
Supplementary Materials for
Interpretations Steered Network Pruning via

Amortized Inferred Saliency Maps

Alireza Ganjdanesh* , Shangqian Gao* , and Heng Huang

Department of Electrical and Computer Engineering, University of Pittsburgh,
Pittsburgh, PA 15261, USA

{alireza.ganjdanesh, shg84, heng.huang}@pitt.edu
(* indicates equal contribution)

1 REAL-X Formulation Development for Interpretation
of Classifiers

This section provides details about the connections of REAL-X formulation pre-
sented in [6] for dimensionality reduction of samples and its version for inter-
preting a classifier. At first, we show the REAL-X formulation for dimensionality
reduction for completeness and then derive its formulation for the interpretation
of classifiers. Please refer to Section 3.2 of the main text for a description of the
notations.

1.1 REAL-X for Dimensionality Reduction

Amortized Explanation Models (AEMs) [6, 1, 16, 2] aim to learn to predict a
‘sample-specific’ mask for each sample such that preserved features contain all
information related to an outcome. An outcome in REAL-X [6] is the target
(label) of the sample, i.e.,

P(y|x = x) = P(y|x = m(x)) (1)

Here P is the joint population distribution on inputs and targets that is unknown
in practice.

We emphasize that the goal is not to explain a classifier’s predictions in
this formulation. Instead, it is dimensionality reduction by only keeping input
features (pixels in images) that preserve the information related to labels of
samples.

REAL-X trains a selector model fβ(·) implemented with a Deep Neural Net-
work (DNN) function parameterized by β that predicts a distribution over pos-
sible explanatory masks for a given sample, and fβ(·) ∈ RD. The distribution is
factorized as a product of marginal Bernoulli distributions over mask’s pixels,
i.e.,

https://orcid.org/0000-0002-9324-6135
https://orcid.org/0000-0001-9699-1790
https://orcid.org/0000-0002-3483-8333

2 A. Ganjdanesh et al.

qsel(m|x;β) =
D∏
i=1

qi(mi|x;β) (2)

qi(mi|x;β) ∼ Bernoulli((fβ(x))i)

During training, the selector model is encouraged to predicts masks that follow
Eq. (1). To do so, a predictor model is used that estimates population conditional
distribution of targets given masked inputs P(y|x = m(x)) and trained by the
following objective:

max
θ

E(x,y)∼PEm′∼B(0.5)[log(qpred(y = y|x = m′(x); θ))] (3)

This is equivalent to

min
θ

E(x,y)∼PEm′∼B(0.5)[KL(P(y|x = x)∥qpred(y|x = m′(x); θ))] (4)

where we represent the conditional population distribution P(y|x = x) with
one-hot vectors. Finally, given a pretrained predictor model, REAL-X trains a
selector model to maximize:

max
β

E(x,y)∼PEm′∼ qsel(m|x;β)[log(qpred(y = y|x = m′(x)))− ||m′||0] (5)

Similar to Eqs. (3, 4), the log-likelihood term in Eq. (5) can be replaced with

KL(P(y|x = x)||qpred(y|x = m′(x))) (6)

1.2 REAL-X for Interpretation of Classifiers

Now, we develop the formulation of REAL-X for interpreting a classifier’s pre-
dictions. The new goal is to learn to find a mask for each sample such that
it preserves information related to the classifier’s predictions in the remaining
input features, i.e.,

Qclass(y|x = x(i)) = Qclass(y|x = m(x(i))) (7)

Therefore, similar to Eq. (4), the objective for training a predictor model that
estimates the conditional distribution of the classifier given masked inputs will
be:

min
θ

x∼P(x)m′∼B(0.5)Lθ(x,m
′(x)) (8)

Lθ(x,m
′(x)) = KL(Qclass(y|x = x), qpred(y|x = m′(x); θ)) (9)

Interpretations Steered Network Pruning 3

where we have replaced the population conditional distribution P(y|x = x) in
Eq. (4) with the one for the classifier Qclass(y|x = x), which is usually imple-
mented as a softmax distribution.

