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Abstract. Well-known activation functions like ReLU or Leaky ReLU
are non-differentiable at the origin. Over the years, many smooth ap-
proximations of ReLU have been proposed using various smoothing tech-
niques. We propose new smooth approximations of a non-differentiable
activation function by convolving it with approximate identities. In par-
ticular, we present smooth approximations of Leaky ReLU and show
that they outperform several well-known activation functions in vari-
ous datasets and models. We call this function Smooth Activation Unit
(SAU). Replacing ReLU by SAU, we get 5.63%, 2.95%, and 2.50% im-
provement with ShuffleNet V2 (2.0x), PreActResNet 50 and ResNet 50
models respectively on the CIFAR100 dataset and 2.31% improvement
with ShuffleNet V2 (1.0x) model on ImageNet-1k dataset.

Keywords: Smooth Activation Function, Neural Network.

1 Introduction

Deep networks form a crucial component of modern deep learning. Non-linearity
is introduced in such networks by the use of activation functions, and the choice
has a substantial impact on network performance and training dynamics. Design-
ing a new novel activation function is a difficult task. Handcrafted activations like
Rectified Linear Unit (ReLU) ([32]), Leaky ReLU ([29]) or its variants are very
common choices for activation functions and exhibits promising performance
on different deep learning tasks. There are many activations that have been
proposed so far and some of them are ELU ([3]), Parametric ReLU (PReLU)
([8]), Swish ([36]), Padé Activation Unit (PAU) ([31], ACON [27], Mish ([30]),
GELU ([10]), ReLU6 ([20]), Softplus ([50]) etc. Nevertheless, ReLU remains the
favourite choice among the deep learning community due to its simplicity and
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better performance when compared to Tanh or Sigmoid, though it has a draw-
back known as dying ReLU, in which the network starts to lose the gradient
direction due to the negative inputs and produces zero outcome. In 2017, Swish
([36]) was proposed by the Google brain team. Swish was found by automatic
search technique, and it has shown some promising performance across different
deep learning tasks.

Activation functions are usually handcrafted. PReLU ([8]) tries to overcome
this problem by introducing a learnable negative component to ReLU ([32]).
Maxout ([6]) and Mixout ([49]) are constructed with piecewise linear compo-
nents, and theoretically, they are universal function approximators, though they
increase the number of parameters in the network. Recently, meta-ACON ([27]),
a smooth activation, has been proposed, which is the generalization of the ReLU
and Maxout activations and can smoothly approximate Swish. Meta-ACON has
shown some good improvement on both small models and highly optimized large
models. PAU ([31]) is a promising candidate for trainable activations, which have
been introduced recently based on rational function approximation.

In this paper, we introduce a smooth approximation of known non-smooth
activation functions like ReLU or Leaky ReLU based on the approximation of
identity. Our experiments show that the proposed activations improve the per-
formance of different network architectures compared to ReLU on different deep
learning problems.

2 Mathematical formalism

2.1 Convolution

Convolution is a binary operation, which takes two functions f and g as input,
and outputs a new function denoted by f ∗ g. Mathematically, we define this
operation as follows

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y) dy. (1)

The convolution operation has several properties. Below, we will list two of them
which will be used later in this article.

P1. (f ∗ g)(x) = (g ∗ f)(x),
P2. If f is n-times differentiable with compact support over R and g is locally

integrable over R then f ∗ g is at least n-times differentiable over R.

Property P1 is an easy consequence of definition (1). Property P2 can be easily
obtained by moving the derivative operator inside the integral. Note that this
exchange of derivative and integral requires f to be of compact support. An
immediate consequence of property P2 is that if one of the functions f or g is
smooth with compact support, then f ∗g is also smooth. This observation will be
used later in the article to obtain smooth approximations of non-differentiable
activation functions.
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2.2 Mollifier and Approximate identities

A smooth function ϕ over R is called a mollifier if it satisfies the following three
properties:

1. It is compactly supported.
2.

∫
R ϕ(x) dx = 1.

3. lim
ϵ→0

ϕϵ(x) := lim
ϵ→0

1

ϵ
ϕ(x/ϵ) = δ(x), where δ(x) is the Dirac delta function.

We say that a mollifier ϕ is an approximate identity if for any locally inte-
grable function f over R, we have

lim
ϵ→0

(f ∗ ϕϵ)(x) = f(x) pointwise for all x.

