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Abstract. Detecting mass in mammogram is significant due to the high
occurrence and mortality of breast cancer. In mammogram mass detec-
tion, modeling pairwise lesion correspondence explicitly is particularly
important. However, most of the existing methods build relatively coarse
correspondence and have not utilized correspondence supervision. In this
paper, we propose a new transformer-based framework CL-Net to learn
lesion detection and pairwise correspondence in an end-to-end manner.
In CL-Net, View-Interactive Lesion Detector is proposed to achieve dy-
namic interaction across candidates of cross views, while Lesion Linker
employs the correspondence supervision to guide the interaction process
more accurately. The combination of these two designs accomplishes pre-
cise understanding of pairwise lesion correspondence for mammograms.
Experiments show that CL-Net yields state-of-the-art performance on
the public DDSM dataset and our in-house dataset. Moreover, it outper-
forms previous methods by a large margin in low FPI regime.

Keywords: Pairwise Lesion Correspondence, Mammogram Mass, Ob-
ject Detection

1 Introduction

With the highest incidence of cancers in women, breast cancer has become a seri-
ous threat to human health worldwide. In recent years, mammography screening
has been used by most hospitals as a common examination for its effectiveness
and non-invasiveness. Detecting mass is one of the core objectives for mammog-
raphy screening since mass behaved spiculated and irregular is a typical sign

⋆ Equal contribution.
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Fig. 1: (a) In mammograms, the CC view is a top-down view, while the MLO view is
taken at a certain angle from the side. (b - c) show an example. Lesions connected by
a line from different views are the projections of the same mass instance.

of breast cancer. However, gland overlap and occlusion are great obstacles for
distinguishing mass from the gland, accordingly identifying suspicious lesions on
mammogram is difficult for both radiologists and deep learning models.

In clinical practice, as shown in Figure 1, each breast is taken from two
different angles, which are cranio-caudal (CC) view and mediolateral oblique
(MLO) view, respectively. The complementary information of the ipsilateral view
(CC view and MLO view of the same breast) will help radiologists to make
better decisions for lesion detection. They usually cross-check the possible lesion
locations in CC view and MLO view repeatedly. Once the relevant evidences are
found in both views, the existence of the lesion can be confirmed. We call the
co-existence of the same mass manifestations in both of the two views pairwise
lesion correspondence. An example breast mammogram with two lesion pairs
is shown in Figure 1 (b-c).

As for deep models, it is also particularly important to model the pairwise
lesion correspondence explicitly for lesion detectors. Firstly, once the model is
empowered with the ability to model pairwise lesion correspondences, the com-
plementary information from the auxiliary view will help to distinguish the sus-
picious regions of the examined view, which is in line with the analysis logic of
radiologists. Besides, the correspondences are also important supervision signals
to train the network. The supervision of pairwise correspondences can guide the
network to establish more accurate relations across the two views, which can
further improve the detection performance.

Previous works have attempted to model lesion correspondences [20,17,18,35],
however, the correspondence captured by these works is not accurate enough to
represent pairwise lesion correspondence. For example, previous SOTA method
BG-RCNN [17] divides the image into multiple parts and builds part-wise corre-
spondence using a graph neural network (Figure 2(a)), which leads to relatively
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Fig. 2: (a) Previous methods [17] split mammograms into several parts and model
part-level relationships without correspondence supervision. (b) We establish lesion-
level interaction across views, and leverage correspondence supervision to guide the
network training procedure explicitly.

coarse correspondence. Meanwhile, the utilization of correspondence supervision
is not considered by previous works.

In this paper, we propose CL-Net to model more precise pairwise lesion
correspondence. We design a transformer-based network structure to learn the
lesion detection and pairwise correspondence in an end-to-end manner. As shown
in Figure 2(b), our CL-Net can not only build pairwise lesion correspondence for
lesion candidates detected by single-view lesion detectors, but also leverage cor-
respondence supervision to guide the network training procedure for discovering
accurate and sensible pairwise lesion correspondence.

Specifically, we first propose View-Interactive Lesion Detector (VILD)
to achieve dynamic interaction across lesion candidates of MLO and CC views.
We build our model upon modern transformer-based object detectors (e.g .DETR [5]).
These detectors often adopt the query mechanism, where each object query can
be regarded as an abstract representation of a lesion candidate, and the informa-
tion flow across queries is suitable for capturing the correspondences for lesion
pairs. Therefore, we apply the inter-attention layer between the object queries’
outputs of MLO and CC views to build relationships for the two views, which
captures pairwise lesion correspondences in an elegant and efficient way.

