
Graph-constrained Contrastive Regularization
for Semi-weakly Volumetric Segmentation

Simon Reiß1 , Constantin Seibold1 , Alexander Freytag2 ,
Erik Rodner3 , and Rainer Stiefelhagen1

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2 Carl Zeiss AG, 07745 Jena, Germany

3 University of Applied Sciences Berlin, 12459 Berlin, Germany
{simon.reiss, constantin.seibold, rainer.stiefelhagen}@kit.edu,

alexander.freytag@zeiss.com, erik.rodner@htw-berlin.de

Abstract. Semantic volume segmentation suffers from the requirement
of having voxel-wise annotated ground-truth data, which requires im-
mense effort to obtain. In this work, we investigate how models can be
trained from sparsely annotated volumes, i.e. volumes with only indi-
vidual slices annotated. By formulating the scenario as a semi-weakly
supervised problem where only some regions in the volume are anno-
tated, we obtain surprising results: expensive dense volumetric annota-
tions can be replaced by cheap, partially labeled volumes with limited
impact on accuracy if the hypothesis space of valid models gets properly
constrained during training. With our Contrastive Constrained Regular-
ization (Con2R), we demonstrate that 3D convolutional models can be
trained with less than 4% of only two dimensional ground-truth labels
and still reach up to 88% accuracy of fully supervised baseline models
with dense volumetric annotations. To get insights into Con2Rs success,
we study how strong semi-supervised algorithms transfer to our new
volumetric semi-weakly supervised setting. In this manner, we explore
retinal fluid and brain tumor segmentation and give a detailed look into
accuracy progression for scenarios with extremely scarce labels.

Keywords: Volumetric semantic segmentation, semi-weakly supervised
learning, regularization, contrastive learning

1 Introduction

Over the last decades, healthcare and natural sciences underwent a drastic in-
crease in efficiency in analyzing data by exploiting semantic segmentation algo-
rithms. Not surprisingly, current products and solutions in these domains are
built with neural networks, as their performance has proven superior in most
use cases [1,7,16]. And still, one major challenge often limits scaling applica-
tions further: the need for precisely annotated data. This especially holds for
segmentation networks to generalize well to new examples – which in these ap-
plications is not only of academic interest, but of utmost importance. However,
e.g. in healthcare, only trained experts are able to provide correct annotations.
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Dense Supervision: 

All volumes densely labeled
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Semi-weak Supervision: 

Subregions in volumes densely labeled

Raw Volumes Volume Labels Raw Volumes Volume Labels Raw Volumes Volume Labels

Fig. 1. In which setting can 3D segmentation become relevant in practise? Left : densely
supervised volume segmentation requires fully annotated volumes – hardly possible in
practise. Center : semi-supervision allows some volumes to be unlabeled – better, but
still with fully annotated volumes. Right : we propose semi-weakly volume segmentation
as the missing step for bringing 3D segmentation to practise at affordable costs

These experts are hard to get for annotation tasks, as their main job is often not
less but to save lives. Constructing large labeled datasets therefore becomes ex-
pensive and difficult. Even worse, the wide-spread use of volumetric image data
with all of its benefits, e.g. as prevalent in computed tomography [25], optical
coherence tomography [7], or magnetic resonance imaging [1,54], amplifies this
annotation problem by going from 2D pixel- to even more laborious 3D voxel
annotations (if you do not agree with this sentence, you should spend at least
one hour on annotating volume data yourself).

These observations clearly show the urgent need for training schemes for 3D
segmentation networks to become more economic and more annotation-efficient.
We will therefore investigate how these models can be trained with partially
labeled as well as entirely unlabeled volumes. We aim at answering the question
Can we circumvent the additional effort to annotate entire volumes? Partially
labeled volumes, e.g. volumes that have at most few individual image-slices an-
notated, can be considered weak labels for the 3D volumetric segmentation task
(Fig. 1). As we train with weak annotations and cheaper unlabeled volumes, we
refer to it as semi-weakly supervised volumetric segmentation (as in weakly- and
semi-supervised [13,50]). Our contributions can be summarized as follows:

– We establish the task of semi-weakly supervised volumetric segmentation
and set up thorough training and evaluation protocols for it.

– We analyze and transfer established semi-supervised methods from 2D and
3D to the semi-weakly supervised volume segmentation setting, which gives
strong baselines and insights into performance implications.

