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Abstract. This paper explores the point set representation for tubular
structure extraction tasks. Compared with the traditional mask represen-
tation, the point set representation enjoys its flexibility and representa-
tion ability, which would not be restricted by the fixed grid as the mask.
Inspired by this, we propose PointScatter, an alternative to the segmen-
tation models for the tubular structure extraction task. PointScatter
splits the image into scatter regions and parallelly predicts points for each
scatter region. We further propose the greedy-based region-wise bipartite
matching algorithm to train the network end-to-end and efficiently. We
benchmark the PointScatter on four public tubular datasets, and the
extensive experiments on tubular structure segmentation and centerline
extraction task demonstrate the effectiveness of our approach. Code is
available at https://github.com/zhangzhao2022/pointscatter.

Keywords: Tubular Structure, Medical Image Segmentation, Center-
line Extraction, Point Set Representation

1 Introduction

Tubular structures broadly exist in computer vision tasks, especially medical
image tasks, such as blood vessels [26,51], ribs [22,52], and nerves [15]. Ac-
curate extraction of these tubular structures performs a decisive role in the
downstream tasks. For instance, the diagnosis of eye-related diseases such as hy-
pertension, diabetic retinopathy highly relies on the extraction of retinal vessels.
Deep learning-based methods usually model the extraction of tubular structures
as a regular semantic segmentation task, which predicts segmentation masks as
the representation of the structures. Therefore, previous works mostly adopt the
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Fig. 1: PointScatter adopts point set representation to perform tubular struc-
ture extraction. We exhibit a small input image with size 48 × 48 to show the
details clearly. PointScatter learns to predict points for each scatter region
seperately. Region-wise bipartite matching is empolyed in PointScatter to train
the network end to end.

following two routines: designing novel network components to incorporate vas-
cular or tubular priors [37], or proposing loss functions that promote topology
preservation [38].

Semantic segmentation methods apply successively upsampling on the high-
level feature maps to get the predicted segmentation masks. The wide receptive
field makes it more suitable to recognize large connected areas in the image.
However, the paradigm of semantic segmentation has its inherent defect, which
is further amplified in the task of tubular structure extraction. It is widely known
that the segmentation models struggle in extracting high-frequency information
accurately, such as image contours [19,18,8,9]. In tubular structures, the natural
thinness makes almost all foreground regions contact with the structure bound-
aries. The special characteristics of the tubular structure increase the difficulty
of capturing the fine-scale tubular details, which leads to false negatives of the
small branches in the tubular structures.

We argue that the limitation lies in the representation of the prediction re-
sults. The semantic segmentation methods predict one score map to represent a
segmentation result. The score map is arranged on a regular grid where each bin
corresponds to a pixel in the input image. The fixed grid limits the flexibility
of the representation and therefore restricts the ability of the network to learn
fine-scale structures. Compared with the regular grids, point set representation
is a more reasonable way for tubular structure extraction. Since the points can
be placed at arbitrary real coordinates in the image, the point set representation
enjoys more flexibility and expression ability to learn the detailed structures and
is not restricted to a fixed grid.

Therefore, in this paper, we propose PointScatter to explore the feasibil-
ity of point set representation in tubular structure extraction. PointScatter
(Fig. 1) is an alternative of the mask segmentation method and can apply to reg-
ular segmentation backbones (e.g . U-Net [35]) with minor modifications. Given a
downsampled feature map output by the CNN backbone network, each localiza-
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tion of this feature map is responsible for predicting points in the corresponding
scatter region. In this paper, we regard each patch as a scatter region as shown
in Fig. 1, and each localization of the feature map corresponds to the image patch
with the same relative position within the whole image. For each scatter region,
our PointScatter predicts a fixed number of points with their objectness scores.
When inference, a threshold is applied to filter out points with low scores. The
aggregation of all scatter regions forms the final results.

Our PointScatter predicts points for all scatter regions parallelly at once,
and the training process is also in an end-to-end and efficient manner. We apply
the set matching approach separately for each scatter region to perform label
assignment for training our PointScatter. Previous works in the object detec-
tion area (e.g . DETR [5]) adopt Hungarian algorithm [20] to perform one-to-one
label assignment. Following this way, a straightforward way is using the Hungar-
ian algorithm iteratively for each scatter region. However, the iteration process
is inefficient for large images with thousands of scatter regions. Consequently,
we propose the region-wise bipartite matching method which is based on the
greedy approach. Our method reduces the computation complexity from O(N3)
to O(N2) for each scatter region and is easier to be implemented on GPU using
the vectorized programming by the deep learning framework (e.g . PyTorch [32]).