2.3 Smooth approximations of non-differentiable functions

Let ϕ be an approximate identity. Choosing ϵ = 1/n for n ∈ N, one can define

ϕn(x) := nϕ(nx). (2)

Using the property of approximate identity, for any locally integrable function
f over R, we have

lim
n→∞

(f ∗ ϕn)(x) = f(x) pointwise for all x.

That is, for large enough n, f ∗ϕn is a good approximation of f . Moreover, since
ϕ is smooth, ϕn is smooth for each n ∈ N and therefore, using property P2,
f ∗ ϕn is a smooth approximation of f for large enough n.

Let σ : R → R be any activation function. Then, by definition, σ is a contin-
uous and hence, a locally integrable function. For a given approximate identity
ϕ and n ∈ N, we define a smooth approximation of σ as σ ∗ ϕn, where ϕn is
defined in (2).

3 Smooth Activation Unit (SAU)

Consider the Gaussian function

ϕ(x) =
1√
2π

e−
x2

2

which is a well-known approximate identity. Consider the Leaky Rectified Linear
Unit (Leaky ReLU) activation function

LeakyReLU[α](x) =

{
x x ≥ 0

αx x < 0
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Fig. 1: Approximation of Leaky ReLU (α = 0.25) using SAU. The left figure
shows that SAU approximates Leaky ReLU smoothly, and in the right figure,
we plot the same functions on a larger domain range.

Note that LeakyReLU[α] activation function is hyperparametrized by α and it
is non-differentiable at the origin for all values of α except α = 1. For α = 0,
LeakyReLU[α] reduces to well known activation function ReLU ([32]) while for
constant and trainable α, LeakyReLU[α] reduces to Leaky ReLU ([29]) and
Parametric ReLU ([8]) respectively. For a given n ∈ N, and α ̸= 1, a smooth
approximation of LeakyReLU[α] is given by

G(x, α, n) = (LeakyReLU[α] ∗ ϕn)(x) =
1

2n

√
2

π
e

−n2x2

2 +
(1 + α)

2
x (3)

+
(1− α)

2
x erf

(
nx√
2

)
where erf is the Gaussian error function

erf(x) =
2√
π

∫ x

0

e−t2 dt.

For the rest of the paper, we will only consider the approximate identity
of Leaky ReLU given in (3) as the activation function. We call this function
Smooth Activation Unit (SAU). Approximation of Leaky ReLU (α = 0.25) by
SAU is given in figure 1. It is clear from the figure 1 that SAU can smoothly
approximate Leaky ReLU (as well as ReLU or its variants) quite well. We note
that in GELU ([10]) paper, the authors use the product of x with the cumulative
distribution function of a suitable probability distribution (see ([10]) for further
details).

3.1 Learning activation parameters via back-propagation

Back-propagation algorithm ([22]) and gradient descent is used in neural net-
works to update Weights and biases. Parameters in trainable activation functions
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are updated using the same technique. The forward pass is implemented in both
Pytorch ([35]) & Tensorflow-Keras ([1]) API and the parameters are updated by
automatic differentiation. Alternatively, CUDA ([34]) can be used to implement
(see ([29])) the gradients of equation 3 for the input x and the parameters α &
n and it can be computed as follows:

∂G

∂x
=

−nx

2

√
2

π
e

−n2x2

2 +
(1 + α)

2
+

(1− α)

2
erf

(
nx√
2

)
+

n(1− α)√
2π

x e−
n2x2

2

(4)

∂G

∂α
=

x

2

(
1− erf

(
nx√
2

))
. (5)

∂G

∂n
= − 1

2n2

√
2

π
e

−n2x2

2 − x2

2

√
2

π
e

−n2x2

2 +
x2(1− α)√

2π
e−

n2x2

2 . (6)

where

d

dx
erf(x) =

2√
π
e−x2

α and n can be either hyperparameters or trainable parameters.
Now, note that the class of neural networks with SAU activation function is
dense in C(K), where K is a compact subset of Rn and C(K) is the space of all
continuous functions over K.
The proof follows from the following proposition (see ([31])).

Proposition 1. (Theorem 1.1 in Kidger and Lyons, 2020 ([16])) :-
Let ρ : R → R be any continuous function. Let Nρ

n represent the class of neural
networks with activation function ρ, with n neurons in the input layer, one
neuron in the output layer, and one hidden layer with an arbitrary number of
neurons. Let K ⊆ Rn be compact. Then Nρ

n is dense in C(K) if and only if ρ is
non-polynomial.