– We propose the Con2R objective for training volumetric models on sparsely
labeled data, integrating smoothness- and semantic coherence constraints.

– By considering the mismatch in training and testing targets, we achieve
performances of up to 88% as compared to densely supervised models on
the RETOUCH dataset with merely two dozen labels (a fraction of 3.5%
labels) and outperform all semi-supervised models on BraTS.
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2 Related Work

Semantic segmentation In semantic segmentation literature steep progress
on commonly known natural image benchmarks [17,20,41,71] has been made.
Impressive performance is achieved using convolutional [11,27] or transformer-
based architectures [56,67] and novel training strategies [4,74]. These models
are often trained or pre-trained on gigantic datasets [14,26,74], to itch out every
performance improvement, which for domains that are more distant from natural
imagery and do not encompass this data-richness, often lies beyond reach. This
might be one reason that arguably one of the most successful architectures for
segmentation in domains distant from ImageNet [53] is the UNet architecture [51]
and its 3D counterpart [15] for volumetric data. In our work, we are interested
in domains distant from natural imagery and mainly explore medical data [1,7]
where limited amounts of semantic labels are available.
Volumetric semantic segmentation We are further interested in processing
volumetric data, which started in the neural network era with video process-
ing [32,34,58] and was shortly after adapted to voxel-wise prediction tasks [35,59].
With their introduction of the 3D UNet Çiçek et al. [15] set of a string of works
that culminate in the state-of-the-art volumetric segmentation architectures as
indicated by 3D approaches [30,31,43,45,46,69] dominating leaderboards of com-
mon benchmarks [3,25]. A lot of flavors of the 3D UNet have been proposed:
adding multiple pathways [33], deep supervision [63], self-supervised training
objectives [46] as well as specifically considering boundaries [24,33,63] . We lay
emphasis on exploring how 3D models can cope with weaker training signals than
dense volume annotations. Closest to our work are [18], a 3D segmentation model
trained on retinal OCT scans, which is done partly on sparse labels as in [15]
and [50] which shares the very low-data regimen for retinal fluid segmentation.
Semi- and weak volume supervision Coping with fewer labels for volumet-
ric segmentation has seen a lot of interest recently and was most commonly
posed as semi-supervised task, i.e. labeled and unlabeled volumes are used for
training. For this, a variety of approaches were tested, e.g. based on adversarial
learning [47], integrating the 3D shape of the input data by training distinctly
on multiple views and fuse model predictions on unlabeled volumes [72].Mean-
Teachers [57] were also successfully applied in volumetric segmentation [61,62,66]
often in combination with uncertainty modeling. Uncertainty is also integrated
in [42], yet rather than previous approaches which leverage classical Monte Carlo
Dropout [22] they base the uncertainty measure on predictions from multiple
UNet decoding scales and directly minimize it. Aside from designing new train-
ing strategies by splitting the training data into different sets [28], contrastive
learning has seen some application in semi-supervised volume segmentation re-
cently [64,65,68]. In these works, contrastive learning is used on a voxel-level [64]
and slice-level [65,68], which is coarsely related to our work through the idea of
enforcing similarities. Yet, we don’t set up positives and negatives, we deliber-
ately design target voxel-similarities based on positional- and semantic proximity.

A lot of semi-supervised algorithms consider graphs [48,73], while many
graphs are built between labeled and unlabeled samples [29,38], we bring this
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view to the voxel level within individual volumes. Comatch [38] considers semi-
supervised contrastive learning as graph-regularization for 2D and builds embed-
ding graphs across different images, rather than different voxel-embeddings. Our
method also coarsely relates to segmentation post-processing methods such as
CRFs [8,10,36,70], which view individual images as graphs and pixels as vertices.

We restrict our supervision types to unlabeled- alongside sparsely annotated
volumes, which is related to weakly supervised literature [5,40]. In the medical
domain, scribbles which are also partial labels, were used in [60] to learn 2D
segmentation via an adversarial objective and access to unpaired dense labels.
Singular points as partial annotations were explored in [49], where a segmen-
tation model is bootstrapped by iteratively pseudo-labeling unlabeled regions
of histopathology images. For volumetric segmentation, labeling only extreme
points on the three dimensional entity to segment built the foundation of [52],
which, like our method, views input volumes as graphs.