Furthermore, we propose Lesion Linker to learn the precise pairwise lesion
correspondence during network training. Lesion linker summarizes all lesion in-
formation from MLO and CC views by taking all lesion candidates generated by
object queries as inputs, and then employs the link query and a decoder-like net
structure to produce paired lesion outputs. Like DETR, we use a set prediction
approach to output lesion pairs, where each pair is a point in the set. Hence, the
lesion linker can also be trained with a set matching loss. Under the guidance of
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pair supervision, the inter-attention layer in VILD can obtain more direct and
precise correspondence, which will benefit the training of the detector.

Experimentally, the results show that the proposed approach outperforms the
previous SOTA methods by a large margin on both the public dataset DDSM [13]
and an in-house dataset. The ablation study validates the effectiveness of each
part in our design.

In a nutshell, our contributions are three-folds:

– To the best of our knowledge, our work is the first to model and learn
pairwise lesion correspondence explicitly for mammogram mass detection,
which is essential for cross-view reasoning.

– VILD and lesion linker are proposed to achieve precise lesion correspondence.
– We propose a novel framework, which achieves a new SOTA performance for

mammogram mass detection with ipsilateral views and surpasses all previous
methods by a large margin.

2 Related Work

2.1 Mammogram Mass Detection

Traditional approaches [3,11,21,31] usually use complex preprocessing and de-
sign hand-crafted features for mammogram mass detection. However, due to the
low representation ability, the performance of these methods is not satisfactory.
In the past few years, deep learning has been introduced to this area. Most
of works [4,1,34,26] only use a single view for detection, while recently several
studies [20,17,18,35] attempt to establish cross-view reasoning mechanism for
mammogram mass detection. Ma et al . [20] and Yang et al . [35] use relation
module [14] to model the relationships of lesion proposals across views. Liu et
al . [17] seeks to leverage bipartite graph convolutional network to achieve part-
level correspondence. C2-Net [18] preprocesses the mammograms for column-
wise alignment and performs column-wise correspondence between cross-views,
since they assume that the perpendicular distance to the chest of the same le-
sion in CC view and MLO view is roughly the same. Although these methods
model the correspondence of the two views to a certain extent, however, the
correspondence is generated freely without any pairwise supervision. Perek et
al . [24] proposes a Siamese approach to achieve cross-view mass matching, while
the performance of mass detection is not considered. Different from above ap-
proaches, our CL-Net can model and learn the pairwise lesion correspondence
explicitly, which significantly improves the detection performance.

2.2 Object Detection and HOI Detection with Transformer

Transformer [32] has drawn great attention in computer vision recently [5,38,9,33].
In the area of object detection, the first representative of the transformer-based
detector is DETR [5]. DETR employs a transformer encoder-decoder architec-
ture with object queries to hit the instances in the images. It regards object
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detection as a set prediction task, and uses a set matching method [5] to train
the network. Afterwards, Deformable DETR [38] is proposed as a variant of
DETR. Deformable DETR uses the local receptive fields for attention layers,
which reduces computational complexity significantly and speeds up conver-
gence. Moreover, DETR has also been appied to the task of Human-Object
Interaction detection [15,6,39,37]. Chen et al . [6] and Zou et al . [39] reformulate
HOI detection as a set prediction task and predict humans, objects and their
interactions directly. HOTR [15] utilizes HO Pointers to associate the outputs of
two parallel decoders, which leverages the self-attention mechanisms to exploit
the contextual relationships between humans and objects. It is worth mention-
ing that HOI detection focuses on predicting the associations of humans and
objects, while in this paper mammogram mass detection is evaluated by the
detection results of each single image view. Different from HOI detection, the
correspondence of MLO and CC views is regarded as the auxiliary supervision
to promote the detection model. Our proposed lesion linker takes the advantage
of this supervision to guide the training of VILD.