The advantages of our PointScatter and point sets lie in their flexibility and
adaptability. 1) For the segmentation methods, each pixel of the output score
maps corresponds to the pixel of the input image with the same spatial location,
and has to predict the objectness score for this pixel. While in our PointScatter,
the model can adaptively decide the assignments between the predicted and
GT points within each scatter region. Since there are fewer restrictions on the
assignments, the model is much easier to fit the complicated fine-scale structures
in the training process. 2) During the PointScatter training, since we use points
as GT rather than the mask, the predicted points can approach the GT points
along the continuous spatial dimension. The extra dimension rather than the
classification score dimension will reduce the optimization difficulty and provide
more paths for the optimization algorithm to find the optimal solution during
model training.

Experimentally, we evaluate PointScatter on four typical tubular datasets.
For each dataset, we compare our methods with their segmentation counterparts
on three strong backbone networks. We consider two tasks for tubular structure
extraction: tubular structure segmentation and centerline extraction. Extensive
experimental results reveal:

1. On the tubular structure segmentation task, according to the volumetric
scores, our PointScatter achieves superior performance on most of the 12
combinations of the datasets and the backbone networks.

2. On the tubular structure segmentation task, using PointScatter as an aux-
iliary task to learn the centerline, the performance of both volumetric scores
and topology-based metrics of the segmentation methods will be boosted.

3. On the centerline extraction task, our PointScatter significantly outper-
forms the segmentation counterparts by a large margin.
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4. The qualitative analysis shows that our PointScatter is better than the
segmentation methods on the small branches or bifurcation points, which
verifies the expression ability of our method.

2 Related Work

2.1 Tubular Structure Segmentation

Tubular structure segmentation is a classical task due to the broad existence
of tubular structures in medical images. Traditional methods [3,40,6,2,1] seek
to exploit special geometric priors to improve the performance. Fethallah et
al . [3] proposes an interactive method for tubular structure extraction. Once the
physicians click on a small number of points, a set of minimal paths could be
obtained through the marching algorithm. Amos et al . [40] considers centerline
detection as a regression task and estimates the distance in scale space.

As for deep learning-based models, U-Net [35] and FCN [25] are the classical
methods for semantic segmentation, which are also appropriate for tubular struc-
tures. To further improve the performance, approaches specially designed for
tubular structures have been proposed recently. These methods can be coarsely
classified into two categories: incorporating tubular priors into the network archi-
tecture [49,37,43] and designing topology-preserving loss functions [38,30,29,17].
Wang et al . [49] attempt to predict a segmentation mask and a distance map
simultaneously for tubular structures. Then the mask could be refined through
the shape prior reconstructed from the distance map. Shit et al . [38] introduces
a new similarity measure called clDice to represent the topology architecture of
tubular structures. Moreover, the differentiable version soft-clDice is proposed to
train arbitrary segmentation networks. Oner et al . [30] proposes a connectivity-
oriented loss function for training deep convolutional networks to reconstruct
network-like structures. Besides these two ways, some researchers propose spe-
cial approaches for their specific tasks. For instance, Li et al . [23] leverages a
deep reinforced tree-traversal agent for efficient coronary artery centerline ex-
traction. Different from the above methods, our PointScatter is the first to
utilize points as a new representation for tubular structures, which significantly
improves the segmentation performance.

2.2 Point Set Representation

Recently, points have become a popular choice to represent objects. Contributing
to its flexibility and great expression capability, point representation is applied
in various fields, such as image object detection [53,21,14], instance segmenta-
tion [54], pose estimation [4,48,31,58], 3D object classification and segmenta-
tion [33,34,56], etc. Benefiting from the advantage of points for both localization
and recognition, RepPoints [53] utilizes point set as a new finer representation of
objects instead of the rectangular bounding boxes. For the task of human pose
estimation, detecting key points of humans is regarded as the prerequisite. Then,
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based on the prior knowledge of the human body, the skeletons can be obtained
via the spatial connections among the detected key points. In the area of 3D
object recognition, the point cloud is an important data structure. Thousands
of points represented by the three coordinates (x, y, z) make up the scenes and
objects. Qi et al . [33] provides a unified architecture for point cloud to achieve
object classification and semantic segmentation. In this paper, we introduce the
point set representation for tubular structures due to the expression ability of
points to capture complex and fine-grained geometric structures.

2.3 Set Prediction by Deep Learning

The paradigm of set prediction has been introduced into the computer vision
tasks (e.g . Object Detection [5,60,46]) firstly by DETR [5]. In DETR, a bipartite
matching between ground truth and prediction is constructed based on the Hun-
garian algorithm [20], which guarantees that each target corresponds to a unique
prediction. Following DETR, Wang et al . [50] and Sun et al . [42] perform one-
to-one label assignment for classification to enable end-to-end object detection.
More recently, researchers attempt to utilize the pattern of set prediction to im-
prove the performance of other high-level tasks [45,11,50,61,10]. Cheng et al . [11]
reformulates semantic segmentation as a mask set prediction problem and shows
excellent empirical results. Wang et al . [50] predicts instance sequences directly
via instance sequence set matching for video instance segmentation. In [61,10],
the HOI instances can make up the triplet instance sets for both ground truth
and prediction, which provides a simple and effective manner for Human Object
Interaction (HOI) detection. Moreover, in the task of instance-aware human part
parsing, [58] designs a specific differentiable matching method to generate the
matching results for predicted limbs with different categories. In this paper, to
train our PointScatter, we divide the image by predefined scatter regions and
perform set predictions between predicted points and GT points on each of the
regions in parallel.

