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1 Performance on the In-house Dataset

Table 1: Performance on the in-house dataset (%).
Method R@0.125 R@0.25 R@0.5 R@1.0 R@2.0

Faster RCNN [4] 78.8 84.0 88.6 91.2 93.6
Mask RCNN [2] 80.5 85.2 89.2 92.1 94.8

Deformable DETR [5] 79.2 84.7 88.6 93.4 95.3

CL-Net 82.2 87.8 90.6 93.2 96.0

2 Additional Ablation Study

Table 2: Ablation study on number of attention layers in lesion linker.

Number R@0.25 R@0.5 R@1.0 R@2.0 R@4.0

1 77.1 81.4 88.4 92.4 94.4
2 77.1 82.4 88.0 91.4 93.4
3 78.1 83.1 88.0 92.4 95.0
4 75.1 80.4 86.4 90.7 93.0
5 75.1 80.4 85.0 90.0 92.0

Number of Attention Layers in Lesion Linker. Since several attention
layers can be stacked in Lesion Linker for more powerful reasoning ability, we
explore the effect of the number of attention layers in Table 2. From the table,
with the number of attention layers increasing from 1 to 3, performance of CL-
Net continues to improve and gets the best overall recalls at 3. Thus the number
of layers is set to 3 as our default setting.

⋆ Equal contribution.
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3 Visualization and Analysis

(a) Ground Truth            (c) Link query #1            (b) Prediction           (d) Link query #2            
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Fig. 1: Case visualization. We mark a le-
sion pair using the same id for ground truth
and the same color for predictions. Col-
umn (c - d) visualize the attention weights
between the two link queries that gener-
ate pair outputs in column (b) and the
detection embeddings outputted by object
queries of the two views. Red corresponds
to larger weights.

Figure 1 illustrates an example of the
detection and linking results of our
proposed CL-Net. As shown in col-
umn (a - b), the two predicted lesion
pairs are consistent with the ground
truth. Column (c) and (d) present the
attention weights between link queries
and the detection embeddings out-
putted by object queries. For each link
query, the highest responses are ob-
tained from one lesion pair from the
two views. This phenomenon tallies
with our expectation that the lesion
linker can learn the pairwise corre-
spondence across views, which per-
forms as the guidance for lesion detec-
tion. The error analysis can be found
in the supplementary materials.

4 Details of Match
Learning Strategies

In the main text of our paper, in order
to achieve precise pairwise lesion cor-
respondence, lesion linker utilizes cor-
respondence supervision to guide the interaction process across lesion candidates
of MLO and CC views. Besides lesion linker, we also introduce two alternative
approaches for pairwise correspondence learning in Section 3.5 of the main paper
to highlight the advantages of our proposed method. We will elaborate on the
details of the alternative approaches in the following.

4.1 Pair Verification

Verifying whether each two lesion candidates from ipsilateral views are truly
paired lesions is a straightforward method to achieve lesion matching. We in-
stantiate this model based on View-Interactive Lesion Detector (VILD). Given
output embeddings Ec ∈ RN×D and Em ∈ RN×D from VILD as inputs, a MLP
layer firstly transforms them to new representation space which can be expressed
as:

Ec∗ = MLP(Ec), Em∗ = MLP(Em). (1)

Similar with lesion linker, we also set a learnable dustbin embedding ed ∈ RD

to obtain the complete version Êc, Êm ∈ R(N+1)×D:

Êc = Concat(Ec∗, ed), Êm = Concat(Em∗, ed). (2)
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We construct the 2D matching matrix which represents the match probabilities
of all possible pairs by calculating the similarity score for every two embeddings
from ipsilateral views:

Si,j = ⟨Êc
i , Ê

m
j ⟩, (3)

where ⟨·, ·⟩ is the inner product. (i, j) ∈ [1, N + 1] × [1, N + 1]. Êt
i denotes the

i-th row of Êt, and t ∈ {c,m}.
To learn pairwise lesion correspondence in a supervised manner, we intro-

duce the ground truth matching matrix M ∈ R(N+1)×(N+1). Through the label
assignment rule for detection in DETR [1], pairwise ground truth boxes can be
naturally converted to pairwise ground truth embeddings. We denote the ground
truth match ids for the embeddings of ipsilateral views as GT = {(µi, vi)}ni=1,
which represent that the µi-th embedding in CC view and the vi-th embedding
in MLO view are a pair of ground truth embeddings. If a lesion corresponding to
the µi-th embedding can only be viewed in CC view, we denote its match id as
(µi, N +1). Lesions that can only be viewed in MLO view can also be processed
in a similar way. Thus M can be obtained as follows:

M [i, j] =

{
1, if (i, j) ∈ GT
0, else

(4)

The final loss function for this method can be written as follows:

L = LD + LV(S,M), (5)

where LD is the loss function in DETR, and LV is used to supervise the matching
results. We adopt focal loss [3] as the loss function LV to achieve the supervision
between predicted matching matrix S and ground truth matching matrix M .

