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Supplemental Material

1 Overview
In the supplementary material of our paper, we provide details about the experimental
setup of our work, as well as additional qualitative and quantitative data further show-
casing the quality of results from MESS networks and how different training/inference
schemes perform in practice. Finally, we discuss limitations of the current methodology
and potentially promising future work directions.

2 Experimental Configuration
2.1 Datasets
MS COCO: MS COCO [13] forms one of the largest datasets for dense scene under-
standing tasks. Thereby, it acts as common ground for pre-training semantic segmen-
tation models across domains. Following common practice for semantic segmentation,
we consider only the 20 semantic classes of PASCAL VOC [4] (plus a background
class), and discard any training images that consist solely of background pixels. This
results in 92.5k training and 5k validation images. We set crop size (bR) to 520×520.
PASCAL VOC: PASCAL VOC [4] comprises the most broadly used benchmark for
semantic segmentation. It includes 20 foreground object classes (plus a background
class). The original dataset consists of 1464 training and 1449 validation images. Fol-
lowing common practise we adopt the augmented training set provided by [6], resulting
in 10.5k training images. For PASCAL VOC, bR is also set to 520×520.

2.2 Baselines
To compare our work’s performance with the state-of-the-art, we evaluate against the
following approaches:

Single-Exit Segmentation Backbones:
– DRN: Dilated Residual Networks [19] approach for re-using classification pre-

trained CNNs as backbones for semantic segmentation, by avoiding loss of spatial
information. We use an FCN head at the end.

– DLBV3: DeepLabV3 [19,2], one of the leading approaches in semantic segmenta-
tion, employing Atrous Spatial Pyramid Pooling (ASPP).

– segMBNetV2: The lightweight MobileNetV2 segmentor presented in [16] with an
FCN head.
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Mutli-Exit Segmentation SOTA:
– LC: The early-exit segmentation work Deep Layer Cascade [12]. LC proposes a

pixel-wise adaptive propagation in early-exit segmentation networks, with confident
pixel-level predictions exiting early.

NAS Segmentation SOTA:
– AutoDLB: The NAS-based segmentation approach Auto-DeepLab [14], employing

a differential formulation for hierarchical NAS, leading to high search efficiency.
We target the Auto-DeepLab-M variant.

Multi-Exit Network Training:
– E2E1: The conventional end-to-end training method for early-exit classification net-

works, introduced by MSDNet [8] and BranchyNet [17].
– Frozen1: The conventional frozen-backbone training method for early-exit classifi-

cation networks, proposed by SDN [9] and HAPI [11].

Distillation-based Training:
– KD1: The originally proposed knowledge distillation technique of [7].
– SelfDistill1: The popular self-distillation approach for early-exit classification net-

works, utilised in [21,15,20].

2.3 Training Protocol

MESS instances are built on top of existing segmentation networks, spanning across
the workload spectrum in the literature, i.e. from the computationally heavy [1] to the
lightweight [16]. Through MESS, SOTA networks can be further optimised for deploy-
ment efficiency, demonstrating complementary performance gains by saving computa-
tion on easier samples. A key characteristic of the proposed two-stage MESS training
scheme, is that it effectively preserves the accuracy of the final (baseline) exit, while
boosting the attainable results to earlier segmentation exits. This is achieved by bringing
together elements from both the end-to-end and frozen-backbone training approaches
(Sec. 4.3). Thus, we consider the employed training scheme decoupled from the at-
tainable comparative results, as long as both the baseline and the corresponding MESS
instances share the same training procedure. As such, in order to preserve simplicity
in this work, we use a straightforward training scheme, shared across all networks and
datasets, and refrain from exotic data augmentation, bootstrapping and multi-stage pre-
training schemes that can be found in accuracy-centric approaches.
Hyperpameters: All MESS and baseline models are optimised using SGD, starting
from ImageNet [3] pre-trained backbones. The initial learning rate is set to lr0=0.02
and poly lr-schedule (lr0 · (1− iter

total iter )
pow) [18] with pow=0.9 is employed. Training

runs over 60k iterations in all datasets. Momentum is set to 0.9 and weight decay to
10−4. We re-scale all images to a dataset-dependent base resolution bR. During training
we conduct the following data augmentation techniques: random re-scaling by 0.5×
to 2.0×, random cropping (size: 0.9×) and random horizontal flipping (p = 0.5). For
Knowledge Distillation, we experimentally set α to 0.5. For the overprovisioned net-
work, we experimentally found N=6 to provide a good balance between search space
granularity and size, for the examined backbones.

