Supplementary Materials for
“ PointScatter: Point Set Representation for
Tubular Structure Extraction”

1 Implementation details

In this section, we supplement the implementation details that are not covered
in Section 4.1.

In Equation (3), the weight of regression loss is set to A = 10. As for the focal
loss, we use a = 0.6 for the segmentation task and o = 0.7 for the centerline
extraction task. The ~ in focal loss is set to 2.0 for all circumstances. Specially,
we set @ = 0.8 for the centerline extraction task of MassRoads and DeepGlobe.
For all datasets except DeepGlobe, we use the ADAM optimizer with the initial
learning rate le-3 and cosine learning rate schedule to train the network end-
to-end. We use the poly learning rate schedule for Deepglobe and set the initial
learning rate and the power to le-3 and 3, respectively. The weight decay is set
to be le-4 uniformly.

We then introduce the dataset specified hyper-parameters. Since the num-
bers of images are significantly different for the datasets, we set the number of
iterations separately for each dataset. For DRIVE and STARE, we train the
PointScatter for 3K iterations, and 10K for MassRoads. We use batchsize=4
for these three datasets. The DeepGlobe is much harder than the other datasets,
hence we set its iteration number to 40K with batchsize=16. The sizes of input
images are 384 x 384 for DRIVE and STARE, 1024 x 1024 for MassRoads and
768 x 768 for DeepGlobe.

2 Ablation of the Matching Methods

We compare the performance of the greedy bipartite matching method and the
Hungarian algorithm on the two tasks in Table 1 and Table 2. We use the
same settings to train on these two methods for each dataset to achieve a fair
comparison. On both tasks, these two methods have similar volumetric scores,
while the greedy method yields a slightly better topology-based score.

A succinct implementation of the greedy bipartite matching is demonstrated
in Listing 1. Batching on all regions makes our implementation efficient.
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import torch

def batched_greedy_assignment (cost

mmn

Args:

R

cost (Tensor): shape (num_region, num_pred (N), num_gt (K))

Returns:

assignment (LongTensor): shape (num_region, num_gt (K))

mmnn

num_region, num_pred, num_gt =

assignment = - torch.ones(
size=(num_region, num_gt),
dtype=torch.long,
device=cost.device

cost.shape

)

for i in range(num_gt):
cur_min_idx = torch.argmin(cost[..., il, dim=-1)
assignment[..., i] = cur_min_idx

index = cur_min_idx.view(num_region, 1, 1).expand(-1, -1, num_gt)

cost.scatter_(dim=1, index=index, value=float('inf'))

return assignment

Listing 1: PyTorch codes of batched greedy bipartite assignment. This function assigns
each ground-truth point to a predicted point uniquely. We assume that K < N in
input cost tensor.

Table 1: Comparison of the greedy and Hungarian matching algorithm on tubular
structure segmentation task.

Dataset | Method |AUC(%) Dice(%) clDice(%) ACC(%)|BoError S1Error Xerror

STARE Greedy 97.86  82.73 85.83 97.45 | 0.818 0.774 0.978
Hungarian| 97.88 82.84 85.77 97.48 | 0.861 0.789 1.021

MassRoads Greedy | 97.65 77.57 86.42 96.87 | 0.944 1.353 1.616
’ Hungarian| 97.60 77.65 86.60 96.88 | 0.902 1.323 1.558

Table 2: Comparison of the greedy and Hungarian matching algorithm on centerline
extraction task.
Dataset | Method |AUC(%) Dice(%) Prec(%) Recall(%) ACC(%)|BoError B1Error Xerror

STARE Greedy | 94.52 81.77 92.09 73.52 99.10 | 2.158 1.424 2.303

Hungarian| 93.95  80.67 91.85 71.91 99.07 | 3.286 1.702 3.431

. Greedy 93.59  69.63  70.28 68.99 99.01 | 5.955 2.244 6.135
MassRoads :

Hungarian| 95.51 69.64 70.86 68.45 99.02 | 4.315 2.288 4.766
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3 Comparison with Other Methods

In Table 3, we further compare our method with previous approaches on the
STARE dataset. We adopt the data split method in RV-GAN [4] for fair compar-
ison. Our methods achieve SOTA performance on AUC and clDice, and achieve
competitive Dice and ACC scores compared with other methods.

Table 3: Comparison with previous works on the vessel segmentation task. We follow
the data split methods in RV-GAN. Our models are based on the U-Net backbone.

Dataset‘Method ‘AUC(%) Dice(%) clDice(%) ACC(%)
R2UNet [1] 99.14  84.75 - 97.12
CE-Net [2] 98.71 83.13 85.87 97.59
DUNet [3] 98.32 8143 - 96.41

STARE|IterNet [5] 99.15 81.46 - 97.82
RV-GAN [1] | 98.87 83.23 - 97.54

PointScatter 99.24  84.52 87.46 97.75
softDice+PSAUX| 98.59 84.51 87.36 97.75
clDice+PSAUX 98.59 84.74 88.29 97.77

4 Additional Qualitative Results

In this section, we provide more qualitative analysis of our PointScatter. In
Fig. 1, we show the points labels and points predictions of our PointScatter.
We use the gray value to represent the objectness score of each predicted point,
the darker, the higher. Since the GT points are tiled as grid shape, the predicted
points are also located in the center of each pixel.

We also illustrate more tubular segmentation and centerline extraction results
in Fig. 2.
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Fig. 1: Illustration of the points labels and points predictions of our PointScatter on
the two tasks. We set D = 4 in our experiments and the each 4 X 4 bin in the images
is corresponding to a scatter region.
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Fig. 2: Additional visual comparison for our PointScatter with other methods.
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