3 Methodology

The PointScatter receives 2D images and produces point sets to represent the
tubular structure. The training process of the set prediction task is end-to-end
and efficient contributed by the region-wise bipartite matching method. We will
first introduce the architecture of PointScatter in Section 3.1. Then Section 3.2
elaborates on the training process. An overview of our proposed PointScatter

is shown in Fig 2.

3.1 PointScatter Architecture

Our PointScatter formulates the tubular structure extraction task as a point
set prediction task. The pipeline of the inference process of PointScatter is
illustrated in the top part of Fig. 2. Given an input image X with shape H×W,
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Fig. 2: The pipeline of PointScatter. The top part illustrates the pipeline of
point set prediction of PointScatter. It predicts points for each scatter region
separately and gathers them to form the final result. The bottom part exhibits
the approach of label assignment for each scatter region. We obtain point-to-
point assignments to supervise the network training precisely. The predicted
points without match will be allocated a “no point” class.

it is firstly fed into the CNN backbone network, and we obtain the corresponding
down-sampled feature map F ∈ RC×H×W , where C is the channel size, H and
W indicate the shape of the feature map. Let D denote the downsampling rate
of the CNN backbone, we have

H = H/D, W = W/D. (1)

Note that we assume thatH andW are divisible byD, which is the same situation
as semantic segmentation.

Next, we introduce the concept of scatter region. In PointScatter, each
spatial localization Fi in F is responsible for predicting the corresponding points
that situate in a predefined region of the input image. i denotes the spatial index
in H ×W . We call this predefined specific area scatter region. Note that the
scatter region could be of arbitrary shape. In this paper, considering the natural
grid shape of the feature map F , we define the scatter region as the D×D patch
which has the same relative position in the input image as Fi in F . The top part
of Fig. 2 provides an intuitive illustration.

We employ two head networks to perform point prediction for each scatter
region. The objectness head and the localization head are responsible for pro-
ducing point scores and offsets, respectively. The points of all scatter regions
jointly constitute the final output.
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Fig. 3: Illustrations of applying segmentation method or our PointScatter on
the U-Net backbone. We show an abstractive version of U-Net for ease of pre-
sentation. We set the downsample scale D = 4.

The points prediction mechanism from a high-level feature map F makes our
PointScatter different from the mask segmentation methods (e.g . U-Net [35]).
Instead of generating a grid of mask with the same shape as the original image,
our PointScatter utilizes flexible points to describe the tubular structures. The
ampliative representation ability enhances the power of the network to learn the
complicated fine-scale structures. We will then introduce the details of the head
and backbone networks in the following.

Head Networks. The head networks are responsible for predicting points for
each image scatter region. They are composed of the Objectness Head (ObjHead)
and the Localization Head (LocHead). For each scatter region, PointScatter
generates N point candidates with their objectness scores and their localization,
where N should be set greater than the maximum number of label points within
a scatter region.

Formally, given Fi from the downsampled feature map F , where i indicates
the spatial localization in H ×W , we denote the center localization of the cor-
responding image scatter region in the input image as ci = (Xc

i , Y
c
i ). Then we

predict the objectness score for N points and regress their coordination offsets
relative to ci by ObjHead and LocHead, respectively:

scorei = Sigmoid(ObjHead(Fi)) ∈ RN , offseti = LocHead(Fi) ∈ RN×2. (2)

Note that we apply Sigmoid operation after ObjHead to normalize the objectness
score to the scale of [0, 1]. To acquire the coordinate of the points, we can simply
apply the regressed offsets to the center point ci, i.e. p

j
i = (Xc

i + offsetj,1i , Y c
i +

offsetj,2i ), where pji is the jth point generated from Fi. During inference, the
points with scores lower than a threshold T will be eliminated. Sliding these
two heads on the whole feature map F and merging all predicted points, we can
obtain the final results.

In practice, we instantiate ObjHead and LocHead both as a single linear
layer, which can be implemented by the convolutional layer with kernel size
1 × 1. Although the transformer-like architecture [44] is proven to promote the
interaction between object items in prior works [5,60], to maintain simplicity
and focus on the point representation itself, we adopt the fully convolutional
architecture in our PointScatter.
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Backbone Networks. As introduced above, in PointScatter, the only re-
quirement on the backbone network is that it should produce aD× downsampled
feature map relative to the input image. The universality of PointScattermakes
it compatible with almost all common backbone networks in semantic segmen-
tation [25,35]. In this section, we take as an example the most famous model for
medical image segmentation U-Net [35] to show how we apply PointScatter to
a regular segmentation network.