3 Proposed Approach

In this chapter, we introduce our notation, define the task of semi-weakly su-
pervised volumetric segmentation, and discuss relevant network related archi-
tectural choices. Then, we outline our Contrastive Constrained Regularization
(Con2R) method that can be understood as graph constraints on the learned
feature space. Via its design as contrastive loss, it encompasses a receptive field
smoothness constraint and a semantic coherence constraint.

3.1 Preliminaries

Supervision modality and notation We leverage a volume dataset of size N
for semantic segmentation, with the specification of:

D = {v1, ..., vN |vi ∈ Rcdim×D×H×W } , (1)

where cdim is the number of volume input channels, its depth D, height H, and
width W . In the general setting of volumetric segmentation, an input volume vi
is accompanied by a ground-truth mi ∈ RC×D×H×W , with C classes to segment.
Our setting reduces the requirement for densely labeled ground-truths as follows:

M = {(m1, a1), ..., (mN , aN )|(mi, ai) ∈ (RC×D×H×W , {0, 1}D)} . (2)

In addition to ground-truth annotations mi, we use binary variables adi ∈ {0, 1}
to indicate the availability of annotation information at each slice location 1 ≤
d ≤ D in a volume vi. An indicator ai that only contains zeros corresponds to mi

not containing any annotation information, whereas an indicator ai containing
e.g. two ones indicates the locations of two annotated slices within mi.

Generally, we care about the setting where indicators satisfy
∑D

d=1 a
d
i ≪ D,

i.e. vi are very sparsely annotated. We further speak of semi-weakly supervised
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volume segmentation if these sparse annotations are distributed among all vol-
umes in the dataset:

∑N,D
i,d=1 a

d
i ≪ N ·D. The goal for a learning algorithm stays

consistent with traditional volumetric segmentation, given any unseen v, predict
the full corresponding semantic m.

We found that this scenario is important in practice when experts are asked
to add pixel-wise semantic labels to slices within volumetric data. The question
this formulation poses is: Can three dimensional segmentation also be performed
well when only weak two dimensional annotations are available?

Volume indexing and -processing Given an input volume v, we refer to vx as
the input-values at voxel location x. Throughout our experiments, we leverage 3D
segmentation architectures that produce voxel-wise features f ∈ Rfdim×D×H×W

and voxel-wise semantic predictions p ∈ RC×D×H×W (for instance 3D Encoder-
Decoder models [15]). Here, the predictions p = κ(f) are the result of the output-
head κ(·), which is parameterized by C 1× 1× 1 convolution kernels. Similarly,
our method processes the voxel-wise features and transforms them via τ(f) into
embeddings e ∈ Redim×D×H×W . The transformation function τ(·) is parameter-
ized by a sequence of: normalization layer, 1 × 1 × 1 convolution, non-linearity
(i.e. LeakyReLU) and a final 1×1×1 convolution layer. With this dual-head 3D
segmentation architecture, each voxel vx from the input volume can be described
by a semantic prediction px as well as a high dimensional voxel-embedding ex.

3.2 Graph Constraints as Regularization

In the absence of densely labeled data, we fall back to designing data-driven
constraints on the hypothesis space to address the train-test target mismatch to
be suitable. In particular, we take the commonly chosen view on the input data
as a graph as also done in the excellent papers [10,36,38,70].

Our method considers a complete bi-partite weighted graph G = (Q,N , E , σ).
In this graph, we have two sets of vertices, the Query-setQ and Neighborhood-set
N which both contain voxel-embeddings ex sampled from all voxel-embeddings
e in the current volume (w.l.o.g. we choose |Q|= |N |). Important note: we do not
restrict these sets to local neighbors in the volume, but instead sample globally
from all possible pairs of voxels during training. The vertices, i.e. embeddings
ex ∈ Q, are connected to embeddings in ey ∈ N by edges (x, y) ∈ E and weighted
by σ(x, y) = exT ey/(||ex||||ey||). Thus, our graph G describes the similarity be-
tween voxel-embeddings of a volume.

We can now exploit this graph to regularize model training by preferring
solutions where the weights in the differentiable graph G take specific target
values. The question remains: what are sensible choices for a function T (·) to
define target values for each edge? In the standard case of full supervision, T (·)
can simply set the weights in E to class-agreement between the vertices based
on their labels. As we lack this option, we need to design these targets on the
basis of practical assumptions that integrate knowledge about the relationship
between unlabeled and labeled data [6].
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Fig. 2. Our method Con2R processes weakly- and strongly augmented volumes to gen-
erate voxel-wise embeddings and form a similarity graph. We align this graph to a target
similarity graph that we compute via positional- and semantic proximity constraints
using network predictions and partial labels if available. This alignment process enables
us to learn consistent 3D predictions, merely using unlabeled or partially labeled data.

