
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks 17

A Appendix

A.1 Proof of Lemma 2

We will proof the Lemma 2 here. Recall

Lemma 2 (Convolutional AOL Layers) Let P ∈ Rk×k×cI×cO , be a convolu-
tion kernel matrix, where k × k is the kernel size and cI and cO are the number
of input and output channels, respectively. Then, the convolutional layer

f(x) = P ∗R(x) + b (7)

is guaranteed to be 1-Lipschitz, where R(x) is a channel-wise rescaling that mul-
tiplies each channel c ∈ {1, . . . , cI} of the input by

dc =
(∑

i,j

cI∑
a=1

∣∣∣ cO∑
b=1

P (a,b) ∗ P (c,b)
∣∣∣
i,j

)−1/2

. (8)

We can equivalently write f as f(x) = W ∗ x + b, where W = P ∗ D with

D ∈ R1×1×cI×cI given by D
(c,c)
1,1 = dc, and D

(c1,c2)
1,1 = 0 for c1 ̸= c2.

Proof. For the proof we will assume maximal padding of the input: We pad an
input x ∈ Rn×n×cI (with values independent of x) to a size of (n + 2k − 2) ×
(n+2k− 2)× cI, and then apply the convolution to the padded input. Then we
obtain an output of size (n+k−1)×(n+k−1)×cO. We will derive a rescaling of
the input that ensures this convolution has a Lipschitz constant of 1. Then, any
convolution with a different kind of padding (such as same size or valid) can be
considered as first doing a maximally padded convolution, followed by a center
cropping operation. Since a cropping operation also has a Lipschitz constant of
1, this also shows that convolutional layers with a different kind of padding have
a Lipschitz constant of 1.

Denote by x̃ the padded version of input x, with x̃i+k−1,j+k−1 = xi,j . Then,
the multi-channel, maximally padded convolution with a convolutional kernel
P ∈ Rk×k×cI×cO is given by

[P ∗ x]bi,j =
k−1∑
p=0

k−1∑
q=0

cI∑
a=1

P (a,b)
p,q x̃a

i+p,j+q, (11)

for 1 ≤ i, j ≤ n+ k − 1 and 1 ≤ b ≤ cO.
We now consider the Jacobian J of the linear map (from unpadded input to

output) defined by Equation 11. It is a matrix of size (n+k−1)2cO×n2cI, with
entries given by

J
(b,a)
(i2,j2),(i1,j1)

= P
(a,b)
(i1−i2+k−1),(j1−j2+k−1), (12)

for 1 ≤ i1, i2 ≤ n, 1 ≤ i2, j2 ≤ n + k − 1, 1 ≤ a ≤ cI and 1 ≤ b ≤ cO. Here, we

define P
(a,b)
p,q = 0 unless 0 ≤ p < n and 0 ≤ q < n.



18 B. Prach, C. H. Lampert

We can use that to obtain an expression for J⊤J (writing m = n + k − 1):

[J⊤J ]
(a1,a2)
(i1,j1),(i2,j2)

(13)

=

m∑
i=1

m∑
j=1

cO∑
b=1

J
(b,a1)
(i,j),(i1,j1)

J
(b,a2)
(i,j),(i2,j2)

(14)

=

m∑
i=1

m∑
j=1

cO∑
b=1

P
(a1,b)
(i1−i+k−1),(j1−j+k−1)P

(a2,b)
(i2−i+k−1),(j2−j+k−1) (15)

=

k−1∑
i=0

k−1∑
j=0

cO∑
b=1

P
(a1,b)
i,j P

(a2,b)
(i+i2−i1),(j+j2−j1)

(16)

=

(
cO∑
b=1

P (a1,b) ∗ P (a2,b)

)
i2−i1,j2−j1

. (17)

We can now apply Theorem 1 (from the main paper) with P = J together
with Equation (17) in order to obtain the necessary rescaling: In order to guar-
antee the convolution to have Lipschitz constant 1, we need to multiply input

x
(c)
i2,j2

by  n∑
i1=1

n∑
j1=1

cI∑
a1=1

∣∣∣∣∣
cO∑
b=1

P (a1,b) ∗ P (c,b)

∣∣∣∣∣
i2−i1,j2−j1

−1/2

. (18)

A lower bound of this expression (that is tight for most values of i2 and j2) is
given by  k∑

i=−k+1

k∑
j=−k+1

cI∑
a=1

∣∣∣∣∣
cO∑
b=1

P (a,b) ∗ P (c,b)

∣∣∣∣∣
i,j

−1/2

. (19)

This value is independent of both i2 and j2, so this completes our proof for
maximally padded convolutions. This also implies that convolutions with less
padding have a Lipschitz constant of 1 when the input is rescaled as described.