2.3 Learnable Image Matching

The well-known image matching in computer vision aims to establish dense
correspondences across images for camera pose recovery and scene structure
estimation in geometric vision tasks, such as Structure-from-Motion (SfM) and
Simultaneous Localization and Mapping (SLAM) [8,10,22,36,25,2,28,30]. These
methods rely on dense interest points as local descriptors to build pixel-to-pixel
dense correspondences for multiple views. However, in mammograms, the two
views are two different projections of 3D breast, which means there is no precise
pixel-to-pixel correspondence. Therefore, we can only model the sparse lesion-to-
lesion correspondence for accurate lesion detection. Compared with pixel-level
matching, extracting the pairwise lesion correspondence is a high-level vision task
that requires the network to understand lesion instances in advance. Therefore,
we design the lesion linker and use link queries after the detector to learn lesion
matching.

3 Methodology

In this section, we will elaborate on the design of the proposed CL-Net. The
name CL stands that our method can Cross-Check the two views and Link
the corresponding lesions across views. An overview of the whole pipeline is
illustrated in Figure 3. To be specific, we first explain how the proposed View-
Interactive Lesion Detector (VILD) along with the Lesion Linker establishes
pairwise lesion correspondence. Then we discuss how to effectively train the
network by presenting the training details including label assignment rules for
lesion correspondence and the final loss function.
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Fig. 3: Overview of our proposed CL-Net. A pair of mammograms are firstly processed
by View-Interactive Lesion Detector (VILD) to achieve dynamic interaction across
lesion candidates of MLO and CC views. Then, the embeddings outputted by the last
decoder layer in VILD are provided for Lesion Linker to learn the precise pairwise
lesion correspondence by learnable link queries.

3.1 Reviewing DETR

Recently, DETR [5] has drawn great attention since it proposes a novel paradigm
for object detection through transformer encoder-decoder architecture. It refor-
mulates object detection as a set prediction task and adopts one-to-one label
assignment between ground truth and predicted objects, which achieves an end-
to-end object detector.

Multi-head Attention. Attention is the core component in Transformer
architecture. The standard version of attention can be written as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where Q, K, V stand for query vector, key vector and value vector, respectively.
dk is the vector dimension.

Multi-head attention is the extension of the standard version:

MultiHeadAttn(Q,K, V ) = Concat(H1, H2, ...,Hm), (2)

Hi = Attention(QWQ
i ,KWK

i , V WV
i ), (3)

where m is the number of heads, WQ
i ,WK

i ,WV
i are projection matrices in the

i-th head to map the original vector into a vector with lower dimension. For
convenience, we use M to denote MultiHeadAttn in the following.

Object Query. In DETR, object queries can be regarded as abstract rep-
resentations of objects. After image features are extracted by the transformer
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encoder, queries will interact with these features through self-attention and cross-
attention layers in the transformer decoder to aggregate instance information.
Finally, several feed-forward network (FFN) layers are applied to decode box
location and class information for each object query.

3.2 View-Interactive Lesion Detector

Dynamic interaction across lesion candidates of MLO and CC views is very help-
ful in establishing pairwise lesion correspondence. Therefore, we first propose the
View-Interactive Lesion Detector (VILD) which aims to transfer lesion informa-
tion across views effectively. The architecture of VILD is elaborated in the left
part of Figure 3. VILD is a transformer-based detector that also employs object
query as an abstraction of object. VILD takes mammogram of MLO and CC
views as input and passes them through the shared backbone and feature en-
coder to encode the image content. Afterwards, two sets of object queries (one
for MLO and one for CC) are fed into a specially designed decoder to predict
lesions’ position and class for each view while taking the lesion information from
the ipsilateral view into consideration.

To be specific, we append an additional inter-attention layer at the end of
each transformer decoder block to achieve dynamic interaction across views. Ob-
ject queries can be regarded as abstract representations of objects, thus directly
applying cross-view inter-attention can be realized as an elegant and efficient
way to capture pairwise lesion correspondence. The cross-view inter-attention is
also instantiated as a multi-head attention block which takes intermediate em-
bedding of one view as queries and intermediate embedding of the other view as
keys and values. Formally, suppose the number of object queries of each view is
N and denote the embeddings output by cross-attention layer in the i-th decoder
layer as Ec

i , Em
i ∈ RN×D for CC view and MLO view respectively, then the en-

hanced embeddings are obtained through attention mechanism which could be
expressed as (take CC view for example),