Receptive Smoothness Constraint The well-known smoothness assump-
tion [9], which states that samples close to each other likely share a class label,
is the basis of much recent work [21,57], which enforce consistent predictions be-
tween differently perturbed versions of the same input. Similar but differently, we
further condition the smoothness assumption on the magnitude of such pertur-
bations: samples closer to each other are more likely to share a class label. With
the similarity graph-based design introduced above, we are now able to integrate
this assumption easily. By considering translations as a form of perturbation, we
can enforce the similarity between voxel-embeddings to be proportional to their
relative position in the volume. Thus, we condition the smoothness assumption
on the magnitude of the translation, i.e. on the relative position.

To integrate this assumption into our target similarity weights, let us consider
two embeddings ex ∈ Q and ey ∈ N . We propose to compute positional proximity
of the two voxel-embeddings in the volume by using the relative intersection of
sub-volumes centered at x and y (smoothed by a small ε if the intersection
approaches 0):

ρ(x, y,R(·)) = max(
|R(x) ∩R(y)|

|R(x)|
, ε) , (3)

where the receptive field function R(·) returns for a voxel x all spatially related
voxels that fall into the sub-volume centered at x. For a simplified depiction (2D
case), see Fig. 3, where in (2) voxel B shares a larger receptive portion with A
than with C or D, therefore B’s voxel-embedding should be closest to A’s. This
positional similarity is marginalized over neighborhood embeddings ez ∈ N :

P(x, y,R(·)) = ρ(x, y,R(·))∑
ez∈N ρ(x, z,R(·))

. (4)
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Fig. 3. Graph constraints (simpli-
fied 2D): Pairs of voxels are related
by positional proximity measured
in overlap of receptive field/volume
and similarity in class-predictions.

When no semantic information on class mem-
bership is present, constraining a model to be
coherent with respect to P(·) results in models
that draw conclusions concerning embedding-
similarity exclusively on the basis of relative
positioning. In this case, the resulting models
will lead to embeddings which consider the full
extent of three dimensional receptive volumes.
As it will turn out, this is useful in our setting
with extremely few annotated volume slices.

Semantic Coherence Constraint Besides
positional proximity, we also enforce coher-
ence of the embeddings for voxels with sim-
ilar semantics. This is important to offset the
position constraint for voxel-embeddings that
share semantics but lie far apart, e.g. voxel C
and D in (3) of Fig. 3 share the class prediction, hence C’s voxel-embedding
should be more similar to D than to A or B. For two embeddings ex ∈ Q and
ey ∈ N , we take into account the semantic predictions px and py produced by
the segmentation output-head κ(·), which is trained with the few given labels.
To measure semantic proximity, different functions S(·) have been proposed [36].
We base our measure on the symmetrized negative Kullback-Leibler divergence:

SN-KL(px, py) = −1

2
·
(
py · log

(
py

px

)
+ px · log

(
px

py

))
, (5)

which we marginalize over the predictions at the locations of the neighbor-
hood voxels:

S(x, y, p) = exp(SN-KL(px, py))∑
ez∈N exp(SN-KL(px, pz))

. (6)

With the semantic proximity S(·) and the positional proximity P(·), we are now
able to set up the function T (·), which produces target similarity-weights for G.

Graph-based Contrastive Constraints To restrict the similarity weights
of our embedding graph G, we first define a function T to obtain the target
similarities between pairs of voxel-embeddings. For a given edge (x, y) between
voxel-embeddings, the model should produce a similarity σ(x, y) that matches:

T (x, y,R(·), p) = α · P(x, y,R(·)) + (1− α) · S(x, y, p) . (7)

The weight α ∈ [0, 1] allows to trade-off the contribution of the receptive smoothness-
and semantic coherence constraints. With T , we can align the voxel-embeddings
for a given volume to these similarity targets. For this alignment process, we
leverage the common contrastive similarity formulation:

O(ex, ey) =
exp(σ(x, y))∑

ez∈N exp(σ(x, z))
, (8)
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which encodes the current voxel-embedding similarities in the graph G. The final
loss is formed by minimizing the cross-entropy between similarities and targets:

L(Q,N ) = −
∑

ex∈Q,ey∈N
log(O(ex, ey)) · T (x, y,R(·), p) . (9)

Finally, we symmetrize this loss and follow the example of [12] by only backprop-
agating through either Q or N . Therefore, our proposed LCon2R loss function
resolves to:

LCon2R(Q,N ) =
1

2
· (L(Q, N̄ ) + L(N , Q̄)) . (10)

Here, Q̄ and N̄ indicate the respective voxel-embedding sets being detached from
the computation graph, i.e. we treat them as constants in backpropagation.