We illustrate the utilization of the backbone network (i.e. U-Net) in Fig. 3.
Traditional segmentation methods use the feature map with the same shape as
the input image to generate the corresponding segmentation mask (Fig. 3a). Our
PointScatter (Fig. 3b) passes the D× downsampled feature map to the head
networks, while the successive upsampled feature maps are removed from the
computational graph. In Fig. 3c, we show that we can simultaneously apply seg-
mentation and PointScatter to the backbone network, which can be regarded
as the multitask learning manner. We find that multitask learning will boost the
performance of mask segmentation in the following experiments section.

3.2 Training PointScatter

The training of PointScatter also complies with the paradigm of scatter re-
gions. Therefore, for each scatter region, we should assign the class label and
the offset label for each predicted point. To achieve this goal, following prior
works [5,60], we first define the cost function between predicted and ground-
truth points, and then perform bipartite matching to produce one-to-one label
assignment with a low global cost (bottom part of Fig. 2).

We first discuss the cost function. The matching cost should take into account
both the objectness scores and the distance of the predicted and ground-truth
points. Specifically, for each scatter region, we have a set of K ground-truth
points G = {gi}Ki=1 and N predicted points P = {pi}Ni=1. Note that we omit
the index of scatter region in this subsection for simplicity. For each predicted
point pi, its objectness score is denoted as si. Since the common assumption is
K ≤ N , we consider G also a set of size N , where the rest part is complemented
by ∅ (no point). Therefore, for a permutation of N elements σ ∈ SN , we define
the cost for each point assignment as

Lmatch(gi, pσ(i)) = [L1(gi, pσ(i))]
η · |sσ(i) − 1(i ≤ K)|1−η, (3)

where the first term in the equation describes the matching quality of point
localization, and the last item indicates the classification error. L1 is the man-
hattan distance in this equation, and η is a hyper-parameter determined by
cross-validation. Note that we use multiplication instead of addition across the
two cost terms, since the effectiveness of multiplication has been proven in [47].

Label Assignment with Region-wise Bipartite Matching. The second
step is to get the optimal permutation σ. Previous works such as DETR [5]
adopt the Hungarian algorithm [20] to perform set matching. Following this
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way, a direct generalization to our problem is to compute the bipartite matching
iteratively for each scatter region. However, due to the large number of scatter
regions in the images, it is inefficient to execute the iteration.

To tackle this problem, we propose a greedy-based bipartite matching method.
We present the matching for each image scatter region in Algorithm 1. The
greedy bipartite matching iterates the ground-truth points and finds the pre-
dicted point with the minimum cost from the left predicted points. The greedy
method reduces the computational complexity of the Hungarian algorithm from
O(N3) to O(N2), and is easy to be implemented on GPU using the deep learn-
ing framework (i.e. PyTorch) for batched computation. We provide an efficient
implementation of the greedy bipartite matching in the supplementary materials.

The greedy method could not generate the optimal matching results. How-
ever, the network predictions become gradually closer to the ground-truth points
during training. The optimization of the network improves the quality of pre-
dicted points, which makes the matching problem easier, hence the weak greedy
method is capable of allocating the point targets.

Algorithm 1 Greedy Bipartite Matching

1: Input: G = {g1, g2, ..., gK}, P = {p1, p2, ..., pN}, C ∈ RK×N

2: G is the list of ground truth points, P is the list of predicted points, C is the cost
matrix, Ci· is the i-th row of C, C·j is the j-th column of C

3: Output: S = {σ(1), σ(2), ..., σ(K)}, σ(i) represents that the predicted point
pσ(i) is assigned to the ground truth point gi; the rest of predicted points
{pσ(K+1), ..., pσ(N)} are assigned to “no point”

4: begin
5: for i = 1 to K
6: n← argmin Ci·
7: σ(i)← n
8: C·n ← inf
9: end

10: return S
11: end

Loss Functions. To train PointScatter, the loss function is composed of
objectness loss and regression loss:

Ltotal = Lobj + λLreg, (4)

where Lobj is instantiated as Focal Loss [24] to deal with the unbalanced distri-
bution of objectness targets and we use L1 loss for Lreg. Note that the regression
loss is only applied to the positive points and the points matched “no point” will
be eliminated. Practically, we normalize the total loss by dividing the number
of ground-truth points to keep the optimization process stable.
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It is worth mentioning that almost all current datasets for tubular structure
extraction provide mask annotation, therefore we should convert the mask anno-
tation to points to supervise the training of PointScatter. We accomplish this
goal by replacing each pixel with one point located in the center of this pixel.
Concretely, a mask is represented as a matrix with binary values YH×W ∈ {0, 1},
and we convert it to the point sets {(i, j)|Yi,j = 1, i ∈ [1,H], j ∈ [1,W]}.