Lastly, we can train a selector model guided by a pretrained predictor to
obey Eq. (7) by minimizing:

min
β

Ex∼P(x)Em′∼ qsel(m|x;β)[L(x,m
′(x)) + λ||m′||0] (10)

Again, this is equivalent to Eq. (5) by replacing the population conditional dis-
tribution P(y|x = x) in Eq. (6) with the one for the classifier, i.e., Qclass(y|x =
x). We use Eqs. (8, 10) to train REAL-X to explain decisions of a ResNet-56
architecture on CIFAR-10 in section 3.3 of the paper.

2 Implementation Details of Our AEM

As a recall, the formulation for training our AEM model is the selector minimiz-
ing:

min
β

Lsel(β) = Ex∼P(x)Em′∼qsel(m|x;β,v)[L(x,m
′(x)) + λ1R(m′) + λ2S(m′)]

(11)

R(m′) = ||m′||0

S(m′) =

M∑
i=1

N∑
j=1

[(m′
i,j −m′

i+1,j)
2 + (m′

i,j −m′
i,j+1)

2]

such that we factorize qsel(m|x;β,v) as a product of marginal Bernoulli distribu-
tions over the pixels. The parameters of Bernoulli distributions have RBF form
over pixel locations, i.e., we calculate the parameter for a pixel at location (z, t)
as:

fBP (z, t; cz, ct, σ) = exp (
−1

2σ2
[(z − cz)

2 + (t− ct)
2]) (12)

In this section, we provide more practical details about the implementation
of our AEM, namely the U-Net architecture’s layers and training procedure of
the selector model for ImageNet [13] and CIFAR-10 [8].

4 A. Ganjdanesh et al.

2.1 U-Net Architecture

We use a U-Net [12] architecture with a feature filter module proposed in [2] to
implement the selector module of our AEM model. It provides the flexibility to
use the feature extractor backbone of the pretrained classifier (e.g., scales 1-5 of
ResNet [4] before its global average pooling layer) as the encoder of U-Net and
only train the decoder part for computational efficiency. The feature filter is an
embedding layer (denoted by C) learned along with the decoder that performs
the initial localization of the target class by attenuating spatial locations that
do not contain the target [2]. It applies such operation on the output of the
encoder before inputting it to the decoder. Formally, the output filtered feature
Z at spatial location (i, j) given input features X and target class embedding
Cy is calculated as:

Zi,j = Xi,jσ(X
T
i,jCy) (13)

3 Experimental Setup

We use CIFAR-10 [8] and ImageNet [3] to validate the effectiveness of our pro-
posed model. For all experiments, we train the original classifier from scratch
(CIFAR-10) or adopt PyTorch [11] pretrained models (ImageNet). To train the
AEM model, we follow two main steps: 1) We train the predictor with Eq. 6
in the paper using the same architecture as the classifier starting from scratch
(CIFAR-10) or PyTorch pretrained checkpoint (ImageNet). 2) We use the con-
volutional feature extraction backbone of the classifier as the encoder of the
selector’s U-Net architecture and keep it frozen during training the decoder for
computational efficiency. (Fig. 2 in the paper) The decoder is trained with ob-
jective 9 in the paper and steered by the trained predictor from the previous
step.

CIFAR-10: For CIFAR-10 experiments, we evaluate our model on ResNet-
56 [4] and MobileNetV2 [14]. We train the predictor model for 300 epochs for
both models with a mini-batch size of 128 using ADAM optimizer [7] with
a learning rate of 0.0001, exponential decay rates (β1, β2) = (0.9, 0.999), and
weight decay of 0.0001. We train the selector model for 10 epochs with mini-
batch size 16 and the same optimization configuration. We found that the pa-
rameter setting λ1 = 0.2 and λ2 = 0.001 perform well for both models. We
randomly partition the official training set with a 0.9/0.1 ratio to form our
training/validation sets and use the official test set as our test partition. Dur-
ing pruning, we select 5% of the official training set as the subset for pruning.
We choose γ1 = 0.5 and γ2 = 2.0 for pruning. We optimize Eq. 11 in the
paper for pruning for 200 epochs by using the subset with ADAM optimizer.
After pruning, we finetune the model for 200 epochs with SGD optimizer of mo-
mentum 0.9, weight decay 0.0001, and start learning rate 0.1. The mini-batch
size is 128 for both pruning and finetuning. As mentioned in section 3.5 and
Fig. 2 of the paper, we use the convolutional feature extraction backbone of the