Ec∗
i = Ec

i +M(Ec
i + P c, Em

i + Pm, Em
i ), (4)

where Pm and P c denote the positional encodings for MLO and CC view’s
embedding, respectively. The positional encodings are learnable vectors, which
are the same as Deformable DETR. M is MultiHeadAttn as defined in 3.1. The
enhanced embedding for MLO view is obtained vice versa:

Em∗
i = Em

i +M(Em
i + Pm, Ec

i + P c, Ec
i ). (5)

By passing through the decoder layer for several times, cross-view lesion cor-
respondence is gradually transferred and formed bidirectionally with the help
of inter-attention block. This aligns with how radiologists identify lesions. They
usually search for potential lesions in both views back and forth. Once a suspi-
cious region is discovered in one view, they will check all possible positions in
the other view in order to find the corresponding lesion with similar spatial and
visual information.
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Denote the embeddings for CC
view and MLO view outputted by
the last decoder layer as Ec, Em ∈
RN×D, the detection results are then
predicted by FFN layers with Ec and
Em as input.

3.3 Lesion Linker

In VILD, the establishment of cross-
view dynamic interaction endows le-
sions from one view with the ability
to form correspondence with lesions
from the other view. We argue that
by explicitly utilizing the guidance of
the pair supervision, a more accurate
pairwise lesion correspondence could
be achieved and the detection abil-
ity of the network could be further
boosted. We propose Lesion Linker,
a transformer decoder-like structure
to take full advantage of the pair su-
pervision. The architecture of lesion
linker is illustrated in the right part of Figure 3. Lesion linker adopts link query,
which is initialized as a set of learnable vectors, as abstract representations of
possible pairwise relationships. Given output embeddings Ec and Em from VILD
as input, link queries will interact with them to extract lesion information and
gradually focus on specific lesion pairs. Each link query will finally predict a
triplet including link embeddings for CC and MLO views and lesion pair score
through FFN layers. Given these embeddings, corresponding detection results in
MLO view and CC view could be linked together to form pairwise lesion detec-
tion results. In the following, we will elaborate on the key designs of our lesion
linker.

Dustbin Embedding. In clinical practice, mammogram is a projection
along the X-ray direction in which lots of information is lost, thus some mass
instances can only be seen in one view. To cope with this special situation for
lesion linker, we set a learnable vector ed ∈ RD, named dustbin embedding.
Detection embeddings that have no correspondence should be linked to it.

We concatenate detection embeddings from CC view and MLO view with
dustbin embedding to obtain the complete version Ẽc, Ẽm ∈ R(N+1)×D:

Ẽc = Concat(Ec, ed), (6)

Ẽm = Concat(Em, ed). (7)

More explanations about dustbin embedding can be found in the supplemen-
tary materials.
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Architecture. As illustrated in Figure 4, at first link queries Q are passed
through the multi-head self-attention layer. Then they will interact with de-
tection embeddings from CC and MLO views sequentially to extract view-
dependent information to form pairwise relationships. The process could be
written as

Q̇ = Q+M(Q,Q,Q), (8)

Q̈ = Q̇+M(Q̇, Ẽc + P c, Ẽc), (9)

Q̂ = Q̈+M(Q̈, Ẽm + Pm, Ẽm), (10)

where P c and Pm denote the positional encoding for Ẽc and Ẽm. Finally, Q̂ is
processed by a FFN layer to further enhance the representative ability. Above
layers can be stacked for several times. Link queries transformed by stacked
attention have fully explored lesion-level relationships from MLO view and CC
view and the pairwise lesion correspondence is gradually formed.

Motivated by [15], at the top of lesion linker, we decode the correspondence
by applying three FFN layers to predict the link embedding for CC and MLO
views V c ∈ RM×D, V m ∈ RM×D and lesion pair classification score S ∈ RM×1,
respectively. M is the number of the link queries and D is the feature dimension.
The predicted link embeddings V c and V m are used for indexing the detection
results, which will be introduced later. The classification score S denotes the
confidence that whether the pair of detection results captured by the link query
is true positive.