1Adapted for segmentation by incorporating dense predictions.
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2.4 Inference Process

The main optimisation objective of this work is deployment efficiency. This renders
impractical many popular inference strategies that are broadly utilised in the literature
when optimising solely for accuracy, as they incur prohibitive workload overheads. As
such, in this work, we refrain from the use of ensembles, multi-grid and multi-scale
inference, image flipping, etc. Instead, in the context of this work, both MESS and
baseline networks employ a straightforward single-pass inference across all inputs.

3 Comparison with Uniform Exit Architectures

Compared to a direct adoption of classification-based approaches that employ a uni-
form exit architecture across the depth of the backbone [8,17,9,11], MESS networks
provide a significantly improved performance-accuracy trade-off that pushes the limits
of efficient execution for semantic segmentation, by providing a highly customisable
architectural configuration space for early exits, searched though our framework.

To demonstrate this, Fig. 7 illustrates the mean and per-label accuracy of multi-
exit network instances, customised in view of requirements ranging between 1× and
4.5× lower latency compared to the original backbone. On the left side we depict base-
line networks using a uniform exit architecture of FCN heads across all candidate exit
points. In contrast, on the right side we examine MESS networks incorporating tailored
early-exit architectures from the proposed search space. The results indicate significant
accuracy (mIoU) gains by exploiting the proposed head, ranging up to 19.3 pp (10.9 pp
on avg.), across the examined latency budgets. This demonstrates that it is essential to
re-design the segmentation heads for multi-exiting scenarios. Repeating the same exper-
iment, but optimising for latency under an accuracy constraint, MESS reduces FLOPs
by up to 3× (2.4× on avg.), across varying accuracy targets.
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Fig. 7: Per-label IoU on MS COCO Validation Set of (a) uniform architecture early-exit networks
and (b) MESS networks configured for different latency goals (expressed as speed-ups with re-
spect to the final exit), for ResNet50. Each of the concentric spider graphs defines a distribution
of exit rates over different heads, based on the confidence threshold determined by our search.
The graphs have value both when studied in isolation, so as to monitor the behaviour of early
exits across labels, and in comparison, to understand what our principled design approach offers.
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4 Qualitative Evaluation

Fig. 8 depicts the qualitative difference of semantic map outputs with and without
the proposed distillation mechanism incorporated during training the respective MESS
models. The two samples of the figure show clearly the kind of per-pixel prediction
errors that our PFD scheme tries to alleviate.

Fig. 9 demonstrates the quality-of-result for progressive segmentation outputs though
a MESS network, for certain samples from MS COCO and PASCAL VOC. Table 8
shows the respective accuracy for the same set of images, along with the selected out-
put, based on our exit policy.

Fig. 10 tells the story from a different standpoint, where we showcase how confi-
dent an exit of a MESS network is about its predictions. Concretely, we illustrate the
(per-pixel) confidence heatmap for an early segmentation head and the final exit for
certain samples of the same datasets, with and without Eq. (9). This demonstrates how
our confidence-based mechanism works in the realm of semantic segmentation and the
contribution our edge smoothing technique in the confidence of predictions along ob-
ject edges. Similarly, Table 9 shows the single (per-image) confidence values for each
prediction, obtained both through a baseline and the proposed method.

Input GND !%&'() CE+KD PFD
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CE

Fig. 8: Qualitative examples of semantic segmentation with different distillation schemes on
ResNet50. From left to right we see the input image, the ground truth semantic map, the out-
put of the final exit (Efinal) and the output of an early exit without distillation (CE), with baseline
distillation (CE+KD) and with the proposed positive filtering distillation (PFD) approach. The
proposed scheme aims to control the flow of information to early exits in knowledge distillation,
“paying more attention” to pixels that are correctly predicted by the final exit during training,
while avoiding to use contradicting CE and KD reference signals in the remainder of the image.
The provided samples illustrate the kind of information that can be learned by means of the PFD
scheme, even in the case of the original final exit being incorrect for certain pixels.
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Fig. 9: Visualisation of per-exit semantic segmentation outputs of MESS ResNet50 for specific
samples from MS COCO and PASCAL VOC. The first column represents the input image and
last the ground truth labels. Intermediate columns represent the output per exit head.