4 Experiments

4.1 Experimental setup

Datasets. We evaluate our PointScatter on four public tubular datasets,
including two medical datasets and two satellite datasets. DRIVE [41] and
STARE [16] are two retinal datasets that are commonly adopted in the medical
image segmentation problem to evaluate the performance of vessel segmentation.
The Massachusetts Roads (MassRoad) dataset [28] and DeepGlobe [13] are la-
beled with the pixel-level annotation for road segmentation. We use the official
data split for DRIVE and STARE in MMSegmentation [12] and follow the data
split method in previous works [38,39] for the other two datasets. We report the
performance on the test set.

Tasks and Metrics. In this paper, we focus on two different tasks relevant to
the understanding of tubular structures: tubular structure segmentation and cen-
terline extraction. The above four datasets are used for the image segmentation
task in previous works, and the most popular dataset for centerline extraction is
the MICCAI 2008 Coronary Artery Tracking (CAT08) dataset [36]. But unfor-
tunately, the CAT08 dataset and the evaluation server are not publicly available
now. Therefore, we generate the centerline labels using the skeleton extraction
method in [38] to fulfill the evaluation of centerline extraction. The labelled cen-
terline is a set of connected pixels with a line-like structure where the width is 1
pixel. It is a more challenging task to extract the centerlines accurately by deep
models. We then introduce the metrics we utilize for these two tasks.

For the tubular structure segmentation task, we consider two types of metrics:
volumetric and topology-based. The volumetric scores include Dice coefficient,
Accuracy, AUC, and the recently proposed clDice [38]. We also calculate the
topology-based scores including the mean of absolute Betti Errors for the Betti
Numbers β0 and β1 and the mean absolute error of Euler characteristic. We
follow [38] to compute the topology-based scores.

For the centerline extraction task, we report the Dice coefficient, Accuracy,
AUC, Precision, and Recall as the volumetric scores. To increase the robustness
of the evaluation, we apply a three-pixel tolerance region around the centerline
annotation following [15]. We adopt the same topology-based metrics as the
tubular structure segmentation task.

The above metrics are designed for mask prediction, while our PointScatter
generates points to describe the foreground structures. Therefore, we should con-
vert the points to the segmentation mask in order to accommodate the evaluation
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Table 1: Main results on tubular structure segmentation task. The gray lines use
our PointScatter. We mark the best performance by bold numbers.

Dataset Backbone Method
Volumetric Scores (%) ↑ Topological Error ↓
AUC Dice clDice ACC β0 β1 χerror

softDice 97.05 81.09 80.69 95.28 1.504 1.129 1.806

clDice 96.84 81.15 81.55 95.21 1.072 0.993 1.354

UNet PointScatter 97.69 81.63 82.89 95.23 1.317 1.250 1.628

softDice+PSAUX 97.27 81.59 81.43 95.37 1.004 0.980 1.269

clDice+PSAUX 96.97 81.51 82.54 95.24 0.873 0.944 1.131

softDice 96.42 80.96 80.55 95.24 1.698 1.106 1.978

clDice 96.77 81.10 81.48 95.17 1.105 0.965 1.359

DRIVE UNet++ PointScatter 97.45 81.38 82.34 95.17 1.290 1.225 1.600

softDice+PSAUX 96.45 81.31 81.03 95.29 0.936 0.956 1.184

clDice+PSAUX 96.51 81.28 81.62 95.22 0.924 0.937 1.189

softDice 97.78 82.11 82.28 95.49 1.284 1.067 1.562

clDice 97.09 81.43 82.48 95.21 1.005 1.006 1.272

ResUNet PointScatter 97.87 81.85 82.75 95.34 1.547 1.273 1.834

softDice+PSAUX 97.97 82.45 82.64 95.59 1.372 1.023 1.628

clDice+PSAUX 97.36 82.02 84.62 95.31 0.883 1.019 1.142

softDice 94.86 82.27 84.87 97.45 1.093 0.667 1.260

clDice 96.82 82.29 85.22 97.44 0.790 0.665 0.943

UNet PointScatter 97.86 82.73 85.83 97.45 0.818 0.774 0.978

softDice+PSAUX 96.42 82.78 85.44 97.51 0.727 0.625 0.887

clDice+PSAUX 97.32 83.11 86.45 97.54 0.631 0.614 0.778

softDice 95.05 82.22 84.60 97.45 1.005 0.667 1.163

clDice 96.48 82.62 85.72 97.49 0.801 0.648 0.968

STARE UNet++ PointScatter 97.85 82.80 85.98 97.43 0.844 0.745 0.997

softDice+PSAUX 95.59 82.85 85.54 97.53 0.658 0.649 0.801

clDice+PSAUX 96.36 82.96 86.11 97.53 0.650 0.617 0.800

softDice 96.27 81.65 84.11 97.38 0.913 0.695 1.051

clDice 96.65 82.51 85.33 97.47 0.731 0.650 0.884

ResUNet PointScatter 97.77 82.40 85.00 97.38 0.949 0.730 1.093

softDice+PSAUX 96.59 81.80 83.55 97.41 0.796 0.670 0.944

clDice+PSAUX 96.04 82.68 85.60 97.48 0.601 0.636 0.748

Dataset Backbone Method
Volumetric Scores (%) ↑ Topological Error ↓
AUC Dice clDice ACC β0 β1 χerror