Lesion Correspondence Extracting. The output of lesion linker can be
reformulated as a set of M triplets, {⟨vci , vmi , si⟩}Mi=1, where vci , v

m
i ∈ RD and

si ∈ R1 are the i-th row of V c, V m and S. The pairwise lesion correspondence
could be explicitly established by first calculating the feature similarity between
detection embeddings ẽtj ∈ RD and link embeddings vti for each view and then
taking the index of the detection embedding with the highest similarity as result.
Here t ∈ {c,m} denotes CC view or MLO view, and ẽtj is the j-th row of Ẽt.
Formally, this process could be expressed as

ci = argmax
j

(sim(vci , ẽ
c
j)), mi = argmax

j
(sim(vmi , ẽmj )), (11)

where we use cosine similarity to measure the feature similarity:

sim(x, y) =
xT y

||x||2||y||2
. (12)

Finally, for each link query qi, we could obtain its extracted lesion correspon-
dence pair ⟨ci, mi⟩ as result. Next we will discuss how to effectively train our
network.

3.4 Training Details

We will elaborate on training details of our proposed CL-Net in this section.
To be specific, we first explain the label assignment rule for pairwise lesion
correspondence. Then we introduce the loss function of our CL-Net.
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Label Assignment for Lesion Correspondence. In original DETR, a
one-to-one label assignment based on bipartite matching is used to assign train-
ing targets for the predicted bounding boxes. In our CL-Net, we also aim to
establish a similar rule to assign the pairwise ground truth lesion boxes to the
set of link triplets predicted by lesion linker.

Our VILD shares a similar structure and training strategy with DETR, there-
fore through the label assignment rule for detection, we can obtain the assign-
ment relationships between ground truth boxes and detection embeddings. Thus
the pairwise ground truth boxes can be naturally converted to pairwise detection
embeddings. We denote the conversion results as y = ⟨ec, em, a = 1⟩. ec and em

denote the detection embedding converted from ground truth boxes for CC view
and MLO view. For a lesion that can only be viewed in CC view, the converted
result is y = ⟨ec, ed, a = 1⟩, in which ed denotes the dustbin embedding defined
in Section 3.3. The same is for the lesion that can only be viewed in MLO view.

Suppose the number of unique ground truth lesions is K. Then the set of
converted lesion triplets from the ground truth lesions could be denoted as Y =
{yi}Ki=1. The set of M predictions from lesion linker could be similarly denoted

as Ŷ = {ŷj = ⟨vcj , vmj , sj⟩}Mj=1. Since K is less than M in mammogram, we pad
the ground truth set Y with ⟨∅,∅, a = 0⟩ (no lesion pair) to the size of M ,
similar to DETR. We aim to find an optimal bipartite matching between these
two sets by searching for a permutation of M elements π ∈ ΠM with the lowest
cost:

π̂ = argmin
π∈Π

M∑
i=1

Lmatch(yi, ŷπ(i)), (13)

where Lmatch is a matching cost between ground truth yi and prediction ŷπ(i).
We consider two aspects when calculating the matching cost, which are the
prediction scores and the similarity of ground truth embeddings and predicted
link embeddings:

Lmatch(yi, ŷπ(i)) = −1{ai ̸=0} · [Lemd(i, π(i))]
α · [Lscore(i, π(i))]

1−α, (14)

where Lemd and Lscore denote cost of feature similarity and classification score.
The operation of + 1 in Eq. 15 aims to guarantee that Lemd is positive.

Lemd(i, j) = βsim(eci , v
c
j) + (1− β)sim(emi , vmj ) + 1, (15)

Lscore(i, j) = sj . (16)

We adopt the weighted geometric mean of the feature similarity Lemd and
classification score Lscore, in which α ∈ [0, 1] is the balance hyper-parameter.
The ablation study of the cost function and analysis can be found in Table 5.
β is set to 0.5 by default to adjust the ratio of feature similarity in CC view
and MLO view. The optimal bipartite assignment can be obtained through the
Hungarian algorithm efficiently as in [29].

Training Loss. The final loss function can be written as follows:

L = LD + LLink, (17)



CL-Net 11

where LD is the loss function in DETR, LLink is defined as

LLink =

M∑
i=1

[1{ai ̸=0}λsimLsim(i, π(i)) + λclsLcls(ai, sπ(i))], (18)

where λsim and λcls are weight hyper-parameters. We adopt focal loss [16] as the
loss function Lcls for lesion pair classification.