3.3 Graph-constrained Semi-weak Learning

To put LCon2R to work, we propose the following training scheme which is also
visualized in Figure 2. First, we take an input volume vi and augment it weak
and strong, yielding Aweak(vi) and Astrong(vi). We train the output-head κ(·)
with only the weakly augmented volumes by minimizing standard categorical
cross-entropy LEntropy using the few partially labeled annotations. We use the
predictions p from the weakly augmented volumes as input to generate our target
similarities T (·). When sparse annotations for vi are present, we adapt pi to p∗i :

p∗i = pi · (1− ai) +mi · ai , (11)

substituting ground-truth annotations in regions of the volume, where we are
supplied with them. The embeddings we use for setting up the similarity graph G
are taken from the strongly augmented input, i.e. embeddings produced by for-
warding Astrong(vi) through the network as well as the embedding output-head
τ(·). Put together, we optimize our semi-weakly supervised 3D segmentation
model by minimizing Ltotal = LEntropy + LCon2R.

4 Evaluation

4.1 Protocol

Datasets We evaluate our approach on two well-known volumetric datasets.
The RETOUCH OCT dataset [7] for retinal fluid segmentation contains classes:
Intraretinal fluid (IRF), Subretinal fluid (SRF), and Pigment Epithelium De-
tachment (PED). While different vendors of OCT devices are covered, we focus
on Spectralis, for which the volumes have a depth of 49 B-scans. Further, we
evaluate our approach on brain tumor sub-region segmentation in magnetic reso-
nance images. We use the data as supplied in [1] which contains multiple BraTS
challenges [2,3,44]. We segment tumor sub-regions edema (EDM), enhancing
tumor (EN), non-enhancing tumor (NEN) within volumes of depth 155.
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Experimental setupWe intend to analyze extremely scarce annotation scenar-
ios. Thus, we need to carefully design a suitable evaluation protocol. Therefore,
we split the labeled data five times into train and test splits, where the train
portion is further divided into train and validation volumes (train/val/test: RE-
TOUCH: 14/10/10, BraTs: 242/121/121). This five-fold cross-validation enables
us to report mean and standard deviation for the performance of all models which
is crucially important when working with few labels [50]. In each train-val fold,
we randomly select B-scans to be annotated, thereby marginalizing effects of
individual annotated slices. We make sure that the set of annotated scans covers
all classes. As such, in each fold a sequence of scenarios where only 3, 6, 12, or 24
label-masks are available gives detailed insight into effects of adding annotations.
With e.g. M(12) we refer to a scenario that from all training volumes only has

access to 12 annotated slices, distributed among all volumes (
∑N,D

i,d=1 a
d
i = 12). In

a fold, higher supervision scenarios extend labels of lower supervision scenarios.
Evaluation metric For evaluating the performance of our methods, we use the
mean Intersection over Union (mIoU), which is defined as the average class-wise
Intersection of segmentation and ground-truth over their Union. We report mIoU
averaged over five cross-validation folds and the standard deviation.

4.2 Implementation details

Data augmentation. For RETOUCH, we resize the input volumes to 49 ×
160 × 160 and crop out 16 slices for training, while for BraTS, we resize to
155× 110× 110 and crop out 32× 110× 110-sized volumes. As described in Sec-
tion 3.3, we require weak and strong augmentations for computing pseudo-labels
and voxel-embeddings. Weak augmentations are in our setting flipping the input
volume in the longitudinal- and the vertical direction with a probability of 50%.
To compute embeddings, the input is flipped in all three directions with a prob-
ability of 50% and always altered via photometric perturbations with sampled
magnitudes. Here, we find adjusting the brightness and sharpness to be most
effective. Furthermore, we extend CutOut [19] for volumetric inputs, where we
always set a randomly placed cube of size 16× 16× 16 in the volume to zero.

