdvAA and MetaAug,
into target model training.

4.4 Ablation Study and Analysis

The reason of the success can be attributed to the following designs in our LA3
algorithm.

Label-Awareness. One of the main contributions of the paper is to lever-
age the label information and separately learn policies for samples of different
classes, which captures distinct characteristics of data and produces more ef-
fective label-aware policies. The results of LA3 variant without label-awareness
(i.e., searching for label-invariant policies) are shown in the first row of Table 3,
which are constantly lower than LA3 in all experimental settings. This confirms
that label-aware augmentation policies are effective at improving target network
accuracy.

Figure 3 gives an overview of the searched label-aware policies on CIFAR-
10, CIFAR-100 and ImageNet, where we calculate the occurrences of different
operations in each label-specific policy and plot their proportions in different
colors. We can see that the derived policies possess a high diversity by having all
the operations contributing to the final policy, meanwhile making the individual
policies notably different among labels. This observation further proves the need
for separately treating samples of different labels in augmentation policy search.

Neural Predictor. In addition to using density matching to simplify aug-
mentation assessment during search, we have adopted a label-aware neural pre-
dictor to learn the mapping from an augmentation triple to its label-specific
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(a) CIFAR-10 policy

0 50 100
Labels

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op
or
tio
n

ShearX
ShearY
TranslateX
TranslateY
Rotate
AutoContrast
Invert
Equalize
Solarize
Posterize
Contrast
Color
Brightness
Sharpness
Cutout
Identity

(b) CIFAR-100 policy
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(c) ImageNet policy

Fig. 3: The proportion of different augmentation operations in policies for differ-
ent labels in LA3 searched label-aware policies on CIFAR-10, CIFAR-100 and
ImageNet.

Table 3: Ablation analysis results in top-1 test accuracy (%) on CIFAR-10 and
CIFAR-100 with different designs removed from the full LA3 method.

CIFAR-10 CIFAR-100

WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

w/o Label-aware 96.70 97.11 80.08 82.76
w/o Stage 2 (top-100) 96.53 97.49 78.57 82.76
w/o Stage 2 (top-500) 96.70 97.26 79.85 84.04

LA3 97.08 97.80 81.09 84.54

reward. We now conduct a thorough evaluation to assess the performance of the
neural predictor. For each search iteration, the predictor is trained on 80% of
the history data and tested on the remaining 20% data in terms of both the
Spearman’s Rank Correlation and Mean Abusolute Error (MAE). As shown in
Figure 4, as the policy search on ImageNet progresses and more samples are
explored, the predictor can produce more accurate predictions of rewards, ob-
taining a 0.78 Spearman Correlation and a decreased MAE when the search
ends. This allows the predictor to properly guide the search process and find
effective policies.

Furthermore, the use of the predictor better utilizes the search history and
improves the sample efficiency during searching. As a result, the search cost of
our method is significantly reduced and is 15 times lower than FastAA.

Policy Construction. We evaluate the impact of our two-stage design on
CIFAR-10 and CIFAR-100 datasets, by showing the performance of model vari-
ants with different policy construction methods in row 2 and 3 of Table 3.

We compare our policy construction method based on mRMR to the com-
monly used Top-k selection method adopted in AA [1], FastAA [16] and DADA
[15]. We use two different k value settings of k = 100 equaling the number of can-
didates used in LA3, and k = 500 following the FastAA setting. We can see that
the policy that includes 500 augmentation triples per label with top predicted
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Fig. 4: The evaluation of the predictor during the policy search on ImageNet
given by the Spearman’s Rank Correlation and Mean Absolute Error over search
iterations.

rewards yields a better performance than the policy with top 100 augmentation
triples on both CIFAR-10 and CIFAR-100. This can be attributed to the better
diversity as more possibilities of augmentations are contained. However, increas-
ing the k value is not the best solution to improve augmentation diversity as the
augmentation triples with high rewards tend to have similar compositions and
may result in a high redundancy in the final policy. Our LA3 incorporates a pol-
icy construction method that selects high-reward augmentation triples, and at
the same time, keeping the lowest redundancy of the final policy. With the two-
stage design, our LA3 method beats the top-k variants and produces significant
improvements in all settings.

Limitation. Unlike dataset-level augmentation policies that can be learned
from one dataset and transferred to other datasets [1,9,25], LA3 learns label-
aware policies where labels are specific to a dataset, and hence lacks the trans-
ferability across datasets, although LA3 demonstrates transferability across net-
works as shown in Table 1. However, when dealing with a large dataset, LA3 can
work on a reduced version of the dataset to search for label-dependent policies
efficiently, and requires no tuning on training recipes when applying the found
policy to the entire dataset.

5 Conclusion

In this paper, we propose a label-aware data augmentation search algorithm
where label-specific policies are learned based on a two-stage algorithm, includ-
ing an augmentation exploration stage based on Bayesian Optimization and
neural predictors as well as a composite policy construction stage. Compared
with existing static and dynamic augmentation algorithms, LA3 is computa-
tionally efficient and produces stationary policies that can be easily deployed to
improve deep learning performance. LA3 achieves the state-of-the-art ImageNet
accuracy of 79.97% on ResNet-50 among all auto-augmentation methods, at a
substantially lower search cost than AdvAA and MetaAugment.
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