softDice 97.02 76.96 86.33 96.86 0.686 1.361 1.356

clDice 95.76 76.11 85.68 96.68 0.679 1.380 1.334

UNet PointScatter 97.65 77.57 86.42 96.87 0.944 1.353 1.616

softDice+PSAUX 97.59 78.14 87.38 96.98 0.526 1.257 1.190

clDice+PSAUX 96.60 77.68 87.34 96.88 0.498 1.316 1.187

softDice 97.10 76.88 86.08 96.82 0.690 1.373 1.351

clDice 95.80 76.39 86.15 96.72 0.685 1.455 1.373

MassRoads UNet++ PointScatter 97.62 77.65 86.40 96.90 0.836 1.315 1.503

softDice+PSAUX 97.60 78.10 87.24 96.99 0.559 1.306 1.252

clDice+PSAUX 96.41 77.81 87.34 96.91 0.498 1.316 1.181

softDice 96.93 76.04 85.57 96.73 0.992 1.478 1.658

clDice 96.12 75.97 85.69 96.68 0.887 1.521 1.571

ResUNet PointScatter 97.40 76.34 85.07 96.74 1.448 1.423 2.039

softDice+PSAUX 97.40 77.08 86.31 96.85 0.745 1.416 1.435

clDice+PSAUX 96.69 76.67 86.36 96.76 0.803 1.456 1.472

softDice 97.65 74.71 80.08 97.89 1.154 0.605 1.166

clDice 96.03 74.96 81.16 97.90 0.691 0.556 0.751

UNet PointScatter 98.64 78.07 82.38 98.12 0.855 0.541 0.907

softDice+PSAUX 98.27 78.09 83.96 98.15 0.492 0.449 0.530

clDice+PSAUX 96.87 77.20 83.31 98.07 0.435 0.472 0.485

softDice 97.51 75.64 81.58 97.95 0.704 0.549 0.763

clDice 97.03 75.63 82.03 97.94 0.590 0.646 0.706

DeepGlobe LinkNet34 PointScatter 98.59 79.21 84.04 98.20 0.710 0.543 0.802

softDice+PSAUX 98.00 78.88 85.43 98.23 0.491 0.446 0.549

clDice+PSAUX 97.55 78.58 85.08 98.18 0.451 0.448 0.516

softDice 97.45 75.60 81.59 97.95 0.604 0.524 0.655

clDice 97.07 75.23 82.18 97.92 0.938 0.562 1.009

DinkNet34 PointScatter 98.66 79.39 84.36 98.20 0.749 0.558 0.833

softDice+PSAUX 98.30 78.95 85.33 98.21 0.513 0.440 0.571

clDice+PSAUX 97.78 78.29 85.01 98.16 0.511 0.549 0.613

protocol. Specifically, an image can be regarded as a grid with the size of each
bin 1× 1, and each point is expected to be located in one bin. We first initialize
an empty score map with the same size as the input image. For each bin in the
output score map, we directly set the objectness score of the point located in this
bin as its score. The bins without any point will be endowed with zero scores.
To get the segmentation mask, we can threshold the score map by 0.5.

Implementation Details. As discussed in Section 3.1, our PointScatter is
compatible with various segmentation backbones with an encoder-decoder shape,
the adjustable parameters are the downsample rate D and the number of points
in each scatter region N . Experimentally, we set D = 4 and N = 16 by default.
The threshold of objectness score during inference is T = 0.1. During training, we
set η = 0.8 in Equation. 3 to balance the localization cost and classification cost.
Additional implementation details are depicted in the supplementary materials.
We implement our model based on PyTorch and MMSegmentation [12].

4.2 Main results

Our PointScatter can be regarded as an alternative for the segmentation ap-
proach. We compare our PointScatter with two very competitive segmentation
methods (i.e. softDice [27] and clDice [38]) on various mainstream backbone
networks [35,59,55,7,57]. We use the same training settings for the segmentation
methods with our PointScatter, including the optimizer, training schedule, etc.
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Table 2: Main results on centerline extraction task.
Dataset Backbone Method