Interpretations Steered Network Pruning 5

classifier as the encoder of the selector’s U-Net architecture and keep it frozen
during training the decoder for computational efficiency. ResNet-56 [4] and Mo-
bileNetV2 [14] architectures generate three scales of representations before their
average pooling layer considering (number of channels, spatial dimensions) from
a raw input with 3×32×32 spatial dimensions. ResNet-56 scales’ representations
have {(16, 32 × 32), (32, 16 × 16), (64, 8 × 8)} dimensions, and these values for
MobileNetV2 are {(32, 32×32), (96, 16×16), (1280, 8×8)}. Therefore, their fea-
ture filter embedding layers have 10× 64 and 10× 1280 dimensions respectively
(CIFAR-10 has 10 classes). We use two upsampling blocks for CIFAR-10 exper-
iments. These blocks are characterized by 3 parameters: number of their input
features’ channels, number of pass-through features’ channels (input features
from the U-Net’s encoder), and number of their output channels [2]. These val-
ues are {(64, 32, 32), (32, 16, 16)} and {(1280, 96, 96), (96, 32, 32)} for upsampling
layers of ResNet-56 and MobileNetV2 respectively. An upsampling layer, at first,
upsamples a low-resolution feature map by a factor of 2 using 2D-Convolution
and Pixel Shuffle blocks [15]. Then, it concatenates upsampled features with
pass-through features and applies three Bottleneck blocks [4] on them. Please
refer to our code implementations for more details.

Finally, we use a 2D-Convolution layer followed by three non-linearities that
map the last upsampling layer’s output to 3 values corresponding to predicted
(cz, ct, σ) parameters for the output RBF kernel. We set the kernel size of the
convolution filter to the upsampling layer’s output spatial dimension (32). In
addition, we set the number of output channels to 3. We use two different non-
linear activation functions, namely one for calculating cz, ct and the other for σ
that we elaborate on them in Section 3.

ImageNet: Most of the details are similar to the CIFAR-10 experiments
described above. We use ResNet-34, 50, 101 [4] and MobileNetV2 [14] to assess
our model’s performance on ImageNet [13]. Training on the full dataset is com-
putationally intensive. We randomly select 0.1/0.02 of the official training set
as our training/validation partitions and use the official validation set as our
test set for our AEM model’s training and evaluation. We train the predictor
for 100 epochs with batch size 128 and the selector for 5 epochs with batch size
64. The optimization parameters are the same as CIFAR-10 experiments. The
configuration λ1 = 1.0 and λ2 = 0.0001 showed convincing performance for all
architectures. In ImageNet, we use the previously mentioned subset for pruning.
During pruning, we optimize Eq. 11 in the paper for 100 epochs with the ADAM
optimizer. γ1 and γ2 are the same as the CIFAR-10 setting. After pruning, we
finetune all architectures for 100 epochs by using SGD with a momentum of
0.9 with a start learning rate of 0.1. For MobileNet-V2, we use a start learning
rate of 0.05 and a cosine annealing learning rate scheduler, as mentioned in the
original paper [14]. We set the weight decay to 0.0001 for ResNet models and
0.00004 for MobileNetV2. We implement our method using PyTorch [11]. Given
an input image with 3 channels and 224 × 224 spatial dimensions, ResNet-34,
50, and 101 calculate 5 scales with (number of channels, spatial dimensions) as
follows:

6 A. Ganjdanesh et al.

– {(64, 56× 56), (64, 56× 56), (128, 28× 28), (256, 14× 14), (512, 7× 7)}
for ResNet-34,

– {(64, 56×56), (256, 56×56), (512, 28×28), (1024, 14×14), (2048, 7×7)}
for ResNet-50 and ResNet 101,

– {(32, 112× 112), (24, 56× 56), (32, 28× 28), (96, 14× 14), (1280, 7× 7)}
for MobileNetV2.