Network configuration. For all experiments and baselines, we leverage 3D
UNets [15] with 64, 128, 256, 256 channels in each encoder and decoder layer. We
train the networks using a batchsize of two, where we oversample the partially
labeled volumes and ensure that in each iteration, one of the volumes is partially
labeled. We apply Xavier initialization [23], use a learning rate of 0.01, and use
SGD with momentum of 0.9 and a weight decay of 0.00001. As lower bound
on performance, we train models that merely employ cross-entropy on partially
labeled volumes and do not consider unlabeled volumes or unlabeled regions.
These naive 3D UNet baselines serve as initialization to the semi-supervised
models. Training is conducted in 100 epochs and validated every 10 epochs,
where the best epoch is then evaluated once on the testing set. All experiments
were carried out on 11GB NVIDIA RTX 2080 Ti GPUs. The code is made
publicly available at https://github.com/Simael/Con2R.

https://github.com/Simael/Con2R
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4.3 Baselines and Setup for Semi-weak Volumetric Segmentation

We implement common methods from semi-supervised literature and tune them
for semi-weakly volumetric segmentation. Thus, we select the most common [37]
and successful 2D methods [55] and methods that have seen success on volumetric
medical use-cases [39,66] and also a naive 3D UNet as a lower bound. With
this we explore how they compare and transfer to partially labeled scenarios.
Pseudo-label (PL) [37,74] We implement a pseudo-labeling baseline which
is a common, classical semi-supervised approach. As we have access to partially
labeled volumes, in pseudo-labeling we use the network predictions and augment
them via Eq. (11). This simple transfer of the method did not perform well in
our setting; we tune it by using the self-training normalization scheme of [74].
Mean-Teacher (MT) [57] A commonly used semi-supervised framework is the
Mean-Teacher, which we transfer to volumetric inputs and dense predictions.
The adaptation of this approach to segmentation has been modeled multiple
times [39,50]. We train by aligning the student predictions to the teacher predic-
tions as obtained by forward passing differently augmented volumes. Then, we
reverse geometric augmentations on the teacher predictions to maintain pixel-
alignment between student- and teacher outputs for the consistency loss. We
find an exponential-moving average decay factor 0.5 to perform well.
FixMatch [55] FixMatch is a successful method originally designed for 2D clas-
sification. It mixes pseudo-labeling and consistency regularization by using weak
and strong augmentations (we use augmentations from Sec. 4.2). As we adapt
this approach to segmentation, we consider the alignment of predictions from
the strongly augmented branch to the weakly augmented branch, which we do
similarly as in the Mean-Teacher. A confidence threshold of 0.5 was suitable.
Uncertainty-aware Mean-Teacher (UA MT) [66] This Mean-Teacher flavor
adds uncertainty estimation using Monte-Carlo dropout [22]. By estimating and
thresholding voxel-wise uncertainty, the consistency loss is applied selectively in
unlabeled regions. We find a threshold of 0.5 and 8 forward passes to work well.
Contrastive Constrained Regularization (Con2R) We train our Con2R
method on RETOUCH by sampling |Q| + |N | = 3456 voxels from the volume-
graph (BraTS: 6750) each iteration and optimize the alignment to our computed
target graph. The composition of positional- and semantic constraints for the
target graph is moderated by α = 0.2. The receptive volume size R is 16×16×16
and 32× 32× 32 for RETOUCH and BraTS, we set edim = 64 and ε = 10−7.

4.4 Quantitative results

RETOUCH When looking at Table 1, the first observation is that the lower ac-
curacy bound for scenarios with 3, 6, 12, 24 annotations is set by the 3D UNet. In
the lowest supervision scenarioM(3), results are as expected very poor and most
semi-supervised models can not meaningfully exceed the plain 3D UNet. With
additional supervision, semi-supervised methods start to show improvements
due to modeling concistency in unlabeled data. Interestingly, FixMatch gives
smallest gains in M(6) while in later scenarios, it is comparable to competing
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Table 1. RETOUCH results in mIoU for semi-weakly supervised learning, number of
annotated B-scans successively increased from 3 to 24 and full access as upper limit

Method M(3) M(6) M(12) M(24) M(full)