Volumetric Scores (%) ↑ Topological Error ↓
AUC Dice Prec Recall ACC β0 β1 χerror

softDice 89.53 73.41 90.97 61.52 97.63 3.177 1.843 3.555

UNet PointScatter 94.46 81.92 92.52 73.51 98.05 5.203 2.612 5.509

softDice+PS 93.13 75.92 91.08 65.08 97.76 2.677 1.753 3.051

softDice 83.83 72.06 90.48 59.87 97.54 5.651 2.371 6.006

DRIVE UNet++ PointScatter 93.29 82.23 91.14 74.91 98.04 1.959 1.657 2.282

softDice+PS 87.88 72.93 91.29 60.72 97.61 6.360 2.600 6.671

softDice 90.83 74.86 91.36 63.40 97.70 2.774 1.723 3.147

ResUNet PointScatter 94.79 83.91 91.73 77.31 98.18 3.169 1.983 3.495

softDice+PS 95.40 81.52 92.95 72.60 98.12 2.479 1.673 2.853

softDice 86.99 72.14 93.01 58.91 98.91 3.053 1.562 3.253

UNet PointScatter 94.52 81.77 92.09 73.52 99.10 2.158 1.424 2.303

softDice+PS 88.34 75.10 92.51 63.20 98.98 1.870 1.219 2.061

softDice 84.94 73.08 92.87 60.24 98.93 3.388 1.556 3.588

STARE UNet++ PointScatter 93.07 80.03 92.74 70.38 99.07 2.582 1.613 2.743

softDice+PS 84.91 74.20 93.20 61.64 98.96 2.300 1.368 2.487

softDice 86.56 73.93 92.66 61.49 98.95 2.568 1.341 2.760

ResUNet PointScatter 95.93 82.44 92.15 74.58 99.12 2.495 1.451 2.641

softDice+PS 93.08 77.55 93.24 66.39 99.04 1.964 1.199 2.152

Dataset Backbone Method
Volumetric Scores (%) ↑ Topological Error ↓

AUC Dice Prec Recall ACC β0 β1 χerror

softDice 95.09 66.24 72.36 61.08 99.06 2.225 2.589 2.919

UNet PointScatter 93.59 69.63 70.28 68.99 99.01 5.955 2.244 6.135

softDice+PS 96.23 67.60 73.74 62.40 99.09 1.990 2.438 2.683

softDice 95.07 66.01 71.94 60.99 99.05 2.315 2.699 3.011

MassRoads UNet++ PointScatter 96.54 69.93 71.18 68.73 99.03 2.353 2.407 3.033

softDice+PS 96.05 67.76 73.06 63.17 99.08 2.329 2.582 3.030

softDice 94.84 65.84 71.52 61.01 99.04 2.816 2.784 3.512

ResUNet PointScatter 95.42 67.45 70.83 64.38 99.02 5.666 2.651 5.409

softDice+PS 96.43 67.52 73.00 62.82 99.08 2.295 2.628 2.996

softDice 96.59 56.58 62.56 51.64 99.60 1.823 1.157 1.845

UNet PointScatter 97.84 62.78 66.38 59.55 99.62 2.127 1.059 2.145

softDice+PS 97.59 61.17 67.08 56.21 99.63 1.358 1.001 1.380

softDice 96.62 57.42 62.82 52.87 99.60 1.481 1.108 1.503

DeepGlobe LinkNet34 PointScatter 95.04 59.36 63.85 55.46 99.60 9.880 1.933 8.516

softDice+PS 97.44 61.55 66.97 56.95 99.63 1.395 1.022 1.417

softDice 96.08 56.42 62.37 51.51 99.60 1.528 1.121 1.549

DinkNet34 PointScatter 95.54 60.89 64.20 57.91 99.60 7.341 1.375 6.520

softDice+PS 97.71 61.71 66.89 57.27 99.63 1.436 0.997 1.458

These methods are also implemented by MMSegmentation for a fair comparison.
Except for using PointScatter directly, we also study the effect of using our
PointScatter as an auxiliary task for the segmentation method. We combine
these two methods as shown in Fig. 3c and use the sum of the loss function of
these two methods as the objective to train the network. We denote this method
as PSAUX (abbreviation for PointScatter AUXiliary). We use the centerline
labels to train the PointScatter branch in PSAUX.

Tubular Structure Segmentation. We exhibit the results in Table 1. Ac-
cording to the volumetric metrics, we can conclude that our PointScatter

achieves superior performance compared to the segmentation methods on most of
the combinations of the datasets and the backbone networks, which confirms the
effectiveness of our PointScatter. When applying PSAUX to the segmentation
method, we also observe improvements for most of the cases. The performance of
PSAUX certifies that the point set representation leads to better feature learning
for the backbone network. Our PointScatter obtains inferior performance than
clDice according to the topology-based scores. We argue that it is because our
PointScatter can capture more fine-scale structures which cannot be discov-
ered by the segmentation models. These detailed predictions are beneficial to the
volumetric scores but harmful to the topology. We will qualitatively analyze this
phenomenon later. In addition, it is worth mentioning that PSAUX can improve
the topology scores as shown in Table 1.

