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Abstract. Semantic segmentation arises as the backbone of many vision sys-
tems, spanning from self-driving cars and robot navigation to augmented reality
and teleconferencing. Frequently operating under stringent latency constraints
within a limited resource envelope, optimising for efficient execution becomes
important. At the same time, the heterogeneous capabilities of the target plat-
forms and the diverse constraints of different applications require the design and
training of multiple target-specific segmentation models, leading to excessive
maintenance costs. To this end, we propose a framework for converting state-of-
the-art segmentation CNNs to Multi-Exit Semantic Segmentation (MESS) net-
works: specially trained models that employ parametrised early exits along their
depth to i) dynamically save computation during inference on easier samples and
ii) save training and maintenance cost by offering a post-training customisable
speed-accuracy trade-off. Designing and training such networks naively can hurt
performance. Thus, we propose a novel two-staged training scheme for multi-
exit networks. Furthermore, the parametrisation of MESS enables co-optimising
the number, placement and architecture of the attached segmentation heads along
with the exit policy, upon deployment via exhaustive search in <1GPUh. This
allows MESS to rapidly adapt to the device capabilities and application require-
ments for each target use-case, offering a train-once-deploy-everywhere solution.
MESS variants achieve latency gains of up to 2.83× with the same accuracy,
or 5.33 pp higher accuracy for the same computational budget, compared to the
original backbone network. Lastly, MESS delivers orders of magnitude faster ar-
chitectural customisation, compared to state-of-the-art techniques.

1 Introduction

Semantic segmentation constitutes a core machine vision task that has demonstrated
tremendous advancement due to the emergence of deep learning [15]. By predicting
dense (every-pixel) semantic labels for an image of arbitrary resolution, semantic seg-
mentation forms one of the finest-grained visual scene understanding tasks, materialised
as an enabling technology for myriad applications, including augmented reality [36,63],
video conferencing [68,45], navigation [50,61], and semantic mapping [41].

This wide adoption of segmentation models in consumer applications has pushed
their deployment away from the cloud, towards resource-constrained edge devices [22,63]
such as smartphones and home robots. With quality-of-service (QoS) and safety being
of utmost importance when deploying such real-time systems, efficient and accurate
segmentation becomes a core problem to solve. Additionally, device heterogeneity in
the consumer ecosystem (e.g. co-existence of top-tier and low-cost smartphones) and
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the diverse constraints of different applications (e.g. 30 fps for AR/VR vs 1 fps for photo
effects), call for segmentation models with variable latency-accuracy characteristics to
be designed, trained and distributed to end devices, leading to high maintenance costs.

State-of-the-art segmentation models, however, pose their own challenges to effi-
cient deployment and adaptation, as their impressive accuracy comes at the cost of
excessive computational and memory demands. Particularly, the every-pixel nature of
the segmentation output calls for high-resolution feature maps to be preserved through-
out the network (to avoid eradicating spatial information) [66], while also maintaining
a large receptive field on the output (to incorporate context and extract robust seman-
tics) [46], leading to inflated training and inference costs.

Aiming to alleviate this latency burden for on-device inference [1], recent work has
focused on the design of lightweight segmentation models either manually [42,72] or
through Neural Architecture Search [35,43]. However, such methods typically involve
huge search spaces and disallow the re-use of ImageNet [9] pre-trained classification
backbones. This leads to long and non-reusable training cycles per model, which often
differ for each target device, aggravating prohibitively the training and adaptation time.

Orthogonally, advances in early-exit DNNs offer complementary efficiency gains by
adjusting the computation path at run time in an input-dependent manner, while natively
providing a tunable speed-accuracy trade-off. However, these solutions [20,24,74] have
mainly aimed at image classification so far, leaving challenges in segmentation, such
as the design of lightweight exit architectures and exit policies, largely unaddressed.
In fact, naively applying early-exiting on segmentation CNNs may not lead to any la-
tency gains due to the inherently heavyweight architecture of segmentation heads, ag-
gravated by the large incoming feature volume. For example, adding a single extra head
on DeepLabV3 [6] leads to an overhead of up to 40% of the original model’s workload.

In this work, we introduce a novel methodology for deriving and training Multi-Exit
Semantic Segmentation (MESS) networks starting from existing CNNs and aiming for
efficient and versatile on-device segmentation tailored to the platform and task at hand.
MESS brings together architecture customisation and early-exit networks, through a
novel training scheme and a compact and highly re-usable search space that allows
post-training adaptation through exhaustive search in abridged time frames.

Specifically, MESS uses a given segmentation CNN as a backbone model, pre-trains
it in an early-exit aware manner (without loss of accuracy) and attaches numerous can-
didate early-exit architectures (i.e. segmentation heads) at different depths, offering pre-
dictions with varying workload-accuracy characteristics (Fig. 1). Importantly, through
targeted design choices, the number, placement and architecture of exits remain con-
figurable and can be co-optimised upon deployment, to adapt to different-capability
devices and diverse application requirements, without the need of retraining, leading to
a train-once, deploy-everywhere paradigm. The main contributions of this work are:

– The design of MESS networks, combining adaptive inference through early exit-
ing with architecture customisation, to provide a fine-grain speed-accuracy trade-off,
tailor-made for semantic segmentation. This enables efficient and adaptive segmen-
tation based on the use-case requirements and the target device capabilities.