3D UNet [15] 12.0± 5.6 18.1± 11.5 31.1± 12.4 43.8± 2.5 54.9± 0.9

PL [37,74] 13.0± 6.3 20.6± 13.4 30.9± 11.5 45.7± 2.2 55.4± 1.5

MT [39,57] 12.0± 6.6 20.2± 12.4 34.4± 11.4 45.3± 3.1 53.4± 1.9

FixMatch [55] 10.4± 5.7 18.7± 10.6 34.7± 6.8 46.2± 3.8 54.4± 3.3

UA MT [66] 13.0± 6.7 20.0± 11.9 36.5± 9.2 45.7± 1.9 56.3± 1.7

Con2R (Ours) 14.8± 8.7 22.5± 10.0 38.6± 7.5 48.2± 3.1 54.6± 1.2

approaches. Con2R is able to outperform all methods with clear margins, espe-
cially Uncertainty-aware Mean-Teacher and FixMatch, which are the strongest
competitors in M(12) and M(24). With full annotations, the baselines and
Con2R achieve, within a small margin, comparable results, as no additional un-
labeled data is leveraged. UA MT further improvesM(full) slightly, which might
be due to the integrated dropout layers. The results show that semi-supervised
methods generally work for the proposed semi-weakly supervised learning with
partially labeled volumes. Yet, by explicitly modeling the properties of partially
labeled data with our constraints in Con2R, we see consistent gains of +1.8%,
+1.9%, +2.1%, +2.0%, as compared to the best competing methods.

We can get more nuanced insights by comparing class-wise segmentation
performance in Table 2. It is evident that even with few annotations, Con2R is
able to segment Subretinal Fluid (SRF) and Pigment Epithelium Detachments
(PED) better than alternative approaches which holds true for all scenarios. In
M(24), our method segments Subretinal Fluid with an IoU of 79.1% which is
close to the best fully supervised result of 84.4% reached by Uncertainty-aware
Mean-Teacher with access to a total of 686 annotated OCT B-scans.

Table 2. RETOUCH class-wise results in mIoU for semi-weakly supervised learning,
number of annotated B-scans successively increased from 3 to 24

Method
M(3) M(6) M(12) M(24)

IRF SRF PED IRF SRF PED IRF SRF PED IRF SRF PED

3D UNet [15] 21.1 11.5 3.3 21.0 24.6 8.6 23.4 49.9 20.0 30.5 73.0 27.8

PL [37,74] 22.4 13.0 3.7 23.5 27.3 11.0 24.2 52.9 15.6 32.3 73.9 30.8

MT [39,57] 18.4 12.9 4.8 20.7 29.4 10.5 24.5 59.7 19.0 30.9 76.6 28.3

FixMatch [55] 16.5 13.1 1.4 21.4 27.7 7.0 20.0 64.9 19.2 33.4 76.8 28.3

UA MT [66] 22.3 12.9 3.7 21.1 29.6 9.4 27.2 61.1 21.2 31.9 75.9 29.3

Con2R (Ours) 20.2 16.4 7.8 22.1 31.8 13.6 27.3 65.2 23.3 31.6 79.1 34.0
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Table 3. BraTS class-wise results in mIoU for semi-weakly supervised learning, number
of annotated B-scans is set at 24 and full access is shown as upper limit

Method
M(24) M(full)

EDM EN NEN AVG AVG

3D UNet [15] 48.7 19.6 48.1 38.8± 3.4 51.7± 7.0

PL [37,74] 49.1 21.3 50.5 40.3± 2.5 52.2± 8.4

MT [39,57] 49.1 21.7 45.0 38.6± 4.5 53.7± 5.7

FixMatch [55] 50.1 24.2 53.1 42.4± 4.9 51.0± 6.5

UA MT [66] 49.2 22.6 51.3 41.1± 3.5 52.6± 6.0

Con2R (Ours) 51.8 23.9 53.9 43.2± 3.5 54.6± 7.7

BraTS In Table 3, we see the same methods evaluated for brain tumor seg-
mentation. Due to generally long training times for 3D segmentation models, we
report only one semi-weakly supervised setting, namelyM(24). Here, we see that
especially edema (EDM) and non-enhancing tumor (NEN) sub-regions benefit
from our modeling, which leads to superior results. It is noteworthy that in this
scenario, 37, 486 slices are not annotated while only 24 have associated labels.
Hence, even in this highly unbalanced setting between unlabeled and labeled
scans, our method is well suited and exceeds all semi-supervised baselines.