Following [15], we first calculate the similarity scores St ∈ RN+1, where
t ∈ {c,m} denotes the CC view and MLO view, and the j-th item of St is
sim(vtπ(i), ẽ

t
j). Then, we use Cross-Entropy Loss to localize the ground truth

embeddings:

Lsim(i, π(i)) = CrossEntropyLoss(Sc, i) + CrossEntropyLoss(Sm, i). (19)

3.5 Discussion of Match Learning Strategy

Our lesion linker learns the paired relationships of lesions by learning to predict
MLO and CC embeddings which are close to the corresponding lesion pairs. Our
match learning strategy is a soft way, which gradually pushes the link embeddings
to get closer to the ground-truth embeddings during training. Although there
are also other alternative approaches for this task, learning lesion matching is
not trivial. In this subsection, we compare our method with two other seemingly
reasonable solutions, to strengthen the advantages of our method.

Pair Verification. A straightforward solution to predict match pairs is to
verify whether every two lesions from ipsilateral views are truly paired lesions.
Following this design, we need to output a 2D matrix that represents the match
probabilities of all possible pairs. The shape of the matrix should be N × N ,
where N is number of lesion candidates per view. However, since the number of
possible lesion pairs is much larger than the number of truly paired lesions, it is
difficult to extract useful training signals from such a small amount of pairwise
annotation information.

Compared to the verification approach, the introduction of link queries de-
couples the pairwise training from the number of object queries N . The number
of link queries M could be in the same order of magnitude as N , thus the pair
supervision signal could be fully utilized, leading to an easier optimization pro-
cess.

Paired Lesion Query. Another seemingly straightforward way is to predict
pairwise lesions with query mechanism directly. With this paired lesion query,
the network can output a pair of detected boxes in the two views for each query.
Then, the form of outputted lesion pairs is similar to the extracted lesion pairs
of lesion linker. Therefore, we can also adopt a similar set matching loss to train
the network. With the paired lesion query, the object query for each view is not
required anymore.

However, the optimization of paired lesion query is much harder than our le-
sion linker. Our CL-Net first detects lesion candidates from each view (in VILD),
therefore the lesion linker only focus on extracting the pairwise correspondence.
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Table 1: Comparison with baselines and previous SOTA on DDSM dataset (%).
Method R@0.25 R@0.5 R@1.0 R@2.0 R@4.0

Mask RCNN [17] - 76.0 82.5 88.7 91.4
Mask RCNN, DCN [17] - 76.7 83.9 89.4 91.8
Deformable DETR [38] 73.8 78.4 83.7 88.7 93.7

BG-RCNN [17] - 79.5 86.6 91.8 94.5

CL-Net 78.1 83.1 88.0 92.4 95.0

Table 2: Comparison with previous works on DDSM dataset (%).
Method R@t

Campanini et al . [3] 80@1.1
Eltonsy et al . [11] 92@5.4, 88@2.4, 81@0.6
Sampat et al . [27] 88@2.7, 85@1.5, 80@1.0
CVR-RCNN [20] 92@4.4, 88@1.9, 85@1.2

CL-Net 96@4.4, 92@1.9, 89@1.2

While using the paired lesion query, the detection of objects and pairing are
performed in the same step, which increases the difficulty of network training
and results in inferior performance.

We elaborate on the implementation details of above two methods in the
supplementary materials. The experimental results are presented in section 4.4.

4 Experiments

4.1 Implementation Details

Our model is based on Deformable DETR [38] for its flexibility and fast con-
vergence. We adopt ResNet-50 [12] pre-trained from ImageNet [7] as backbone.
The number of object queries N and link queries M are set to 125 and 16, re-
spectively. The loss weights λsim and λcls are 0.125 and 1.0 by default. We set
α = 0.5 and γ = 2.0 for the focal loss Lcls. It is worth mentioning that since
we mainly focus on the task of lesion detection, the final predictions come from
VILD in the inference process.

We implement our network with PyTorch [23]. We train the network in an
end-to-end manner on 8 GPUs for 25k iterations. For each GPU, we use 4 images
containing two mammogram pairs. Following Deformable DETR [38], we train
our model using AdamW Optimizer [19] with base learning rate of 2 × 10−4.
We use the same multiplied factors for learning rates as [38], while the learning
rates of lesion linker parameters are multiplied by 0.25. In addition, we adopt
cosine learning rate schedule with warm-up. To avoid overfitting, we use several
data augmentation methods (random flip, random crop, random normalization)
in training.