– A two-stage scheme for training MESS networks, starting with an end-to-end exit-
aware pre-training of the backbone that employs a novel exit-dropout loss which
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pushes the extraction of semantically strong features towards shallow layers of the
network without compromising its final accuracy or committing to an exit configura-
tion; followed by a frozen-backbone stage that jointly trains all candidate early-exit
architectures through a novel selective distillation scheme. This mechanism boosts
the accuracy of multi-exit networks and decouples training from the deployed MESS
configuration, thus enabling rapid post-training adaptation of the architecture.

– An input-dependent inference pipeline for MESS networks, employing a novel method
for estimating the prediction confidence at each exit, used as exit policy, tailored for
every-pixel outputs. This mechanism enables difficulty-based allocation of resources,
by early-stopping for “easy” inputs with corresponding performance gains.

2 Related Work

Efficient Segmentation. Semantic segmentation is rapidly evolving, since the emer-
gence of the first CNN-based approaches [38,2,44,48]. Recent advances have focused
on optimising accuracy through stronger backbone CNNs [17,21], dilated convolutions
[66,5], multi-scale processing [65,73], multi-path refinement [32,14], knowledge distil-
lation [37] and adversarial training [40]. To reduce the computational cost, the design
of lightweight hand-crafted [42,57,72,64] and more recently NAS-crafted [43,35,69]
architectures has been explored. MESS is model-agnostic and can follow the above
advancements by being applied on top of existent CNN backbones to achieve comple-
mentary gains by exploiting the orthogonal dimension of input-dependent early-exiting.
Adaptive Inference. The key paradigm behind adaptive inference is to save compu-
tation on “easy” samples and reduce the overall computation with minimal accuracy
degradation [3,12]. Existing methods can be taxonomised into: 1) Dynamic Routing
networks selecting a different sequence of operations to run in an input-dependent man-
ner by skipping layers [53,55,58] or channels [33,19,11,13,56]; and 2) Multi-Exit Net-
works forming a class of architectures with intermediate classifiers along their depth
[52,20,27,59,60,67]. With earlier exits running faster and deeper ones being more accu-
rate, such networks provide varying accuracy-cost trade-offs. Existing work has mainly
focused on image classification, proposing hand-crafted [20,71], model-agnostic [52,24]
and deployment-aware architectures [26,27]. Yet, adopting these techniques in segmen-
tation poses additional, still unexplored, challenges.
Multi-Exit Network Training. So far, the training of multi-exit models for classifica-
tion can be categorised into: 1) End-to-end schemes jointly training the backbone and
early exits [20,24,71], leading to increased accuracy in early exits, at the expense of
often downgrading the accuracy deeper on or even causing divergence [20,29] due to
early-exit “cross-talk”; and 2) Frozen-backbone methods which firstly train the back-
bone until convergence and subsequently attach and train intermediate exits individu-
ally [24,27]. This decoupling of the backbone from the exits allows for faster training
of the exits, at the expense of an accuracy penalty due to fewer degrees of freedom
in parameter tuning. Orthogonally, self-distillation methods have been proposed in the
literature [29,47,70,23,28] to further improve the accuracy of early exits by treating
them as students of the last exit. In this work, we propose a fused two-stage training
scheme, backed by self-distillation with information filtering, that enables exit-aware
pre-training and full customisation potential without affecting the final exit’s accuracy.
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Adaptive Segmentation Networks. Recently, initial efforts on adaptive segmentation
have emerged. Li et al. [31] combined NAS with a trainable dynamic routing mech-
anism that generates data-dependent processing paths at run time. NAS approaches,
however, compose enormous search spaces with minimum re-use between instances,
leading to soaring training times. Furthermore, by incorporating the computation cost
to the loss function, this approach is unable to customise the model to meet varying
speed-accuracy characteristics without retraining, leading also to inflated adaptation
cost. Closer to our work, Layer Cascade (LC) [30] studies early-stopping for segmenta-
tion. LC treats segmentation as a vast group of independent classification tasks, where
each pixel propagates to the next exit only if the latest prediction does not surpass a
confidence threshold. Nonetheless, due to different per-pixel paths, this scheme leads
to heavily unstructured computations, for which existing BLAS libraries cannot achieve
realistic speedups [62]. LC also constitutes a manually-crafted model, tied to a specific
backbone architecture, and non-customisable to the target device’s capabilities.

MESS networks bring together benefits of all the above worlds. Our framework
supports model customisation within a compact search space of early-exit architectures
tailor-made for semantic segmentation, while preserving the ability to re-use pre-trained
backbones cutting down training time. Additionally, MESS networks push the limits of
efficient inference by incorporating image-level confidence-based early exiting, through
a novel exit policy that addresses the unique challenges of dense segmentation predic-
tions. Simultaneously, the proposed two-stage training scheme combines end-to-end
and frozen-backbone training approaches, boosting the accuracy of shallow exits with-
out compromising deeper ones. Finally, design choices allow us to decouple MESS
training from the deployment configuration, enabling exhaustive search to be rapidly
performed post-training, in order to customise the architectural configuration for differ-
ent devices or application-specific requirements, without any parameter fine-tuning.

3 MESS Networks Overview

To enable efficient segmentation, the MESS framework employs a target-specific con-
figuration search to obtain a multi-exit segmentation network optimised for the platform
and task at hand. We call the resulting model a MESS network, with an example de-
picted in Fig. 1. Constructing a MESS network involves three stages: i) starting from a
backbone segmentation CNN, we identify several candidate exit points along its depth
(Sec. 4.1), and attach to each of them multiple early exits (i.e. segmentation heads) of
varying architectural configurations (Sec. 4.2), leading to a newly defined overprovi-
sioned network; ii) training all candidate exits together with the backbone through a
novel two-stage scheme (Sec. 4.3); and iii) tailoring the overprovisioned network post-
training to extract a MESS instance, comprising the backbone and a subset of the avail-
able exits, considering user-defined constraints and optimisation objectives (Sec. 5.1).
Our framework supports various inference settings, ranging from extracting efficient
target-specific submodels (meeting accuracy/speed constraints) to progressive refine-
ment of the segmentation prediction and confidence-based exiting (Sec. 5.2). Across
all settings, MESS networks save computation by circumventing deeper parts of the
network. The next two sections follow the flow of the proposed framework.
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Fig. 1: Multi-Exit Semantic Segmentation network instance.
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Fig. 2: Parametrisation of segmentation head architecture.