4 Experiments

To explore and compare the performance of SAU, we consider eight popular
standard activation functions on different standard datasets and popular net-
work architectures on standard deep learning problems like image classification,
object detection, semantic segmentation, and machine translation. We consider
the following activations to compare with SAU: ReLU, Leaky ReLU, Parametric
ReLU (PReLU), ELU, ReLU6, Softplus, PAU, Swish, and GELU. It is evident
from the experimental results in the next sections that SAU outperform in most
cases compared to the standard activations. We consider α as a hyperparameter
and n as a trainable parameter for the rest of our experiments. The value of n
is initialised at 20000 and updated via backpropagation according to equation
6. To run the experiments, we use an NVIDIA Tesla V100 GPU with 32GB RAM.
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4.1 Image Classification

MNIST, Fashion MNIST and The Street View House Numbers (SVHN)
Database: In this section, we present results on MNIST ([24]), Fashion MNIST
([45]), and SVHN ([33]) datasets. The MNIST and Fashion MNIST databases
have a total of 60k training and 10k testing 28× 28 grey-scale images with ten
different classes. SVHN consists of 32 × 32 RGB images with a total of 73257
training images and 26032 testing images with ten different classes. We have ap-
plied standard data augmentation methods like rotation, zoom, height shift, and
shearing on the three datasets. We report results with LeNet [23], AlexNet ([21]),
and VGG-16 ([40]) (with batch-normalization ([15])) architecture in Table 1, Ta-
ble 2, and Table 3 respectively. For all the experiments to train a model on these
three datasets, we use a batch size of 128, stochastic gradient descent ([37], [17])
optimizer with 0.9 momentum & 5e−4 weight decay, and trained all networks
up-to 100 epochs. We begin with 0.01 learning rate and decay the learning rate
with the cosine annealing ([26]) learning rate scheduler. We report more exper-
iments on these datasets with a custom-designed model in the supplementary
material.

Table 1: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on MNIST, Fashion MNIST, and SVHN Datasets
for Image Classification Problem with the LeNet Architecture. top-1 Test Ac-
curacy (in %) is Reported in the Table for the Mean of 10 Different Runs. We
Report mean±std in the Table.

Activation Function MNIST Fashion MNIST SVHN

ReLU 99.21± 0.10 91.51± 0.20 92.17± 0.19

Leaky ReLU 99.17± 0.10 91.61± 0.21 92.31± 0.18

PReLU 99.27 ± 0.09 91.62 ± 0.18 92.05± 0.21

ReLU6 99.29 ± 0.08 91.57 ± 0.17 92.25± 0.17

ELU 99.28± 0.10 91.48± 0.19 92.20± 0.18

Softplus 99.06± 0.16 91.21± 0.23 91.89± 0.25

PAU 99.34± 0.07 91.69 ± 0.12 92.31± 0.22

Swish 99.31± 0.07 91.64 ± 0.14 92.39± 0.20

GELU 99.29± 0.06 91.61 ± 0.14 92.42± 0.20

SAU 99.40 ± 0.05 91.47 ± 0.16 92.61 ± 0.12

CIFAR: The CIFAR ([19]) is one of the most popular databases for image classi-
fication problem consists of a total of 60k 32×32 RGB images and is divided into
50k training and 10k test images. CIFAR has two different datasets- CIFAR10
and CIFAR100 with a total of 10 and 100 classes, respectively. We report the
top-1 accuracy on Table 6 and Table 4 on CIFAR10 and CIFAR100 datasets
respectively. We consider MobileNet V1 ([11]), MobileNet V2 ([39]), Shufflenet
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V2 ([28]), PreActResNet ([9]), ResNet ([7]), Inception V3 ([42]), squeeze and ex-
citation networks (SeNet) [12], ResNext [46], LeNet [23], AlexNet [21], DenseNet
([13]), Xception [2], Squeezenet [14], WideResNet ([47]), VGG ([40]) (with batch-
normalization ([15])), and EfficientNet B0 ([43]). For all the experiments to train
a model on these two datasets, we use a batch size of 128, stochastic gradient de-
scent ([37], [17]) optimizer with 0.9 momentum & 5e−4 weight decay, and trained
all networks up-to 200 epochs. We begin with 0.01 learning rate and decay the
learning rate by a factor of 10 after every 60 epochs. Standard data augmenta-
tion methods like horizontal flip and rotation are applied to both datasets. It
is noticeable from these two tables that by replacing ReLU with SAU, there is
an increment in top-1 accuracy from 1% to more than 5% in most of the mod-
els. More detailed results on these two datasets with other baseline activations
are reported in the supplementary material. Training and test accuracy & loss
curves for baseline activation functions and SAU are given in Figures 2 and 3
respectively on CIFAR100 dataset on ShuffleNet V2 (2.0x) network. From these
learning curves, it is evident that after training a few epochs, SAU has stable &
smooth learning and higher accuracy and lower loss on the test dataset compared
to other baseline activation functions.