4.5 Ablation and hyperparameter sensitivity studies

We carry out all experiments in this section on the RETOUCH dataset with the
24 annotation scenario. First, we study the effect of the weight α, which inter-
polates between the positional and semantic constraints (Table 6). We see that
semantic constraints in isolation (α = 0.0) produce solid results, only positional
constraints surprisingly too (α = 1.0), but best results are found with α = 0.2.
Next, we report in Table 4 how chosing the receptive field function R impacts
accuracy. The best results are achieved with 16×16×16, which is the maximum
depth of the input volume crops (therefore, we adjust R to 32 × 32 × 32 for
the BraTS task). Larger receptive volume sizes degrade the performance, and
we expect that the shape and size of objects to segment in a given dataset also
plays an important role regarding this choice.
Finally, the number of sampled edges from the volume-graph to tune is varied
in Table 5. We see that increasing this number also steadily increases the benefit
of Con2R. We set this hyperparameter to 1, 728 for RETOUCH and to 3, 375
for BraTS, which relates to the maximum GPU capacity available to us.

4.6 Qualitative results

RETOUCH An example of the qualitative segmentation improvement between
different methods while adding annotations are shown in Figure 4. With 3 an-
notated slices in training, none of the methods achieve satisfying results, merely



Graph-constrained Contrastive Regularization 13

Table 4. Effect of receptive vol-
ume size R on the mean IoU

R validation mIoU

16× 16× 16 49.1± 4.7%
32× 32× 32 47.1± 2.7%
64× 64× 64 46.3± 2.3%

160× 160× 160 46.5± 6.1%

Table 5. Effect number of vertices
in graph G on the mean IoU

|Q|, |N | validation mIoU

216 46.9± 4.5%
512 46.9± 3.4%
1000 47.8± 5.0%
1728 49.1± 4.7%

Table 6. Validation performance of Con2R when
tuning α, IoU reported along five validation splits
with mean and standard deviation displayed

a small fluid portion of Subretinal Fluid (SRF) is in some cases segmented
coarsely. Adding three annotations more, most approaches over-confidently iden-
tify Pigment Epithelium Detachments (PED) as Intraretinal Fluid (IRF),
merely our method starts to segment this area correctly. FixMatch and Uncertainty-
aware Mean-Teacher are the only other methods that correctly pick up the spatial
relations between PED and SRF with 12 annotated slices. For this supervision
scenario, our method is able to already pick up the correct location of IRF
pockets in the retina. Using 24 annotations, our method further is the only one
to correctly delineate the SRF and PED and making consistent spatial seg-
mentations without class confusion that we see in the remaining methods. We
attribute this to our smoothness priors regarding both semantics and locality.

5 Discussion

We believe that our proposed concept of semi-weakly supervised volumetric seg-
mentation as formulated in Section 3.1 is worth exploring further since it gives
detailed insights into how labeling can be optimized. Especially in application
fields where labeling budget is tight or where time of expert annotators is limited,
flexible learning algorithms such as Con2R can become enabling technologies to
build useful solutions. To reduce the expert label costs further, we see potential
in using annotations that only consider sub-regions within a slice in a volume.
This variation from our setting would further put emphasis on intuitive expert-
selected region annotation, which is one additional step towards an expert-centric
process. By design, our Con2R method is applicable to such scenarios and we
are curious to see them being analyzed in future investigations.
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Fig. 4. Segmentation progression when increasing the number of annotations from 3 to
24 in semi-weak retinal fluid segmentation, results for IRF, SRF and PED overlayed
with input OCT scan. Method names are below rows, right column: ground-truth.

3 6 12 24 Ground-truth

3D UNet Baseline

Pseudo-label

Mean-Teacher

FixMatch

Uncertainty-aware Mean-Teacher

Con2R (Ours)

6 Conclusion

We introduced and explored semi-weakly volumetric segmentation to reduce the
need for dense expert-labels on volumetric data. Motivated by designing flexible
learning algorithms which can use partial labels, we transferred a variety of
semi-supervised algorithms. It became evident that these methods indeed add
performance but leave behind uncollected rewards. Our method Con2R recovers
those by explicitly modelling the semi-weak scenario. We carefully constructed
positional smoothness- and semantic coherence constraints in embedding space,
and we were able to consistently raise segmentation accuracy on two medical
datasets. We expect that flexible algorithms like Con2R which exploit unlabeled
and partially labeled volume data can enable applications where annotations at
scale are otherwise too costly or even impossible to obtain.
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