4 MESS Networks Design & Training

In this section, we go through the design choices that shape MESS networks, their early-
exit architectural configuration and training process. This yields an overprovisioned
network, ready to be customised for the target application and device at hand.

4.1 Backbone Initialisation & Exit Placement

Initially, a backbone segmentation CNN is provided. Typically, such models aim to
preserve large receptive field on the output, while preventing loss of spatial information
(e.g. by replacing traditional pooling operations with dilated convolutions [66]). As a
result, and combined with the increased number of channels integrated, deeper layers
demonstrate significantly larger feature volumes, leading to an unbalanced distribution
of computational demands across the network (Fig. 1). This motivates the adoption of
early-exiting during inference as a means of improving processing speed.

As a first step, the provided backbone is profiled in terms of per-layer workload
(FLOPs). Based on the results of this analysis, N candidate exit points are identified
following an approximately equidistant workload distribution (every 1/N -th of the to-
tal backbone’s FLOPs). For simplicity, exit points are restricted to be at the output of
individual network blocks1 bk. Although some of these exit points may subsequently
be dropped during MESS configuration search, this placement currently maximises the
distance between subsequent exits, improving the efficiency of our search. An example
of the described analysis on a DRN-50 backbone [66] is presented in Fig. 3.

4.2 Early-Exit Architecture Search Space Design

Early-exiting in segmentation CNNs faces the challenge of: i) enlarged feature volumes
of segmentation models, leading to inflated computation cost for the early-exit heads,
ii) limited receptive field and iii) weak semantics in shallow exits. MESS addresses
these challenges in a two-fold manner: i) by pushing the extraction of semantically
strong features to shallower layers of the backbone during training (Sec. 4.3) and ii) by
introducing a configuration space tailored-made for segmentation head architectures:

1e.g. Dilated Residual Blocks for ResNet-based [17] backbones, Inverted Residual Blocks for
MobileNet-based [49] backbones etc.
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1) Channel Reduction Module (CRM): To reduce the computational overhead of each
exit without compromising the spatial resolution of the feature volume that is particu-
larly important for accuracy, we optionally include a 1×1 convolutional layer (CRM)
that reduces the number of channels fed to the segmentation head by a tunable factor.
2) Extra Trainable Blocks: To address the weak semantics of shallow exits, while
avoiding an unnecessary surge in the computational overhead of deeper exits, we allow
incorporating a configurable number of additional convolutional blocks in each exit’s
architecture. These layers are tactically appended after the CRM to take advantage of
the computational efficiency of its reduced feature-volume width.
3) Rapid Dilation Increase (RDI): To address the limited receptive field of shallow
exits, apart from the addition of trainable blocks, we optionally allow the dilation rate
employed in the exit layers to be rapidly increased, doubling in each block.
4) Head: MESS currently supports two types of output segmentation blocks from the
literature, positioned at the end of each exit: i) Fully Convolutional Network-based
Head (FCN-Head) [38] and ii) DeepLabV3-based Head (DLB-Head) [6,7].

Overall, the configuration space for each exit architecture (Fig. 2) is shaped as:

1. Channel Reduction Module: Ocrm = {/1, /2, /4, /8} 7→ {0, 1, 2, 3}
2. Extra Trainable Blocks: O#blocks = {0, 1, 2, 3}
3. Rapid Dilation Increase: Ordi = {False, True} 7→ {0, 1}
4. Segmentation Head: Ohead = {FCN-Head, DLB-Head } 7→ {0, 1}

Expecting that varying exit-point depths favour different architectural configura-
tions (e.g. channel-rich for deeper exits and layer-multitudinous for shallower), MESS
allows each early exit to adopt a tailored architecture based on its position in the back-
bone. Formally, we represent the configuration space for the i-th exit’s architecture as:

Si
exit = Ocrm ×O#blocks ×Ordi ×Ohead (1)

where i ∈ {1, 2, ..., N} and Ocrm, O#blocks, Ordi and Ohead, are the sets of available
options for the CRM, number of trainable blocks, RDI and exit head, respectively.

4.3 Training Scheme

Two-Stage MESS Training. As aforementioned, early-exit networks are typically ei-
ther trained end-to-end or in a frozen-backbone manner [25]. However, both can lead to
suboptimal accuracy results in the final or the early exits. For this reason, we combine
the best of both worlds by proposing a novel two-stage training scheme.
Stage 1 (end-to-end): In the exit-aware pre-training stage, we aim to fully train the
backbone network that will be shared across all candidate exits, specially preparing it
for early-exiting by pushing the extraction of semantically strong features at shallow
layers, without committing to any particular exit configuration. To achieve this, vanilla
FCN-Heads are attached to all candidate exit points, generating an intermediate multi-
exit model. This network is trained end-to-end, updating the weights of the backbone
and a single early exit at each iteration, with the remainder of the exits being dropped-
out in a round-robin fashion (Eq. (2), referred to as exit-dropout loss). As a result, cross-
talk between exits is minimised allowing the final head to reach its full potential, while
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the backbone remains exposed to gradients from shallower exits. Formally, we denote
the segmentation predictions after softmax for each early exit by yi ∈ [0, 1]R×C×M

where R and C are the output’s number of rows and columns, respectively, and M
the number of classes. Given the ground truth labels ŷ ∈ {0, 1, ...,M-1}R×C , the loss
function for the proposed exit-aware pre-training stage is formulated as:

Lbatch(j)
pretrain =

N−1∑
i=1

1(j mod i = 0) · LCE(yi, ŷ) + LCE(yN , ŷ) (2)

where 1(·) is the indicator function and LCE the cross entropy. Although after this stage
the early exits are not fully trained, their contribution to the loss guides the backbone to-
wards learning stronger representations throughout, consequently aiding early-exiting.
Stage 2 (frozen-backbone): At this stage, the backbone and final exit are kept frozen
(i.e. weights are not updated). The MESS overprovisioned network is formed by at-
taching all candidate early-exit architectures of the proposed configuration space Si

exit
(Sec. 4.2) across all candidate exit points i ∈ {1, 2, ..., N} (Sec. 4.1) and training them
jointly. Importantly, keeping the backbone unchanged during this stage allows different
exit architectures to be: i) attached and trained simultaneously even to the same can-
didate exit point without interfering with each other, or with the backbone ii) trained
at significantly reduced cost than the end-to-end approach, while taking advantage of
the strong semantics extracted by the backbone due to its early-aware pre-training and
iii) interchanged at deployment time on top of the shared backbone in a plug-and-play
manner (without re-training), offering enormous flexibility for customisation (Sec. 5.1).

Positive Filtering Distillation (PFD). In the second stage of our training process, we
also exploit the joint potential of knowledge distillation and early-exit networks.

In prior self-distillation works for multi-exit networks, the backbone’s final output
is used as the teacher for earlier classifiers [70], whose loss function typically combines
ground-truth and distillation terms [47,39]. To further exploit what information is back-
propagated to the shallow exits, given the pre-trained final exit and taking advantage of
the multitude of information available in segmentation predictions due to their dense
structure, we propose Positive Filtering Distillation (PFD). This technique selectively
controls the flow of information of the high-entropy ground-truth reference to earlier
exits using only signals from “easier pixels”, i.e. pixels about which the last exit could
yield a correct prediction, while filtering out gradients from more difficult or ambiguous
pixels. Our hypothesis is that early-exit heads, having limited learning capacity, can be-
come stronger by only incorporating signals of less ambiguous pixels from the last exit,
avoiding noisy gradients and the confusion of trying to mimic contradicting references.

Formally, we express the i-th exit’s tensor of predicted classes for each pixel p =

(r, c) with r∈[1, R] and c∈[1, C] as ŷi∈{0, 1, ...,M -1}R×C where (ŷi)p = argmax (yi)p
in {0, 1, ...,M -1}. Given the corresponding output of the final exit ŷN , the ground-truth
labels ŷ∈{0, 1, ...,M -1}R×C and a hyperparameter α, we employ the following loss dur-
ing the frozen-backbone stage of our training scheme, where LKL is KL-divergence:

LPFD =

N∑
i=1

α · 1(ŷN = ŷ)LCE(yi, ŷ) + (1− α) · LKL(yi,yN ) (3)
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Fig. 3: Workload breakdown analysis and exit points
identification on a DRN-50 [66] backbone (N=6).

Table 1: Cost functions for different inference settings. bi is the
i-th block in the backbone; Kn is the block ordinal of the n-th exit
point; S∗n

exit ∈ Sn
exit is the selected architecture for the n-th exit;

pn is the percentage of samples propagated to the n-th exit.

Inference cost(s)

Final-Only cost(b1:KN ) + cost(S∗N
exit)

Budgeted cost(b1:Kn) + cost(S∗n
exit) , n ≤ N

Anytime cost(b1:KN ) +
∑N

n=1 cost(S
∗n

exit)

Input-Dep.
∑N

n=1 pn−1 · (cost(bKn−1:Kn) + cost(S∗n
exit)) , K0=0 , p0=1

5 MESS Networks Deployment & Inference

Having designed and trained the overprovisioned model, here we discuss its customisa-
tion to the task- and target-specific deployment for inference. This involves configuring
the MESS instance architecture via post-training search and crafting the exit policy.

5.1 Deployment-time Parametrisation

Post-training of the overprovisioned network (comprising all candidate exit architec-
tures), MESS instances (comprising a subset of the trained exits) can be derived, re-
flecting on the capabilities of the target device, the required accuracy or latency of the
use-case and the intricacy of the inputs.
Inference Settings. To satisfy performance needs under each device and application-
specific constraints, MESS networks support different inference settings:

1) Budgeted Inference: in which workload-lighter static submodels, up to a (single)
specific exit, are extracted to enable deployment on heterogeneous target platforms.
2) Anytime Inference: in which every sample goes through multiple exits sequentially,
initially providing a rapid approximation of the output and progressively refining it
through a series of deeper exits until a deadline is met.
3) Input-dependent Inference: where inputs also go through exits sequentially, but
each sample dynamically adjusts its path (i.e. finalises its output at a different depth)
according to its difficulty, as captured by the confidence of each exit’s prediction.