4.2 Paired Lesion Query

We can also predict pairwise lesions with query mechanism directly. For this
method, we use the same architecture of backbone and transformer encoder as
VILD. In transformer decoder, as illustrated in Figure 2, we initialize a set of
learnable paired lesion queries. At first paired lesion queries are passed through
the multi-head self-attention layer. Then they will interact with image features
for CC and MLO views outputted by transformer encoder sequentially to extract
pairwise lesion information. Finally, a FFN layer is utilized to enhance the rep-
resentative ability. Above layers can be stacked several times, and we denote the
number of stacked layers as Nd. At the top of decoder, the classes and bounding
boxes of MLO and CC views are directly predicted through several FFN layers
for each query.

The output of decoder can be reformulated as a set ofN quads {⟨b̂ci , b̂mi , ĉci , ĉ
m
i ⟩}Ni=1,

where b̂ti ∈ R4 and ĉti ∈ R1 are the predicted bounding box and classification
score. Here t ∈ {CC,MLO} denotes CC view or MLO view. The set of N quads
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Fig. 2: Architecture of Decoder in Paired Lesion Query.

is similar with the extracted lesion pairs in lesion linker, thus we can also adopt
a similar one-to-one matching assignment between the ground truth lesion pairs
and the predicted lesion pairs. The cost function can be expressed as:

Lmatch(yi, ŷπ(i)) =1{ai ̸=0} ·max{LCC(i, π(i)),

LMLO(i, π(i))},
(6)

where Lt is the same cost function as in [1] which contains classification cost and
regression cost. t ∈ {CC,MLO} denotes CC view or MLO view. The notation in
Equation 6 is the same as Equation 17 in the main text. Instead of calculating
the average of LCC and LMLO, we adopt the larger one of the two costs. Since if
one cost is significantly lower than the other, averaging them will let matching
process be biased to the lower one. The final loss function can be written as
follows:

L = LCC
D + LMLO

D , (7)

where Lt
D is the loss function in DETR, and t ∈ {CC,MLO} denotes CC view

or MLO view.

4.3 Implementation Details

Experimental details of Pair Verification and Paired Lesion Query are almost
the same as CL-Net in the main paper. We will elaborate on the different parts
in the following.
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Pair Verification. We set α = 0.75 and γ = 2.0 for the focal loss LV.

Paired Lesion Query. The number of layers in decoder Nd is set to 3 by
default.

5 Error Analysis

Ground Truth            Ground Truth            Prediction           Prediction           
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Fig. 3: Visualization of the cases with
errors.

To analyze the limitations of the pro-
posed approach, we have visualized
some typical cases with obvious errors
made by CL-Net. As shown in the fig-
ure 3, there are mainly two types of
mistakes: 1). the ground truth lesion
could only be visible in MLO view (or
CC view), while a FP box was de-
tected in CC view (or MLO view).
The FP box was associated with the
TP box wrongly by Lesion Linker; 2).
the model successfully discovered the
ground truth lesion in one view while
failed in the other view.

The main reason for these errors is
that the ipsilateral information from
mammogram is not sufficient for both
deep learning models and radiologists
to make an accurate diagnosis. One of
the possible solutions is to leverage the bilateral (the same view of left and right
breasts) information to further improve the detection performance, which could
be our future work.

6 More Explanations about Dustbin Embedding
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Link Query

…

…
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Fig. 4: The mechanism of dustbin embedding.
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In Lesion Linker, we have firstly constructed the candidate pools of detec-
tion embeddings for MLO and CC views. Then, the link queries are responsible
for cross-checking the suspicious detections and linking the same lesions in the
two candidate pools. To handle the lesions which are visible only in one view,
the mechanism of dustbin embedding is introduced. The dustbin embedding is
concatenated with the detection embeddings to endow Lesion Linker the ability
to make predictions only in one view, which means the detection embedding
is associated with the dustbin embedding by link query. The mechanism is il-
lustrated in Figure 4. Benefiting from the design of dustbin embedding, Lesion
Linker can deal with different situations flexibly.
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