Thus, the embedding layer of their feature filter layer is 1000× 512 for ResNet-
34, 1000 × 2048 for ResNet-50 as well as ResNet-101, and 1000 × 1280 for Mo-
bileNetV2.

We use 3 upsampling blocks for these architectures. The values of (# input
features’ channels, # pass-through features’ channels, # output channels) for
upsampling layers are as follows:

– {(512, 256, 256), (256, 128, 128), (128, 64, 64)} for ResNet-34.
– {(2048, 1024, 1024), (1024, 512, 512), (512, 256, 256)} for ResNet-50 and ResNet-

101.
– {(1280, 96, 96), (96, 32, 32), (32, 24, 24)} for MobileNetV2.

Finally, we use a 2D-Convolution with kernel size 56 and 3 output channels to
map the last upsampling layer’s outputs to 3 numbers for (cz, ct, σ).

Proposed Output Nonlinearities for the Selector Model Center’s Co-
ordinates Nonlinearity: As mentioned in Section 3.5 in the paper, if we con-
sider a two-axis coordinate system for an image’s spatial dimensions and the
system’s origin being on the center of it, the values cz, ct can take any real val-
ues theoretically. However, we know that the salient part of the image is within
its spatial dimensions, e.g., cz, ct ∈ [−16, 16] for CIFAR-10 images with 32× 32
size. Therefore, we use Tanh non-linearity to ensure that the output values are in
the range of image dimensions. In addition, to prevent the vanishing gradients
phenomenon in Tanh, we set its ‘active’ range being roughly equal to spatial
dimensions of an input image, i.e., we calculate cz, ct as:

– cz = 14 ∗ Tanh(uz/14) + 16
– ct = 14 ∗ Tanh(ut/14) + 16

We show this functional form in Fig. 1. As can be seen, when its input u lies in
the interval [−14, 14], the output lies in [2, 30], which corresponds to the 28× 28
frame into a 32× 32 image. Moreover, when u ∈ [−14, 14], the Tanh function is
in its active form, which prevents the known vanishing gradient challenge with
Tanh.

For ImageNet experiments, we use the following form to ensure that the
center of predicted RBF is in the central 220× 220 frame of a 224× 224 image,
and we show it in Fig. 3.

– cz = 108 ∗ Tanh(uz/108) + 112
– ct = 108 ∗ Tanh(ut/108) + 112

Interpretations Steered Network Pruning 7

-20 -15 -10 -5 0 5 10 15 20
0

5

10

15

20

25

30

Nonlinear Function for Center's Coordinates for CIFAR-10

Fig. 1: Our proposed nonlinear function to calculate the center’s coordinates of
a predicted RBF Kernel of the selector for the CIFAR-10 dataset.

Expansion Parameter’s (σ) Nonlinearity: the parameter σ in Eq. (12) de-
termines the degree of RBF expansion on an input image’s surface and should
be a positive real number. Therefore, we use ‘Softplus’ non-linearity to calculate
it, which is a smooth approximation of ReLU [10] and is always positive. It is
calculated with the formula SoftP lus(u) = log(1 + exp(u)) and is shown in the
Fig. 2. We use this function to calculate the expansion parameter for both sets
of experiments on CIFAR-10 and ImageNet.
Selector Network’s Training Initialization: We use the standard network
initialization implemented in PyTorch [11] to train a decoder of a selector’s
U-Net. However, this initialization makes the output values of the output 2D-
convolution layer close to zero at the beginning of training. As a result, the
output σ will be close to zero, and it may cause instability in the starting itera-
tions of training. To prevent such instability, we empirically found that setting
the 2D-convolution layer’s bias weight corresponding to σ to be about a third of
the input image’s spatial dimension can make the model’s convergence faster and
training more stable. Thus, we initialize the bias weight to be 10 for CIFAR-10
experiments and 80 for ImageNet ones.