Configuration Search. Our framework tailors MESS networks for each of the above
settings considering the target use-case, by searching the configuration space post-
training. Contrary to most works in multi-exit classification models [20,24,71,27], which
employ a uniform architecture across all exits for the sake of simplicity, MESS favours
flexibility allowing for per-exit architectural customisation. This is enabled by our over-
provisioned training scheme (Sec. 4.3), allowing all trained exits to be interchange-
ably attached to the same backbone for inference, offering rapid validation of candidate
choices that significantly accelerates the search for a tailored design.

The proposed method contemplates all trained exit architectures and exhaustively
creates different configurations, trading for example a workload-heavier shallow exit
with a more lightweight deeper exit. The search strategy considers the target infer-
ence setting, along with user-specified requirements in workload, latency and accu-
racy2, which can be expressed as a combination of hard constraints and optimisation
objectives. As a result, the number and placement of exits and the architecture of each

2Evaluated in a held-out Calibration Set during search (equally sized to the target Test Set).
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individual exit of the resulting MESS instance are jointly optimised (along with the exit
policy, discussed in Sec. 5.2, for the input-dependent inference case).

Given the exit-architecture search space Si
exit (Eq. 1), we define the overall configu-

ration space of a MESS network as:

S = (S1
exit + 1)× (S2

exit + 1)× ...× (SN
exit + 1) (4)

where the extra term accounts for a “None” option for each of the exit positions. Under
this formulation, the framework can minimise workload/latency, formally expressed
as cost for each setting in Table 1, given an accuracy constraint thacc:

s⋆ = argmin
s∈S

{cost(s) | acc(s) ≥ thacc} (5)

or optimise for accuracy, given a cost constraint thcost:

s⋆ = argmax
s∈S

{acc(s) | cost(s) ≤ thcost} (6)

Importantly, a combination of design choices render the exhaustive exploration of
the search space not only computationally tractable, but extremely efficient. Conversely
to heuristic alternatives, this guarantees optimality within the examined space. The main
enabling factors include: i) the informed outlining of the search space (being compact
and tailor-made for segmentation), ii) the proposed two-stage training scheme (allowing
all exits architectures to exploit a shared backbone), iii) a vast pruning of configurations
at search time (prioritising the less costly constraint verification on latency before eval-
uating accuracy), and iv) prediction memoisation (eliminating duplicate inference exe-
cution by storing and combining per-exit predictions on the calibration set). Finally, in
contrast to NAS methods [4], MESS overprovisioned networks are fully trained and can
be customised without the need of fine-tuning, offering rapid post-training adaptation.

5.2 Input-Dependent Exit Policy

During input-dependent inference, each input image goes through the selected early
exits of the deployed MESS instance sequentially. After a prediction is produced from
an exit, a mechanism to calculate its confidence is used to determine whether inference
should continue to the next exit or not. In [30], each pixel in an image is treated as
an independent classification task, exiting early if its prediction confidence in an exit
is high, thus yielding irregular computation paths. In contrast, our approach treats the
segmentation of each image as a single task, aiming to drive each sample through a
uniform computation route. To this end, we fill a gap in literature by introducing a novel
mechanism to quantify the overall confidence in semantic segmentation predictions.
Confidence Metric. Given the per-pixel confidence map, calculated from the proba-
bility distribution across classes of each pixel cmap = fc(y) ∈ [0, 1]R×C (where fc is
usually top1(·) [20] or entropy(·) [8]), we introduce a mechanism to reduce these
every-pixel confidence values to a single per-image confidence. The proposed metric
considers the percentage of pixels with high prediction confidence (i.e. surpassing a
tunable threshold thpix

i ) in the output of an exit yi:

c
img
i =

1

RC

R∑
r=1

C∑
c=1

1(cmap
r,c (yi) ≥ thpix

i ) (7)
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Edge Confidence Enhancement. Moreover, it has been observed that due to the pro-
gressive downsampling of the feature volume in CNNs, some spatial information is un-
avoidably lost. As a result, semantic predictions near object edges are naturally under-
confident [54]. Driven by this observation, we enhance our proposed metric to account
for these expected low-confidence pixel-predictions, by introducing a pre-processing
step for cimg

i . Initially, we conduct edge detection on the semantic masks, followed by
an erosion filter with kernel equal to the output stride of the respective exit osi, in order
to compute a semantic-edge map (Eq.8). Thereafter, we apply a median-based smooth-
ing on the confidence values of pixels lying on the semantic edges (Eq.9).

M = erode(cannyEdge(ŷi), si) (8)

ĉmap
r,c (yi) =

{
median(cmap

wr,wc(yi)) if Mr,c = 1

cmap
r,c (yi) otherwise

(9)

where wl = {l−2 ·osi, ..., l+2 ·osi} is the window size of the filter. This sets the pixels
around semantic edges to inherit the confidence of their neighbouring pixel predictions.
Exit Policy. At inference time, each sample is sequentially processed by the selected
early exits. For each prediction yi, the proposed metric cimg

i is calculated, and a tunable
confidence threshold (exposed to the search space) determines whether the sample will
exit early (cimg

i ≥ thimg
i ) or be processed further by subsequent backbone layers/exits.

6 Evaluation

6.1 Experimental Setup

Models & Datasets. We apply our methodology on top of DRN-50 [66], DeepLabV3 [6]
and SegMBNetV2 [49] segmentation CNNs, using ImageNet [9] pre-trained ResNet50 [17]
and MobileNetV2 [49] backbones, representing high-end and edge use-cases, respec-
tively. We train all backbones on MS COCO [34] and fine-tune early exits on MS COCO
and PASCAL VOC [10] (augmented from [16]) independently.
Development & Deployment Setup. MESS networks are implemented on PyTorch (v1.6.0).
For inference, we deploy MESS instances on a high-end (Nvidia GTX1080Ti; 250W
TDP) and an edge (Nvidia Jetson AGX Xavier; 30W TDP) compute platform.
Baselines. To compare our work against the following state-of-the-art baselines:
1) DRN [66]; 2) DLBV3 [66,7]; 3) segMBNetV2 [49]; 4) LC [30]; 5) AutoDLB [35];
6) E2E [20,52]; 7) Frozen [24,27]; 8) KD [18] and 9) SelfDistill [71,47,70].