Table 8: Per-exit semantic segmentation accuracy for samples of Fig. 9 from MS COCO and PAS-
CAL VOC Validation Set. mIoU represents the normalised mean IoU per image and pAcc the
pixel-accuracy (excl. True Positives on background class) for each exit head. We denote the se-
lected exit for each sample, determined by the proposed MESS exit policy, with bold font. Dif-
ferent exits have different confidence thresholds, selected during search, so as to lead to ≤ 1 pp
of accuracy degradation.

Sample E1 E2 E3 E4 Efinal

mIoU pAcc mIoU pAcc mIoU pAcc mIoU pAcc mIoU pAcc
(i) 94.79% 90.70% 95.91% 92.69% 95.90% 92.67% 95.83% 92.53% 95.82% 92.53%
(ii) 92.89% 86.78% 90.40% 82.12% 91.93% 84.98% 93.32% 87.58% 93.35% 87.62%
(iii) 84.61% 82.30% 88.68% 92.29% 88.98% 92.77% 89.16% 93.07% 88.19% 93.07%
(iv) 83.18% 68.73% 95.67% 91.82% 98.51% 97.58% 99.03% 98.53% 98.97% 98.45 %
(v) 73.06% 65.14% 81.11% 82.06% 96.68% 90.01% 97.64% 98.31% 90.78% 90.27%
(vi) 92.47% 92.87% 95.24% 95.34% 95.46% 95.54% 95.43% 95.53% 95.25% 95.34%
(vii) 93.07% 89.88% 94.49% 92.72% 94.59% 92.87% 94.56% 92.85% 94.54% 92.78%
(viii) 93.98% 90.75% 95.58% 93.09% 95.47% 93.12% 92.98% 93.89% 95.31% 92.10%
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Fig. 10: Per-pixel confidence maps for an early and the final segmentation heads for ResNet50
with and without integrating Eq. (9). A solid purple colour is illustrating the best possible result,
where the MESS network is most confident about the per pixel labels. With our edge smoothing
technique (Section 5.2) we witness a more pragmatic confidence estimation for predictions along
the edges of objects for both exits. This is especially important for early heads of MESS networks,
as it helps distinguishing between “truly” under-confident and edge-rich predictions, leading to
higher early-exit rates with respective latency gains.

Table 9: Per-image confidence values for samples illustrated in Fig. 10, reduced from the respective
per-pixel confidence maps, through a baseline confidence-averaging approach and the proposed
technique (considering the percentage of confident pixels at the output) with and without inte-
grating the semantic edge confidence smoothing of Eq. (9). Using the proposed per-image con-
fidence estimation methodology for dense predictions, a better separation is achieved between
confident predictions (corresponding to higher quality-of-result outputs) and less confident pre-
dictions (prone to semantic errors).

Sample Eearly Efinal

mean(cmap) Eq. (7) Eq. (7) + (9) mean(cmap) Eq. (7) Eq. (7) + (9)
(i) 0.990 0.975 0.999 0.992 0.977 1.000
(ii) 0.968 0.920 0.946 0.983 0.951 0.988
(iii) 0.871 0.595 0.599 0.983 0.958 0.999
(iv) 0.905 0.725 0.734 0.958 0.874 0.918
(v) 0.967 0.913 0.939 0.975 0.924 0.966
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5 Discussion and Future Work

MESS networks offer considerable computational gains by alleviating redundancies
across the depth dimension of the backbone network, skipping unnecessary computa-
tion in a difficulty-aware manner. In contrast, other efficient model design methodolo-
gies, such as NAS [14], can attenuate redundancy in more dimensions (e.g. number of
channels and spatial resolution) at the cost of prolonged training, search and inference
times. With the two approaches having different benefits and capitalising on completely
orthogonal directions to obtain efficiency gains (NAS focuses on uniformly eliminating
redundancy on the backbone, whereas MESS enhances a given backbone with early ex-
its to minimise computational redundancy in an adaptive-inference manner) future work
could combine the two, by applying the MESS methodology on top of a NAS-crafted
backbone, realising complementary performance gains. Moreover, softmax-based con-
fidence can be an artificial proxy for measuring a network’s uncertainty [11,10,5], ap-
plicable to classification. Thus, alternative, trainable exit policies and metrics can be a
promising avenue of research.
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