4.2 Datasets

We conduct experiments on the public DDSM dataset and our in-house dataset.
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Table 3: Ablation study on different components of CL-Net on DDSM dataset (%).
VILD: View-Interactive Lesion Detector. LL: Lesion Linker. “not using VILD” means
we use Deformable DETR directly.

VILD LL R@0.25 R@0.5 R@1.0 R@2.0 R@4.0

73.8 78.4 83.7 88.7 93.7
✓ 76.1 81.7 86.4 91.7 94.4

✓ 74.1 80.1 86.0 88.7 93.4
✓ ✓ 78.1 83.1 88.0 92.4 95.0

DDSM dataset. DDSM [13] is a widely used public dataset. It contains
2620 patient cases, and each case has four images, including MLO view and
CC view for both breasts. We use the same data split method with previous
studies [17,20,27,3]. The original dataset does not provide lesion correspondence
annotations, hence we fulfill the annotations with experienced radiologists.

In-house dataset.We collect an in-house mammography dataset with 3,160
cases. Each case is annotated by at least two experts. We randomly split the
dataset into train, validation, and test set with the ratio of 8:1:1.

Evaluation Metric.We report recall (R) at t false positives per image (FPI)
to evaluate the performance following [17,20]. The metric can be simplified as
R@t.

4.3 Compare with State-of-the-art Methods

We compare our methods with previous works on DDSM dataset in Table 1 and
Table 2. In Table 1, the results of Mask RCNN, Mask RCNN DCN, and BG-
RCNN are from [17], and Deformable DETR is implemented by ourselves. In
Table 2, we use the same FPIs as in CVR-RCNN [20] and compare our method
with previous works. From these two tables, we can draw a conclusion that
our CL-Net outperforms all baselines by a large margin and surpasses previous
SOTA [17,20]. The performance of our method is more significant in low FPIs,
outperforming BG-RCNN [17] by 3.6 at R@0.5, which could benefit clinical
practice a lot. The results on the in-house dataset are reported in the supple-
mentary materials. Similar improvement over baselines on in-house dataset also
demonstrates the superiority of our approach.

4.4 Ablation Study

In this section, we elaborate on ablation studies for CL-Net. Other ablation
experiments are presented in the supplementary materials.

Different Components of CL-Net. We ablate the impact of different
components of CL-Net on detection performance in Table 3. There are mainly
two important modules in CL-Net, VILD and lesion linker. As shown in the
table, using VILD can significantly improve the detection performance, while
the improvement of employing lesion linker alone is marginal. Considering that
learning accurate correspondences relies on the expression ablitily of VILD, it



14 Z. Zhao et al.

Table 4: Different strategies for match
learning on DDSM dataset (%). PV:
Pair Verification. PL Query: Paired Le-
sion Query.

Method R@0.25 R@0.5 R@1.0 R@2.0

VILD 76.1 81.7 86.4 91.7

PV 75.7 82.1 86.4 90.7
PL Query 68.8 75.1 81.7 87.0
CL-Net 78.1 83.1 88.0 92.4

Table 5: Ablation study on cost func-
tion of label assignment. Default pa-
rameter is marked by *.
Method α R@0.25 R@0.5 R@1.0 R@2.0

0.25 77.7 82.7 87.7 90.4
Add 0.5 73.8 81.1 86.4 90.0

0.75 75.1 80.1 86.7 91.7

0.25 76.1 83.7 89.7 91.7
Mul 0.5* 78.1 83.1 88.0 92.4

0.75 74.8 80.4 85.4 90.0

is explainable that the contribution of lesion linker is limited without VILD.
The effect of lesion linker in CL-Net is guiding the interaction process more
precisely in the inter-attention layer of VILD. The experimental results also
verifies our conjecture. The joint contributions of VILD and lesion linker improve
the detection performance of VILD significantly (+2.0 at R@0.25).

Different Strategies for Match Learning. We present the results of dif-
ferent strategies for match learning in Table 4. The methods described in sec-
tion 3.5 are adopted. Pair verification method yields similar performance as
VILD solely, which indicates that it is hard for the model to mine useful corre-
spondences from plenty of feasibilities. In addition, paired lesion query performs
much worse than VILD (−7.3 at R@0.25) due to the difficulty of optimization.
Our CL-Net achieves the best performance attributing the success to the design
of link query.