6.2 MESS End-to-End Evaluation

Comparison with Single-Exit Baselines. First, we apply our MESS framework on
single-exit segmentation backbones from the literature, namely DRN, DLBV3 and
segMBNetV2. Table 2 lists the achieved results for MESS instances optimised for vary-
ing use-cases (framed as speed/accuracy constraints fed to our configuration search).



Multi-Exit Semantic Segmentation Networks 11

Table 2: End-to-end evaluation of MESS network designs

Method Backbone∗ Head Search Targets Results: MS COCO Results: PASCAL VOC
Error GFLOPs mIoU GFLOPs Latency† mIoU GFLOPs Latency†

DRN [66] (i) ResNet50 FCN –Baseline– 59.02% 138.63 39.96ms 72.23% 138.63 39.93ms
Ours (ii) ResNet50 FCN min ≤ 1× 64.35% 113.65 37.53ms 79.09% 113.65 37.59ms
Ours (iii) ResNet50 FCN ≤ 0.1% min 58.91% 41.17 17.92ms 72.16% 44.81 18.63ms
Ours (iv) ResNet50 FCN ≤ 1% min 58.12% 34.53 15.11ms 71.29% 38.51 16.80ms
DLBV3 [6] (v) ResNet50 DLB –Baseline– 64.94% 163.86 59.05ms 80.32% 163.86 59.06ms
Ours (vi) ResNet50 DLB min ≤ 1× 65.52% 124.10 43.29ms 82.32% 124.11 43.30ms
Ours (vii) ResNet50 DLB ≤ 0.1% min 64.86% 69.84 24.81ms 80.21% 65.29 24.14ms
Ours (viii) ResNet50 DLB ≤ 1% min 64.03% 57.01 20.83ms 79.30% 50.29 20.11ms
segMBNetV2 [49] (ix) MobileNetV2 FCN –Baseline– 54.24% 8.78 67.04ms 69.68% 8.78 67.06ms
Ours (x) MobileNetV2 FCN min ≤ 1× 57.49% 8.10 56.05ms 74.22% 8.10 56.09ms
Ours (xi) MobileNetV2 FCN ≤ 0.1% min 54.18% 4.05 40.97ms 69.61% 3.92 32.79ms
Ours (xii) MobileNetV2 FCN ≤ 1% min 53.24% 3.48 38.83ms 68.80% 3.60 31.40ms

∗Dilated network [66] based on backbone CNN. †Measured on: GTX for ResNet50 and AGX for MobileNetV2 backbone.

Table 3: Comparison with LC (speedup to backbone)

Head Search Target Exit Points Exit Policy
LC[30] Ours

FCN Error ≤ 0.1% 3-exit:{E1, E3, E6} 1.13× 3.36×
FCN Error ≤ 10.0% 2-exit:{E1, E6} 0.98× 6.02×

Table 4: Comparison with SOTA NAS approach

Method Approach ImgNet Training∗ Adaptation∗
mIoU GFLOPssearch re-training

DLBV3 [6] Baseline ✓ 192 -Non-adaptive- 80.32% 163.86
AutoDLB [35] NAS - 12,248 72 12,176 79.78% 57.61
Ours MESS ✓ 2,580 <1 - 79.94% 51.59

∗Initial-training and Adaptation times expressed in GPU-hours.

For a DRN-50 backbone on MS COCO, we observe that a latency-optimised MESS
instance achieves a 3.36× workload reduction with no accuracy drop (row (iii)), trans-
lating to a latency speedup of 2.23× over the single-exit DRN (row (i)). This improve-
ment is amplified to 4.01× in workload (2.65× in latency) for use-cases that can tolerate
a controlled accuracy degradation of ≤1 pp (row (iv)). Additionally, a MESS instance
optimised for accuracy under the same workload budget as DRN, can achieve an mIoU
gain of 5.33 pp compared to DRN, with 1.22× fewer GFLOPs (row (ii)).

Similar results are obtained for DLBV3, as well as when targeting PASCAL VOC.
Moreover, the gains are consistent on segMBNetV2, which forms an inherently efficient
segmentation model, with 15.7× smaller workload than DRN-50. This demonstrates
the model-agnostic nature of our framework, yielding complementary gains to efficient
backbone design, by exploiting the orthogonal dimension of input-dependent inference.
Comparison with Multi-Exit Baselines. Next, we compare MESS networks against
Deep Layer Cascade (LC) [30], the current SOTA in multi-exit segmentation, which
proposes per-pixel early-exiting through multiple segmentation heads. Due to their un-
structured computation, standard BLAS libraries cannot realise true latency benefits
from this approach. However, we apply LC’s pixel-level exit policy on diverse MESS
configurations, and compare with our image-level policy analytically (in GFLOPs), tun-
ing both thresholds so as to meet varying accuracy requirements.