Centerline Extraction. We also conduct extensive experiments to validate
the advantage of PointScatter for the centerline extraction task. As shown
in Table 2, our PointScatter consistently surpasses the performance of the
segmentation methods by a large margin according to the volumetric scores.
Our PointScatter achieves similar precision to softDice, while complies with
significantly higher recall values. It confirms again that our PointScatter can
capture fine-scale details which cannot be detected by the segmentation model.
The effect of PSAUX is similar to the tubular structure segmentation task.
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Table 3: Ablation on N . (D = 4)
Segmentation Centerline

Dataset N Dice(%) clDice(%) ACC(%) Dice(%) ACC(%)

DRIVE

8 64.80 66.71 92.27 78.31 97.79
16 81.63 82.89 95.23 81.92 98.05
32 78.73 80.73 94.60 79.07 97.85
64 78.33 80.57 94.54 80.08 97.91

MassRoads

8 57.61 58.23 95.20 64.73 98.94
16 77.57 86.42 96.87 69.63 99.01
32 77.52 86.55 96.87 70.05 99.03
64 77.54 86.40 96.89 70.38 99.04

Table 4: Ablation on D.
Segmentation Centerline

Dataset D Dice(%) clDice(%) ACC(%) Dice(%) ACC(%)

2 81.26 82.16 95.20 82.70 98.07
DRIVE 4 81.63 82.89 95.23 81.92 98.05

8 79.80 80.48 94.77 78.59 97.81

2 77.90 86.92 96.93 69.87 99.02
MassRoads 4 77.57 86.42 96.87 69.63 99.01

8 77.54 86.31 96.86 68.79 99.03

4.3 Ablation study

Number of Points (N). We ablate the number of predicted points (N) within
each scatter region in Table 3. With D = 4, the maximum number of ground-
truth points in each scatter region is 16. Therefore, the performance is not sat-
isfactory when N = 8. Increasing N has marginal improvement on the perfor-
mance when N ≥ 16.

Downsample rate (D). We compare the effect of different downsample rates
D in Table 4. For the DRIVE dataset, D = 4 shows the best performance on
the segmentation task while D = 2 is slightly better on the centerline extraction
task. For the MassRoads dataset, different D yield similar performances on both
tasks.

Greedy Bipartite Matching. Our greedy bipartite matching is theoretically
faster than the Hungarian method and can be easily implemented on GPU. We
compare the running time in each training iteration of these two methods in
Table 5. We execute the greedy method on GPU TITAN RTX and the Hun-
garian algorithm on Intel(R) Xeon(R) CPU E5-2680 v4. The results show that
our greedy method is at least three orders of magnitude faster than the Hun-
garian algorithm. The latency of our greedy method is negligible compared to
the computation time of neural networks, whereas the latency of the Hungarian
algorithm is unaffordable for large images.

Table 5: Running time (seconds) of Greedy and Hungarian bipartite matching.
We set D = 4 and batchsize = 4.

Method Complexity Image Size Running Time (seconds)

384 × 384 0.0076
Greedy O(M2) 768 × 768 0.0100

1024 × 1024 0.0123

384 × 384 3.0043
Hungarian O(M3) 768 × 768 12.7027

1024 × 1024 20.9922
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4.4 Qualitative Analysis

We qualitatively compare our method and the mask segmentation methods in
Fig. 4. Our PointScatter performs better on small branches or bifurcation
points. It shows a better ability for our PointScatter to learn the complicated
fine-scale information, which is contributed by the flexibility of the point set rep-
resentation. Note that sometimes the small branches detected by PointScatter

are not densely connected (e.g . the top left image), which decreases the perfor-
mance on the topology-based metrics. However, it is better to extract tubular
segments than miss the whole branch. We will leave future work to improve the
topology performance of our PointScatter.

Image Label soft-Dice clDice PointScatter Image Label soft-Dice PointScatter

ST
A

R
E

M
as

sR
oa

ds

Tubular Structure Segmentation Centerline Extraction

Fig. 4: Visual comparison for our PointScatter with other methods (zoom for
details). The areas pointed by the arrows are missed by other models, while
extracted by our PointScatter. More qualitative results can be found in the
supplementary materials.

5 Conclusion

This paper proposes PointScatter, a novel architecture that introduces the
point set representation for tubular structure extraction. This network can be
trained end-to-end and efficiently with our proposed greedy bipartite matching
algorithm. The extensive experiments reveal that our PointScatter achieves
superior performance to the segmentation counterparts on the tubular structure
segmentation task in most of the experiments, and significantly surpasses other
methods on the centerline extraction task.

This novel design presents the potential of point set representation for tubular
structures, and future work may include:

– Exploring the performance of PointScatter on the more challenging 3D
tubular extraction tasks such as coronary vessel extraction.

– Improving the topology of predicted points of PointScatter to enhance the
performance of the topology-based metrics.

– Promoting the point set representation for the general segmentation task.
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