Cost Function of Label Assignment.We investigate the effect of different
forms of cost function for label assignment on our model in Table 5. Method ‘Mul’
denotes the cost function in Eq. 14, while ‘Add’ refers to the weighted sum of
Lemd and Lscore, where α is also the weighting factor. The experimental results
show that method ‘Mul’ achieves better performance than ‘Add’, which could
be mainly attributed to the sensitivity to both Lemd and Lscore in the form of
multiplication.

The visualization and error analysis can be found in the supplementary ma-
terials.

5 Conclusion

In this work, we present CL-Net, a novel mammogram mass detector based
on transformer architecture. Our CL-Net can not only model precise pairwise
lesion correspondence, but also leverage correspondence supervision to guide
the network training. The experimental results conducted on the public DDSM
dataset and an in-house dataset show that CL-Net surpasses the state-of-the-art
methods by a large margin.
Acknowledgement This work is supported by Exploratory Research Project of
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1. Agarwal, R., Diaz, O., Lladó, X., Yap, M.H., Mart́ı, R.: Automatic mass detection
in mammograms using deep convolutional neural networks. Journal of Medical
Imaging 6(3), 031409 (2019) 4

2. Brachmann, E., Rother, C.: Neural-guided ransac: Learning where to sample model
hypotheses. In: ICCV (2019) 5

3. Campanini, R., Dongiovanni, D., Iampieri, E., Lanconelli, N., Masotti, M.,
Palermo, G., Riccardi, A., Roffilli, M.: A novel featureless approach to mass detec-
tion in digital mammograms based on support vector machines. Physics in Medicine
& Biology 49(6), 961 (2004) 4, 12, 13

4. Cao, Z., Yang, Z., Zhuo, X., Lin, R.S., Wu, S., Huang, L., Han, M., Zhang, Y.,
Ma, J.: Deeplima: Deep learning based lesion identification in mammograms. In:
ICCV Workshops (2019) 4

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV (2020) 3, 4, 5, 6

6. Chen, M., Liao, Y., Liu, S., Chen, Z., Wang, F., Qian, C.: Reformulating hoi
detection as adaptive set prediction. In: CVPR (2021) 5

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009) 12

8. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: Self-supervised interest
point detection and description. In: CVPR workshops (2018) 5

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020) 4

10. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.:
D2-net: A trainable cnn for joint detection and description of local features. arXiv
preprint arXiv:1905.03561 (2019) 5

11. Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A concentric morphology model
for the detection of masses in mammography. IEEE transactions on medical imag-
ing 26(6), 880–889 (2007) 4, 12

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 12

13. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital
database for screening mammography. In: Proceedings of the 5th international
workshop on digital mammography. p. 212–218. Medical Physics Publishing (2000)
4, 13

14. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection.
In: CVPR (2018) 4

15. Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: Hotr: End-to-end human-object
interaction detection with transformers. In: CVPR (2021) 5, 9, 11

16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV (2017) 11

17. Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., Yu, Y.: Cross-view correspon-
dence reasoning based on bipartite graph convolutional network for mammogram
mass detection. In: CVPR (2020) 2, 3, 4, 12, 13

18. Liu, Y., Zhou, C., Zhang, F., Zhang, Q., Wang, S., Zhou, J., Sheng, F., Wang,
X., Liu, W., Wang, Y., et al.: Compare and contrast: Detecting mammographic
soft-tissue lesions with c2-net. Medical image analysis 71, 101999 (2021) 2, 4



16 Z. Zhao et al.

19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 12

20. Ma, J., Liang, S., Li, X., Li, H., Menze, B.H., Zhang, R., Zheng, W.S.: Cross-view
relation networks for mammogram mass detection. In: ICPR (2020) 2, 4, 12, 13

21. Mudigonda, N.R., Rangayyan, R.M., Desautels, J.L.: Detection of breast masses in
mammograms by density slicing and texture flow-field analysis. IEEE Transactions
on Medical Imaging 20(12), 1215–1227 (2001) 4

22. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: Lf-net: Learning local features from images.
arXiv preprint arXiv:1805.09662 (2018) 5

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Zeming Lin, e.a.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
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