By using SOTA techniques for semantic segmentation, such as larger dilation rates
or DeepLab’s ASPP, the gains of LC rapidly fade away, as for each pixel that prop-
agates deeper on, a substantial feature volume needs to be precomputed. Concretely,
when employing LC on our designs, up to a substantial 45% of the feature volume at
the output of the first exit falls within the receptive field of a single pixel in the final
output for the case of FCN-Head, reaching 100% for DLB-Head. As a result, LC’s pol-
icy presents heavily dissipated to no reduction in workload against the corresponding
single-exit baselines, being heavily reliant on the exit placement. In contrast, the re-
spective MESS instances equipped with our proposed exit policy (Sec. 5.2) are able to
achieve significant workload reduction, reported in Table 3.
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Comparison with NAS Baselines. Finally, we position our work against NAS solutions
for deriving efficient segmentation models. We employ Auto-DeepLab (AutoDLB) [35]
as our strong baseline, due to its SOTA performance both in accuracy and search effi-
ciency, and use our framework to generate a MESS instance matching its accuracy
(staring from DeepLabV3 [6] backbone). Table 4 lists our findings on PASCAL VOC.

Remarkably, MESS achieves a better (but comparable) speed-accuracy trade-off
than AutoDLB (3.17× vs 2.85× speedup over DeepLabV3), although the latter samples
from a larger space during search (1019 points vs 106) and takes advantage of more
degrees of freedom during training. Additionally, being able to exploit ImageNet pre-
trained backbones, MESS demonstrates significant training time savings (4.7× faster)
compared to NAS-crafted models like AutoDLB, that can only be trained from scratch.

Most importantly, due to our “train-once-deploy-everywhere” design, enabled by
the two-stage training approach of MESS, after the initial training of the overprovi-
sioned MESS network all 10 6 possible MESS instances are ready-to-deploy without
any need for re-training. Alternatively, training end-to-end all 106 MESS instances
would require >200 million GPU-hours. As a result, different MESS instances can be
obtained with a minimal search cost (<1 GPU-hour). Overall, MESS offers up to five
orders of magnitude faster adaptation time compared to NAS-based methodologies.

6.3 MESS Training Evaluation

Having shown the benefits of MESS networks against different state-of-the-art methods,
we now move to the evaluation of specific components of our framework.
Exit-Aware Pre-training. Initially, we demonstrate the effectiveness of the proposed
training scheme. We compare the accuracy of models with uniform exit configuration
across all candidate exits points, trained using different strategies. Table 5 summarises
the results of this comparison on a DRN-50 backbone with N=6, on MS COCO.

When multiple exits are attached to the backbone and jointly trained end-to-end,
as in [20,52], the accuracy of the final exit can notably degrade (row (ii)) compared to
a vanilla training of the backbone with solely the final exit attached (row(i)). This is
attributed to contradicting gradient signals between the early and the late classifiers and
to the larger losses of the early results, which dominate the loss function [3]. On the
other hand, freezing the weights of the vanilla backbone of row (i) and independently
training the same early exits, as in [24,27], leads to degraded accuracy in shallow exits
(row (iv)). This is due to the limited degrees of freedom of this second training stage
and the weaker semantics extracted by shallow layers of the frozen backbone.

Our (1st-stage) exit-aware pre-training pushes the extraction of semantically strong
features towards shallow parts of the network, while yielding the highest accuracy on
the final exit (row (iii)). Similar to observations from [51], we fathom that the extra
signal midway through the model acts both as a regulariser and as an extra backpropa-
gation source, reducing the effect of vanishing gradients.

Capitalising on this exit-aware pre-trained backbone, and without any harm of the
final exit’s accuracy, our subsequent frozen backbone training achieves consistently
higher accuracy (up to 12.57pp) across all exits (row (v)) compared to a traditionally
pre-trained segmentation network (Frozen), and up to 3.38 pp compared to an end-to-
end trained model (E2E), which also suffers a 1.57 pp accuracy drop in the final exit.
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Table 5: Evaluation of two-stage training scheme on DRN-50 (mIoU).
Method Init. Loss E1 E2 E3 E4 E5 E6

(i) Baseline Init. ImageNet LCE(E6) - - - - - 59.02%
(ii) E2E [20,52] ImageNet LCE(E1)+...+LCE(E6) 29.02% 40.67% 48.64% 51.69% 55.34% 58.33%
(iii) Exit-aware Init. ImageNet Eq. (2) (Ours) 28.21% 39.61% 47.13% 50.81% 56.11% 59.90%
(iv) Frozen [24,27] (i) LCE(E1), ..., LCE(E5) 23.94% 31.50% 38.24% 44.73% 54.32% 59.02%
(v) Ours (§4.3) (iii) LCE(E1), ..., LCE(E5) 32.40% 43.34% 50.81% 53.73% 57.9% 59.90%

∗ Experiments repeated 3 times. The sample stdev in mean IoU is at most ± 0.09 in all cases.

Table 6: Evaluation of Positive Filtering Distillation (mIoU)

Method Loss DRN-50 MobileNetV2
E1 E2 E3 E1 E2 E3

E2E [20,52] CE 49.96% 55.40% 58.96% 31.56% 41.57% 51.59%
KD [18] KD 50.33% 55.67% 59.08% 31.04% 41.93% 51.66%
SelfDistill [71,47,70] CE+KD 50.66% 55.91% 58.84% 32.08% 41.96% 51.58%
Ours (§4.3) PFD 51.02% 56.21% 59.36% 33.36% 42.95% 52.20%

CE=Cross-entropy, KD=Knowledge Distillation, PFD=Positive Filtering Distillation

20 40 60 80 100 120 140 160
 Mean Workload/Sample: (GFLOPs)

50

52

54

56

58

60

M
ea

n 
Io

U 
(%

)

Entropy (mean)
Entropy (ours)
Top1 (mean)
Top1 (ours)
Early-only
Final-only

Fig. 4: Comparison of different early-
exit policies on a DRN-50-based MESS
instance with two exits.