Table 2: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on MNIST, Fashion MNIST, and SVHN Datasets
for Image Classification Problem with the Alexnet Architecture. top-1 Test Ac-
curacy (in %) is Reported in the Table for the Mean of 10 Different Runs. We
Report mean±std in the Table.

Activation Function MNIST Fashion MNIST SVHN

ReLU 99.51± 0.06 92.77± 0.18 95.11± 0.14

Leaky ReLU 99.50± 0.06 92.79± 0.20 95.21± 0.17

PReLU 99.48 ± 0.08 92.76 ± 0.18 95.19 ± 0.17

ReLU6 99.55 ± 0.06 93.01 ± 0.16 95.22 ± 0.15

ELU 99.56± 0.05 92.89± 0.17 95.30± 0.18

Softplus 99.22± 0.10 92.32± 0.25 94.82± 0.21

PAU 99.53± 0.08 93.01 ± 0.17 95.22 ± 0.13

Swish 99.58± 0.06 92.96± 0.16 95.32± 0.14

GELU 99.55± 0.06 93.05 ± 0.14 95.28 ± 0.14

SAU 99.64 ± 0.04 93.17 ± 0.14 95.45 ± 0.11

Also, We compare the performance of SAU with other baseline activations
with state-of-the-art data augmentation methods like Mixup [48] on CIFAR 100
dataset with ShuffleNet V2 (2.0x), ResNet 18 & ResNet 50 models, and we got
very good improvement over the baseline activations. Results are reported in
Table 5 for the mean of 10 different runs. We use the same experimental setup
as used for the CIFAR100 dataset.
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Table 3: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on MNIST, Fashion MNIST, and SVHN Datasets
for Image Classification Problem with the VGG16 Architecture. top-1 Test Ac-
curacy (in %) is Reported in the Table for the Mean of 10 Different Runs. We
Report mean±std in the Table.

Activation Function MNIST Fashion MNIST SVHN

ReLU 99.55± 0.07 93.75± 0.14 96.04± 0.12

Leaky ReLU 99.59± 0.05 93.89± 0.14 96.12± 0.15

PReLU 99.58 ± 0.07 93.85 ± 0.16 96.12 ± 0.17

ReLU6 99.59 ± 0.05 93.88 ± 0.11 96.18 ± 0.16

ELU 99.51± 0.05 93.82± 0.16 96.13± 0.14

Softplus 99.34± 0.12 93.69± 0.19 95.88± 0.21

PAU 99.58± 0.05 94.27± 0.12 96.20± 0.15

Swish 99.54± 0.06 94.10± 0.12 96.26± 0.13

GELU 99.60± 0.04 94.17 ± 0.12 96.23 ± 0.13

SAU 99.67 ± 0.04 94.40 ± 0.12 96.41 ± 0.12

Fig. 2: Top-1 Train and Test accuracy
Curves (Higher is Better) for SAU and
Baseline Activation Functions on CI-
FAR100 Dataset with ShuffleNet V2
(2.0x) Model.

Fig. 3: Top-1 Train and Test Loss
Curves (Lower is Better) for SAU and
Baseline Activation Functions on CI-
FAR100 Dataset with ShuffleNet V2
(2.0x) Model.
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Table 4: A Detailed Comparison between SAU Activation and Other Baseline
Activation Functions (See Supplementary Document for More Detailed Exper-
imental Results) on the CIFAR100 Dataset for Image Classification Problem
with Different Popular Network Architectures. top-1 Test Accuracy (in %) is
Reported in the Table for the Mean of 10 Different Runs. We Report mean±std
in the Table.