3.1 Gumbel-Sigmoid Reparameterization Strategy for Training
Selector Model

We use Eq. (11) as the objective to train our selector model. Thus, we need to
minimize the expectation on masks that the selector model parameterizes their

8 A. Ganjdanesh et al.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Nonlinear Function for Expansion Parameter

Fig. 2: Our proposed nonlinear function to calculate the expansion parameter of
a predicted RBF Kernel of the selector for the CIFAR-10 dataset.

distribution. Empirically, we use Monte-Carlo sampling and sample one mask for
each input image x. However, sampling is not a differentiable operation. Hence,
it is impossible to train the selector’s parameters by optimizing them using back-
propagation schemes when we directly sample from the predicted distribution.
A workaround to this problem is to replace non-differentiable sampling from a
categorical distribution with a differentiable sampling from the Gumbel-Sigmoid
distribution [5, 9]. In summary, the binary mask can be generated by using the
following function with the Gumbel-Sigmoid trick:

mi,j =
1

1 + exp(− log(fBP (i,j;cz,ct,σ))+gj
τ)

(14)

such that gi values are sampled from the Gumbel distribution, and τ is called
the ‘temperature’ parameter that determines ‘sharpness’ of the sample. Low τ
values result in samples close to Bernoulli distribution (binary), but higher τ
values make the output distribution more similar to uniform. We set τ = 1 for
training our selector model for all experiments. We then can insert Eq. (14) into
Eq. (11) to optimize the selector model.

Interpretations Steered Network Pruning 9

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

50

100

150

200

Nonlinear Function for Center's Coordinates

Fig. 3: Our proposed nonlinear function to calculate the center’s coordinates of
a predicted RBF Kernel of the selector for the ImageNet dataset.

3.2 More Details about Pruning

Similarly, we also use Gumbel-Sigmoid trick to characterize each channel:

vl =
1

1 + exp(− θgl+gj+b

τ)
(15)

where θgl is the parameters for l-th layer, and v = [v1, · · · , vL]. We also insert
a constant b for starting pruning from the whole model. In experiments, we set
b = 3 and τ = 0.4 for pruning channels. To achieve pruning, we multiply vl to
its corresponding feature map Fl after activation functions:

F̂l = vl ⊙Fl (16)

where ⊙ is element-wise product, and vl is first expanded to the same size of Fl.
In practice, we let Rres(x, y) = log(max(x, y)/y), which effectively push Rres

to 0. Other regression loss functions like MSE and MAE can not achieve similar
functions, and they often fail when applied to compact models like MobileNet-
V2 [14].

3.3 More Samples of our AEM’s Predictions

We show visual examples of our proposed AEM’s predictions on ImageNet and
CIFAR-10 in the following pages. In each row from left to right, we show an

10 A. Ganjdanesh et al.

input image, the predicted distribution of explanatory masks over the input, the
predicted distribution shown over the input image, a mask sampled from the
predicted distribution, and the input masked by the sampled mask. ImageNet
images have higher resolution than CIFAR-10 ones. Thus, their sampled masks
look more coherent than CIFAR-10 images. However, we can see that our selector
model almost always puts the mode of its RBF kernel on the salient part of the
input.

Interpretations Steered Network Pruning 11

Fig. 4: ImageNet Examples. Columns from left to right: input image, dis-
tribution over explanatory masks predicted by selector, predicted distribution
shown over input, a sampled mask from the predicted distribution, and input
image masked by the sampled mask. Class of input images from top to
bottom: ‘Gyromitra’, ‘Honeycomb’, ‘Strainer’, ‘English springer’, ‘Indri brevi-
caudatus’, ‘Hartebeest’.

12 A. Ganjdanesh et al.

Fig. 5: ImageNet Examples. Columns from left to right: input image,
distribution over explanatory masks predicted by selector, predicted distribution
shown over input, a sampled mask from the predicted distribution, and input
image masked by the sampled mask. Class of input images from top to
bottom: ‘Australian terrier’, ‘Scoreboard’, ‘Microwave oven’, ‘Barn’, ‘Rosehip’,
‘Samoyed’.

Interpretations Steered Network Pruning 13

Fig. 6: ImageNet Examples. Columns from left to right: input image,
distribution over explanatory masks predicted by selector, predicted distribution
shown over input, a sampled mask from the predicted distribution, and input
image masked by the sampled mask. Class of input images from top to
bottom: ‘Miniskirt’, ‘Soccer ball’, ‘Jeep’, ‘Albatross’, ‘Tench’, ‘China cabinet’.