⊓⊔

Note that this proof requires padding independent of the input. However, for
example for cyclic padding, the Jacobian is a doubly circuland matrix, and a
very similar proof shows that our rescaling still works.

Also note that a result similar to equation (17), relating J⊤J to a self-
convolution, has been observed before by [25].

A.2 Comparison of the orthogonality

We will present a comparison of J⊤J for J the Jacobian of different layers. We
consider three architectures: A standard convolutional architecture with stan-



Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks 19

Zoom 1

Zoom 2

STD - Center crop

Zoom 1

Zoom 2

AOL - Center crop

Zoom 1

Zoom 2

ORTH - Center crop

STD - Zoom 1 AOL - Zoom 1 ORTH - Zoom 1

STD - Zoom 2 AOL - Zoom 2 ORTH - Zoom 2

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

 -0.2

 -0.1

 0

 0.1

 0.2

0.25

0.00

0.25

0.50

0.75

0.25

0.00

0.25

0.50

0.75

 -5e-07

 0

 5e-07

 1e-06

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

 -0.1

 -0.05

 0

 0.05

 0.1

Fig. 2. Evaluation of orthogonality of trained models. The first row shows a center crop
of J⊤J , where J is the Jacobian of the layer, as well as the location of the other two
crops. Those are shown in the second and third row. Left column: Standard convolu-
tional layer (STD). Center column: AOL-STD (AOL), Right column: (Perfectly)
orthogonal layer (ORTH). Note the different color scales of different subplots. Best
viewed in color and zoomed in.

dard convolutions (see Section A.4), the same architectures with AOL convolu-
tions and (theoretically) an architecture with perfectly orthogonal Jacobian. We
pick the third layer of this architecture. It is a convolution with kernel of size
3× 3× 32× 32, and input as well as output of size 32× 32× 32. This results in
a Jacobian J of size 32 768× 32 768, and we calculate and visualize the values of
a center crop of size 288× 288 of the matrix J⊤J . (See Figure 2.)

One can see that for our AOL-STD architecture most off-diagonal elements
are very close to 0, whereas for the standard architecture they are not. Interest-
ingly, for our architecture there are some off-diagonal elements that are clearly
non-zero. This shows that the learning resulted in a few column pairs not being
orthogonal, in line with our claim of almost-orthogonality.

A.3 Accuracies of different architectures

The results for different architectures using our proposed AOL layers are in
Table 6.



20 B. Prach, C. H. Lampert

Table 6. Experimental results for different architectures using AOL on CIFAR-10. We
report the standard accuracy on the test set as well as the certified robust accuracy
under input perturbations up to size ϵ for different values of ϵ.

Method Standard Certified Robust Accuracy
Accuracy ϵ = 36

255
ϵ = 72

255
ϵ = 108

255
ϵ = 1

AOL-FC 67.9% 59.1% 51.1% 43.1% 17.6%
AOL-STD 65.0% 56.4% 48.2% 39.9% 15.8%
AOL-ALT 68.4% 60.3% 52.4% 44.8% 19.9%
AOL-DIL 62.7% 54.2% 46.0% 38.3% 14.9%

A.4 Further Architectures

We present the other architectures here that were used in the ablation studies.

Standard CNN: In this Architecture the number of channels doubles whenever
the spatial size is decreased. For details see Table 7.

Table 7. A relatively standard convolutional architecture for CIFAR-10. For all layers
we use zero padding to keep the size the same. First channels just selects the first
channels and ignores the rest.

Layer name Filters Kernel size Stride Activation Output size Amount

Conv 32 3× 3 1× 1 MaxMin 32× 32× 32 4
Conv 64 2× 2 2× 2 None 16× 16× 64 1
Conv 64 3× 3 1× 1 MaxMin 16× 16× 64 4
Conv 128 2× 2 2× 2 None 8× 8× 128 1
Conv 128 3× 3 1× 1 MaxMin 8× 8× 128 4
Conv 256 2× 2 2× 2 None 4× 4× 256 1
Conv 256 3× 3 1× 1 MaxMin 4× 4× 256 4
Conv 512 2× 2 2× 2 None 2× 2× 512 1
Conv 512 3× 3 1× 1 MaxMin 2× 2× 512 4
Conv 1024 2× 2 2× 2 None 1× 1× 1024 1
Conv 1024 1× 1 1× 1 None 1× 1× 1024 1
First Channels - - - - 1× 1× 10 1
Flatten - - - - 10 1

AOL-FC: Architecture consisting of 9 fully connected layers. For details see
Table 8.



Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks 21

Table 8. Fully Connected Architecture. First channels just selects the first channels
and ignores the rest.

Layer name Activation Output size Amount

Flatten - 3072 1
AOL FC MaxMin 4096 8
AOL FC None 4096 1
First Channels - 10 1

AOL-STD: This architecture is identical to the one in Table 7, only with
standard convolutions replaced by AOL convolutions.

AOL-ALT: Architecture that quadruples the number of channels whenever the
spatial size is decreased in order to keep the number of activations constant for
the first few layers. This is done until there are 1024 channels, then the number
of channels is kept at this value. For details see Table 9.

Table 9. Convolutional architecture. For all layers we use zero padding to keep the
size the same. First channels just selects the first channels and ignores the rest.

Layer name Filters Kernel size Stride Activation Output size Amount

AOL Conv 16 2× 2 2× 2 MaxMin 16× 16× 16 1
AOL Conv 16 3× 3 1× 1 MaxMin 16× 16× 16 4
AOL Conv 64 2× 2 2× 2 MaxMin 8× 8× 64 1
AOL Conv 64 3× 3 1× 1 MaxMin 8× 8× 64 4
AOL Conv 256 2× 2 2× 2 MaxMin 4× 4× 256 1
AOL Conv 256 3× 3 1× 1 MaxMin 4× 4× 256 4
AOL Conv 1024 2× 2 2× 2 MaxMin 2× 2× 1024 1
AOL Conv 1024 1× 1 1× 1 MaxMin 2× 2× 1024 4
AOL Conv 1024 1× 1 1× 1 None 2× 2× 1024 1
First Channels 256 - - - 2× 2× 256 1
AOL Conv 1024 2× 2 2× 2 MaxMin 1× 1× 1024 1
AOL Conv 1024 1× 1 1× 1 MaxMin 1× 1× 1024 4
AOL Conv 1024 1× 1 1× 1 None 1× 1× 1024 1
First Channels 10 - - - 1× 1× 10 1
Flatten - - - - 10 1

AOL-DIL We use an architecture similar to the one used by ECO. For that, we
just replace each 3× 3 convolution in the architecture in Table 7 with a strided
AOL convolution.



22 B. Prach, C. H. Lampert

A.5 Data augmentation

We use data augmentation in all our experiments. We first do some color aug-
mentation of the images, followed by some spatial transformations. For the color
augmentation, we first adjust the hue of the image (by a random factor with
delta in [−0.02, 0.02]), then we adjust the saturation of the image (by a factor
in [.3, 2]), then we adjust the brightness of the image (by a random factor with
delta in [−0.1, 0.1]), and finally we adjust the contrast of the image (by a factor
in [.5, 2]). After this we clip the pixel values so they are in [0., 1.]. For the spatial
transformations, we first apply a random rotation, with a maximal rotation of
5 degrees. Then we apply a random shift of up to 10% of the image size, and
finally we flip the image with a probability of 50%. We rely on the tensorflow
layers RandomRotation and RandomTranslation for the spatial transformations,
and leave all hyperparameters such as the fill mode as the default values. All
hyperparameters specifying the amount of augmentation were chosen based on
visual inspection of the augmented training images.

A.6 Computational Complexity of AOL Layers

In addition to performing a standard convolution, in AOL Layers the rescal-
ing factors have to be computed. For fully connected layers, the most expensive
operation required for computing the rescaling factors is calculating P⊤P . Im-
plemented in a standard way this has complexity O(s2t) for a parameter matrix
P ∈ Rt×s. However, it only has to be performed once per batch, so it is com-
parable to the speed of the forward pass itself, which is O(bst) for batch size b
(b = 250 in our experiments).

For convolutional AOL layers with kernel size k×k and c channels calculating
the rescaling factors has a complexity of O(k4c3) per batch. The complexity of
a forward pass (of a convolution) with input and output sizes n×n and batch
size b is O(bn2k2c2). Usually, we expect the forward pass to require many more
computations, but when the number of channels c is large, and both the spatial
size of the input as well as the batch size b are small, calculating the rescaling
factor can cause a non-trivial computational overhead, however the computations
should still be compareable in complexity.

In order to update the parameter matrix, we also need to differentiate through
the calculation of the rescaling factors (also only once per batch). It turns out
that the backward pass has the same complexity as the forward pass, e.g., for
fully-connected layers, the backpropagation through P 7→ P⊤P is most costly
and takes O(s2t) in explicit form.