Model ReLU SAU

Top-1 accuracy (mean± std) Top-1 accuracy (mean ± std)

Shufflenet V2 0.5x 61.76 ± 0.27 64.39 ± 0.23
Shufflenet V2 1.0x 64.12 ± 0.28 68.41 ± 0.24
Shufflenet V2 1.5x 66.52 ± 0.28 71.97 ± 0.24
Shufflenet V2 2.0x 66.94 ± 0.24 72.57 ± 0.21

PreActResNet 18 72.58 ± 0.24 74.01 ± 0.22
PreActResNet 34 72.92 ± 0.24 75.37 ± 0.24
PreActResNet 50 73.27 ± 0.25 76.22 ± 0.22

ResNet 18 73.02 ± 0.25 74.27 ± 0.22
ResNet 34 73.12 ± 0.26 74.64 ± 0.23
ResNet 50 73.89 ± 0.23 76.39 ± 0.20

MobileNet V1 70.95 ± 0.26 72.09 ± 0.23
MobileNet V2 73.85 ± 0.24 75.69 ± 0.19

Inception V3 74.03 ± 0.27 76.01 ± 0.22

WideResNet 28-10 75.89 ± 0.23 77.39 ± 0.20

DenseNet 121 75.72 ± 0.27 77.11 ± 0.23

EffitientNet B0 76.22 ± 0.24 78.07 ± 0.26

VGG16 71.10 ± 0.30 71.18 ± 0.28

Table 5: Top-1 Test Accuracy Reported with Mixup Augmentation Method on
CIFAR100 Dataset for the Mean of 10 Different Runs. We Report mean±std in
the Table.

Activation Function ShuffleNet V2 (2.0x) ResNet 50 ResNet 18

ReLU 69.10 ± 0.24 75.10 ± 0.23 73.88 ± 0.24

Leaky ReLU 69.04 ± 0.23 75.04 ± 0.23 73.97 ± 0.26

PReLU 69.29 ± 0.25 75.17 ± 0.25 74.12 ± 0.25

ReLU6 69.36 ± 0.23 75.27 ± 0.22 74.17 ± 0.23

ELU 69.34 ± 0.24 75.32 ± 0.24 74.03 ± 0.24

Softplus 68.84 ± 0.28 74.52 ± 0.26 73.69 ± 0.27

Swish 72.78 ± 0.21 76.42 ± 0.22 74.39 ± 0.23

GELU 72.91 ± 0.22 76.54 ± 0.23 74.51 ± 0.23

PAU 73.09 ± 0.22 76.77 ± 0.22 74.62 ± 0.25

SAU 74.22 ± 0.21 77.81 ± 0.21 75.59 ± 0.21
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Table 6: A Detailed Comparison between SAU Activation and Other Baseline
Activation Functions (See Supplementary Document for More Detailed Experi-
mental Results) on the CIFAR10 Dataset for Image Classification Problem with
Different Popular Network Architectures. top-1 Test Accuracy (in %) is Reported
in the Table for the Mean of 10 Different Runs. We Report mean±std in the
Table.

Model ReLU SAU

Top-1 accuracy (mean± std) Top-1 accuracy (mean ± std)

ShuffleNet V2 0.5x 88.01 ± 0.23 90.50 ± 0.17
ShuffleNet V2 1.0x 90.74 ± 0.25 92.78 ± 0.20
ShuffleNet V2 1.5x 91.07 ± 0.23 93.20 ± 0.18
ShuffleNet V2 2.0x 91.32 ± 0.22 93.52 ± 0.16

PreActResNet 18 93.36 ± 0.18 94.62 ± 0.15
PreActResNet 34 94.01 ± 0.16 95.10 ± 0.14
PreActResNet 50 94.01 ± 0.15 94.94 ± 0.14

ResNet 18 93.32 ± 0.20 93.47 ± 0.17
ResNet 34 93.77 ± 0.20 94.22 ± 0.16
ResNet 50 93.89 ± 0.19 94.62 ± 0.16