14 A. Ganjdanesh et al.

Fig. 7: ImageNet Examples. Columns from left to right: input image, dis-
tribution over explanatory masks predicted by selector, predicted distribution
shown over input, a sampled mask from the predicted distribution, and input
image masked by the sampled mask. Class of input images from top to bot-
tom: ‘Kimono’, ‘Whippet’, ‘Poncho’, ‘Drilling Platform’, ‘Steel Drum’, ‘Black
Grouse’.

Interpretations Steered Network Pruning 15

Fig. 8: ImageNet Examples. Columns from left to right: input image, dis-
tribution over explanatory masks predicted by selector, predicted distribution
shown over input, a sampled mask from the predicted distribution, and input
image masked by the sampled mask. Class of input images from top to bot-
tom: ‘Binoculars’, ‘Horned viper’, ‘Native bear’, ‘Hedgehog’, ‘Japanese spaniel’,
‘Reel’.

16 A. Ganjdanesh et al.

Fig. 9: CIFAR-10 Examples. Class of input images from top to bot-
tom: ‘Ship’, ‘Truck’, ‘Automobile’, ‘Frog’, ‘Horse’, ‘Bird’, ‘Airplane’, ‘Bird’,
‘Dog’ ‘Cat’, ‘Cat’, ‘Cat’, ‘Bird’.

Interpretations Steered Network Pruning 17

Fig. 10:CIFAR-10 Examples. Class of input images from top to bottom:
‘Bird’, ‘Ship’, ‘Frog’, ‘Cat’, ‘Dog’, ‘Frog’, ‘Airplane’, ‘Automobile’, ‘Horse’ ‘Bird’,
‘Bird’, ‘Deer’, ‘Horse’.

18 A. Ganjdanesh et al.

Fig. 11:CIFAR-10 Examples. Class of input images from top to bottom:
‘Frog’, ‘Ship’, ‘Ship’, ‘Cat’, ‘Airplane’, ‘Ship’, ‘Horse’, ‘Horse’, ‘Truck’, ‘Dog’,
‘Automobile’, ‘Frog’, ‘Deer’.

Interpretations Steered Network Pruning 19

Fig. 12: CIFAR-10 Examples. Class of input images from top to bot-
tom: ‘Dog’, ‘Airplane’, ‘Horse’, ‘Automobile’, ‘Horse’, ‘Ship’, ‘Ship’, ‘Automo-
bile’, ‘Cat’, ‘Airplane’, ‘Ship’, ‘Airplane’, ‘Dog’.

20 A. Ganjdanesh et al.

References

1. Chen, J., Song, L., Wainwright, M., Jordan, M.: Learning to explain: An
information-theoretic perspective on model interpretation. In: International Con-
ference on Machine Learning. pp. 883–892. PMLR (2018)

2. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In:
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan,
S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA. pp. 6967–6976 (2017)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

5. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017),
https://openreview.net/forum?id=rkE3y85ee

6. Jethani, N., Sudarshan, M., Aphinyanaphongs, Y., Ranganath, R.: Have we learned
to explain?: How interpretability methods can learn to encode predictions in their
interpretations. In: International Conference on Artificial Intelligence and Statis-
tics. pp. 1459–1467. PMLR (2021)

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

9. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous re-
laxation of discrete random variables. In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net (2017), https://openreview.net/forum?id=
S1jE5L5gl

10. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. pp.
807–814. Omnipress (2010), https://icml.cc/Conferences/2010/papers/432.pdf

11. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32, 8026–8037 (2019)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

13. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: Ima-
genet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–
252 (2015). https://doi.org/10.1007/s11263-015-0816-y, https://doi.org/10.1007/
s11263-015-0816-y

https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

Interpretations Steered Network Pruning 21

14. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

15. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 1874–1883 (2016)

16. Yoon, J., Jordon, J., van der Schaar, M.: Invase: Instance-wise variable selection
using neural networks. In: International Conference on Learning Representations
(2018)

	Supplementary Materials for Interpretations Steered Network Pruning via Amortized Inferred Saliency Maps