Positive Filtering Distillation. Here, we quantify the benefits of Positive Filtering Dis-
tillation (PFD) for the second stage (frozen-backbone) of our training methodology. To
this end, we compare against E2E utilising cross-entropy loss (CE), traditional knowl-
edge distillation (KD), and SelfDistill approach commonly used in multi-exit classi-
fication. Table 6 summarises our results on a representative exit-architecture, on both
DRN-50 and MobileNetV2, across MS COCO validation set.

Our proposed loss consistently yields higher accuracy across all cases, achieving
up to 1.8, 2.32 and 1.28 pp accuracy gains over E2E, KD and SelfDistill, respectively.
This accuracy boost is more salient on shallow exits, whereas a narrower improvement
is obtained in deeper exits where the accuracy gap to the final exit is natively bridged.

6.4 MESS Deployment under Different Settings

In this section, we showcase the effectiveness and flexibility of the proposed train-once,
deploy-everywhere approach for semantic segmentation. There are three inference set-
tings in MESS networks: i) budgeted, ii) anytime and iii) input-dependent, for which we
optimise separately post-training (Sec. 5.1). Here, we employ our search to find the best
single early-exit architecture for each case, using a 50% mIoU requirement. The results
are summarised in Table 7. Fig. 5 also depicts the underlying workload-accuracy rela-
tionship across the architectural configuration space for DRN-50 backbone. Different
points represent different architectures, colour-coded by their placement in the network.
Budgeted Inference. In this setting, we search for a single-exit submodel that can exe-
cute within a given latency/memory/accuracy target. Our method is able to provide the
most efficient MESS instance, tailored to the requirements of the underlying application
and target device (Table 7; row (ii)). This optimality gets translated in Fig. 5a, show-
casing the cost-accuracy trade-off from the input until the respective early exit of the
network, in the presence of candidate design points along the Pareto front of the search
space. In this setting, our search tends to favour designs with powerful exit architec-
tures, consisting of multiple trainable layers, mounted earlier in the network (Fig. 6a).
Anytime Inference. In this setting, each sample is sequentially processed by multi-
ple exits, progressively refining its prediction. When a deadline is met or a result is
needed, the last available output of the multi-exit network is asynchronously returned.
This paradigm creates an inherent trade-off: denser exits provide more frequent “check-
points”, whereas each added head adds computational overhead when not explicitly
used. To control this trade-off, our method considers the additional computational cost
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Fig. 5: Workload-accuracy trade-off between design points. Cap-
turing: (a) input-to-exit workload, (b) the overhead of each exit.

Table 7: DRN-50 with one early exit optimised for dif-
ferent inference schemes (Requirement of 50% mIoU)

Inference Workload (GFLOPs) mIoU
Overhead Eearly Efinal Eearly Efinal

(i) Final-Only - - 138.63 - 59.90%
(ii) Budgeted 8.01 28.34 - 51.76% -
(iii) Anytime 0.69 39.32 139.33 50.37% 59.90%
(iv) Input-Dep. 2.54 ( Esel: 23.02 ) ( Esel: 50.03% )

FC
N

crm

/2

𝒢! 𝒢"𝒢" FC
N

𝒢! 𝒢" FC
N

Y

N
FC
N crm

/8 FC
N

𝒢#

crm

/4 FC
N Exit?(a) (b) (c)

Fig. 6: Selected design points for: (a) budgeted, (b) anytime and (c) input-dependent inference, with the same accuracy target.

of each exit, when populating the MESS network architecture (Fig. 5b). Contrary to
budgeted inference, in this setting our search produces heads with extremely lightweight
architecture, sacrificing flexibility for reduced computational overhead, mounted deeper
in the network (Fig. 6b). Table 7 showcases that, for anytime inference (row (iii)), our
search yields an exit architecture with 11.6× less computational requirements compared
to budgeted inference (row (ii)), under the same accuracy constraint.
Input-Dependent Inference. In this setting, each input sample propagates through the
selected MESS instance until the model yields a confident-enough prediction (Esel).
By selecting different threshold values for the confidence-based exit policy (Sec. 5.2),
even the simplest (2-exit) configuration of input-dependent MESS network (Fig. 6c)
provides a fine-grained trade-off between workload and accuracy. Exploiting this trade-
off, we observe that input-dependent inference (Table 7; row (iv)) offers the highest
computational efficiency under the same (50% mIoU) constraint.

Confidence Metric: To evaluate MESS exit-policy, we apply the proposed image-
level confidence metric for segmentation, on top of both top1 [20] and entropy [52]-
based pixel-level confidence estimators, commonly used in multi-exit classification. Our
experiments with various architectural configurations indicate that the proposed exit-
policy offers a consistently better speed-accuracy trade-off compared to corresponding
averaging counterparts (directly generalising from classification-based metrics by av-
eraging per-pixel confidences for each image), with accuracy gains of up to 6.34 pp
(1.17 pp on average). An example of this trade-off is illustrated in Fig. 4.

7 Conclusion

In this paper, we have presented the concept and realisation of multi-exit semantic seg-
mentation. Applicable to state-of-the-art CNN approaches, MESS models perform ef-
ficient semantic segmentation, without sacrificing accuracy. This is achieved by intro-
ducing novel training and early-exiting techniques, tailored for MESS networks. Post-
training, our framework can customise the MESS network by searching for the optimal
multi-exit configuration (number, placement and architecture of exits) according to the
target platform, pushing the limits of efficient deployment.
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