MobileNet V1 92.27 ± 0.24 93.54 ± 0.14
MobileNet V2 93.89 ± 0.19 95.37 ± 0.09

Inception V3 93.89 ± 0.18 94.51 ± 0.10

WideResNet 28-10 94.74 ± 0.18 95.52 ± 0.12

DenseNet 121 94.41 ± 0.16 95.31 ± 0.10

EffitientNet B0 94.64 ± 0.16 95.52 ± 0.14

VGG16 93.14 ± 0.23 93.31 ± 0.21

Tiny Imagenet: This section presents results on the Tiny ImageNet dataset, a
similar kind of image classification database to the ImageNet Large Scale Visual
Recognition Challenge(ILSVRC). Tiny Imagenet dataset contains 64× 64 RGB
images with total 100,000 training images, 10,000 validation images, and 10,000
test images and have total 200 image classes. We report the mean of 6 different
runs for Top-1 accuracy in table 7 on WideResNet 28-10 (WRN 28-10) ([47]) and
ResNet 18 [7] models. We consider a batch size of 64, 0.2 dropout rate ([41]),
SGD optimizer ([37], [17]), He Normal initializer ([8]), initial learning rate(lr
rate) 0.1, and lr rate is reduced by a factor of 10 after every 50 epochs up-to
300 epochs. Standard data augmentation techniques like rotation, width shift,
height shift, shearing, zoom, horizontal flip, and fill mode are applied to improve
performance. It is evident from the table that the proposed function performs
better than the baseline functions, and top-1 accuracy is stable (mean±std) and
got a good improvement for SAU over ReLU.
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Table 7: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on Tiny ImageNet Dataset for Image Classifica-
tion Problem. top-1 Test Accuracy (in %) is Reported in the Table for the Mean
of 6 Different Runs. We Report mean±std in the Table.

Activation Function WideResNet 28-10 ResNet 18

ReLU 62.77 ± 0.46 58.27 ± 0.42

Leaky ReLU 62.72 ± 0.46 58.52 ± 0.44

PReLU 62.70 ± 0.48 58.39 ± 0.44

ReLU6 62.59 ± 0.46 58.67 ± 0.41

ELU 62.58 ± 0.50 58.62 ± 0.43

Softplus 61.77 ± 0.59 58.04 ± 0.47

PAU 63.62 ± 0.44 59.47 ± 0.40

Swish 63.47 ± 0.46 59.02 ± 0.42

GELU 63.26 ± 0.48 59.27 ± 0.39

SAU 64.07 ± 0.44 60.12 ± 0.40

ImageNet-1k: ImageNet-1k is a popular image database with more than 1.2
million training images with 1000 classes. We report result on ImageNet-1k with
ShuffleNet V2 [28] and ResNet-50 [7] model in Table 8. We use a batch size
of 256, SGD optimizer ([37], [17]), 0.9 momentum, and 5e−4 weight decay. We
consider a linear decay learning rate scheduler from 0.1 and trained upto 600k
iterations. Experiments on ImageNet-1k are conducted on four NVIDIA V100
GPUs with 32GB RAM each.

Table 8: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on ImageNet-1k Dataset for Image Classification
Problem. We Report top-1 Accuracy in the Table.

Activation Function ShuffleNet V2 (1.0x) ResNet-50

ReLU 69.31 75.50

Leaky ReLU 69.25 75.64

PReLU 69.20 75.48

ReLU6 69.44 75.77

ELU 69.62 75.54

Softplus 69.21 75.37

Swish 70.71 76.39

GELU 70.31 76.30

PAU 70.64 76.42

SAU 71.62 77.47
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4.2 Object Detection

A standard problem in computer vision is object detection, in which the network
model tries to locate and identify each object present in the image. Object
detection is widely used in face detection, image retrieval, autonomous vehicle
etc. In this section, we present our results on challenging Pascal VOC dataset
([5]) on Single Shot MultiBox Detector(SSD) 300 ([25]) and we consider VGG-
16(with batch-normalization) ([40]) model as the backbone network. No pre-
trained weight is considered for our experiments in the network. The network
has been trained with a batch size of 8, SGD optimizer ([37], [17]) with 0.9
momentum, 5e−4 weight decay, 0.001 learning rate, and trained up to 120000
iterations. We report the mean average precision (mAP) in Table 9 for the mean
of 6 different runs.

Table 9: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on the Pascal VOC Dataset for Object Detection
Problem with SSD300 Network Architecture. mAP is Reported for the Mean of
6 Different Runs in the Table. We Report mean±std in the Table.

Activation Function mAP

ReLU 77.2±0.14

Leaky ReLU 77.2±0.19

PReLU 77.2±0.20

ReLU6 77.1±0.15

ELU 75.1±0.22

Softplus 74.2±0.25

PAU 77.4±0.14

Swish 77.3±0.11

GELU 77.3±0.12

SAU 77.7±0.10

4.3 Semantic Segmentation

Semantic segmentation is a computer vision problem that narrates the proce-
dure of associating each pixel of an image with a class label. We present our
experimental results in this section on the popular Cityscapes dataset ([4]). The
U-net model ([38]) is considered as the segmentation framework and is trained
up-to 250 epochs, with adam optimizer ([18]), learning rate 5e−3, and batch size
32. We report the mean of 6 different runs for pixel accuracy and the mean
Intersection-Over-Union (mIOU) on test data in table 10.
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Table 10: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on the CityScapes Dataset for Semantic Segmen-
tation Problem on U-Net Model. Pixel Accuracy and mIOU is Reported for the
Mean of 6 Different Runs in the Table. We report mean±std in the Table.

Activation Function
Pixel

Accuracy
mIOU

ReLU 79.45±0.47 69.39±0.28

PReLU 78.88±0.40 68.80±0.40

ReLU6 79.67±0.40 69.79±0.42

Leaky ReLU 79.32±0.40 69.60±0.40

ELU 79.38±0.51 68.10±0.40

Softplus 78.60±0.49 68.20±0.49

PAU 79.52±0.49 69.12±0.31

Swish 79.99±0.47 69.61±0.29

GELU 80.10±0.37 69.39±0.38

SAU 81.11±0.40 71.02±0.32

4.4 Machine Translation

Machine Translation is a deep learning technique in which a model translates
text or speech from one language to another language. In this section, we report
results on WMT 2014, English→German dataset. The database has 4.5 mil-
lion training sentences. Network performance is evaluated on the newstest2014
dataset using the BLEU score metric. An Attention-based 8-head transformer
network ([44]) in trained with Adam optimizer ([18]), 0.1 dropout rate ([41]),
and trained up to 100000 steps. Other hyperparameters are kept similar, as men-
tioned in the original paper ([44]). We report the mean of 6 different runs on
Table 11 on the test dataset(newstest2014).

5 Baseline Table

In this section, we present a table for SAU and the other baseline functions, which
shows that SAU beat or performs equally well compared to baseline activation
functions in most cases. We report a detailed comparison with SAU and the
baseline activation functions based on all the experiments in earlier sections and
supplementary material in Table 12. We notice that SAU performs remarkably
well in most of the cases when compared with the baseline activations.

6 Conclusion

In this paper, we propose a new novel smooth activation function using approx-
imate identity, and we call it a smooth activation unit (SAU). The proposed
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Table 11: A Detailed Comparison between SAU Activation Function and Other
Baseline Activation Functions on the WMT-2014 Dataset for Machine Transla-
tion Problem on Transformer Model. BLEU Score is Reported for the Mean of
6 Different Runs in the Table. We Report mean±std in the Table.

Activation Function
BLEU Score on

the newstest2014 dataset

ReLU 26.2±0.15

Leaky ReLU 26.3±0.17

PReLU 26.2±0.21

ReLU6 26.1±0.14

ELU 25.1±0.15

Softplus 23.6±0.16

PAU 26.3±0.14

Swish 26.4±0.10

GELU 26.4±0.19

SAU 26.7±0.12

Table 12: Baseline Table for SAU. In this Table, We Report the Total Number of
Cases in Which SAU Underperforms, Equal, or Outperforms When We Compare
it with the Baseline Activation Functions

Baselines ReLU
Leaky
ReLU

PReLU ReLU6 ELU Softplus PAU Swish GELU

SAU > Baseline 71 71 71 71 71 72 67 66 67
SAU = Baseline 0 0 0 0 0 0 0 0 0
SAU < Baseline 1 1 1 1 1 0 5 6 5

function can approximate ReLU or its different variants (like Leaky ReLU etc.)
quite well. For our experiments, we consider SAU as a trainable activation func-
tion, and we show that in a wide range of experiments on different deep learning
problems, the proposed functions outperform the known activations like ReLU,
Leaky ReLU or Swish in most cases which shows that replacing the hand-crafted
activation functions by SAU can be beneficial in deep networks.

Acknowledgement: The authors are very grateful to Dr. Bapi Chatterjee for
lending GPU equipment which helped in carrying out some of the important
experiments.
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