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Abstract. For medical image analysis, segmentation models trained on
one or several domains lack generalization ability to unseen domains due
to discrepancies between different data acquisition policies. We argue
that the degeneration in segmentation performance is mainly attributed
to overfitting to source domains and domain shift. To this end, we present
a novel generalizable medical image segmentation method. To be specific,
we design our approach as a multi-task paradigm by combining the seg-
mentation model with a self-supervision domain-specific image restora-
tion (DSIR) module for model regularization. We also design a random
amplitude mixup (RAM) module, which incorporates low-level frequency
information of different domain images to synthesize new images. To
guide our model be resistant to domain shift, we introduce a semantic
consistency loss. We demonstrate the performance of our method on two
public generalizable segmentation benchmarks in medical images, which
validates our method could achieve the state-of-the-art performance. ‡

Keywords: Medical image segmentation, domain generalization, self-
supervision

1 Introduction

Recently, deep convolution neural networks (DCNNs) have progressed remark-
ably in computer vision tasks (e.g., image classification, semantic segmentation,
object detection, etc.). Especially in medical image segmentation tasks, deep
learning based methods have taken over the dominant position [33,29]. Usually,
DCNNs require large numbers of annotated training images to alleviate the risk
of overfitting. However, datasets in medical image segmentation tasks are of-
ten relatively small in amount than those in natural image segmentation tasks.
Moreover, it is notoriously time-consuming to acquire segmentation annotations
of medical images. Accurate annotations also requires specific expertise in ra-
diodiagnosis. Except for the data amounts and annotations problem, basic deep
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Fig. 1. The overall architecture of our method. (a) Random Amplitude Mixup (RAM):
We extract the amplitude maps from two random sampled images of different domains
and incorporate the amplitude maps of them. Then we can synthesize new images
that have different domain styles and preserve original semantic information. (b) The
synthesized images from RAM module are utilized to train the segmentation model
and DSIR decoder. Basic segmentation loss combined with semantic consistency loss
and image recovering loss are employed to train our network.

learning methods assume that training data and test data share same distri-
bution information. This assumption requires that training and test data are
collected from the same distribution, which is a strong assumption. Due to data
distribution shifts, this assumption usually becomes invalid in the real clinical
setting. It is known that the quality of medical images varies greatly due to
many factors, such as different scanners, imaging protocols, and operators. As
a result, the segmentation model directly trained on a set of training images
may lack generalization ability on test images drawn from another hospital or
medical center, which follows a different distribution.

To fight against distribution shift, tremendous researchers have investigated
several practical settings, such as unsupervised domain adaptation (UDA), do-
main generalization (DG), etc. UDA-based segmentation methods have gained
much popularity in medical image segmentation [18,9,44]. To be specific, UDA
attempts to learn a segmentation network on single or multiple source domain
images including the annotations along with unlabeled target domain images.
UDA-based methods intend to narrow the domain gap between source and tar-
get domains. However, this prerequisite is sometimes impractical or infeasible in
real-world application. Since data privacy protection is rigorous in medical im-
age scenarios, we may sometimes have no chance to access target domain images
from some medical centers.

Recently, domain generalization (DG) is proposed to alleviate the applica-
tion limitation in UDA. DG is a more feasible yet challenging setting requiring



RAM-DSIR 3

only source domains for training. After training on source domain images, we
can directly deploy the segmentation model to new unseen target domains. Re-
cently, several literature have developed domain generalization methods to im-
prove model generalization ability with multiple source domains. Among these
previous methods, most of them attempt to learn a domain-irrelevant feature rep-
resentation among multi-source domains for generalization [11,24,22,23]. Some
data augmentation based methods have emerged to tackle the problem of lack
of prior information from target domains [40,43] by synthesizing newly stylized
images to expand diversities of source domain images. Some pioneers have pro-
posed self-supervised tasks (i.e., solving a Jigsaw Puzzles) to help regularize the
model [3,37]. These methods indicate that an auxiliary self-supervised task can
better help the model learn domain-invariant knowledge, thus improving model
regularization. However, solving a Jigsaw Puzzles may not be a sufficient self-
supervision for DG segmentation tasks. To this end, we aim to design a more
complex self-supervision to better learn domain-invariant semantic representa-
tion for medical image segmentation.

In our work, we present a new framework based on vanilla generalizable
medical image segmentation model. To be specific, we first introduce a random
amplitude mixup (RAM) module by utilizing the Fourier transform to capture
frequency space signals from different source domain images and incorporating
low-level frequency information of different source domain images to generate
new images with different styles. We then use these synthetic images as data
augmentation to train the segmentation model and improve robustness. To fur-
ther regularize our model and combat domain shifts, we employ a semantic con-
sistency training loss to minimize the discrepancy between predictions of real
source domain images and synthetic images. To learn more robust feature rep-
resentation, we introduce a domain-specific image restoration (DSIR) decoder
to recover low-level features from synthetic images to original source domain
images. We demonstrate the effectiveness of our approach on two DG medi-
cal image segmentation benchmarks. Our method achieves the state-of-the-art
performance compared with competitive methods. We display the overall archi-
tecture of our method in Fig. 1.

2 Related Work

Unsupervised Domain Adaptation. Unsupervised Domain Adaptation
(UDA) is a particular branch of Domain Adaptation (DA) that leverages labeled
data from one or multiple source domains along with unlabeled data from the
target domain to learn a classifier for the target domain [4,5,9,18,27,36,44]. Under
such a problem setting, data from the target domain can be utilized to guide the
optimization procedure. The general motivation of UDA is to align the source
domain and target domain distributions. Some methods adopted a generative
model to narrow the pixel-level distribution gap between source and target do-
mains [7,9,18,44]. Dou et al . [12] aligned the feature distribution between source
and target domains by adversarial training to keep semantic features consistent
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in different domains. Differently, some methods attempted to narrow the distri-
bution gap between source and target domains in output space level [8,34,35,36].
However, due to data privacy protection, some unlabeled target domain data can
not be accessed in some cases. The target domain is not available in the training
process, making UDA methods impractical in some real-world applications.

Domain Generalization. In contrast to UDA, Domain Generalization
(DG) purely trains a model on one or more related source domains and di-
rectly generalizes to target domains. A large amount of DG methods have been
proposed recently [6,13,14,17,32,40,41]. Some methods tried to minimize the do-
main discrepancy across multiple source domains to learn domain-invariant rep-
resentations [15,19,24]. With the recent advance of the episodic training strategy
for domain generalization [1,11,22,23], some meta-learning-based methods have
been developed to generalize models to unseen domains. Li et al . [23] proposed
an episodic training procedure to simulate domain shift at runtime to improve
the robustness of the network. Unlike previous meta-learning-based methods,
our method is based on vanilla training policy by aggregating different source
domain images. We apply a self-supervised image-level-recovering task and se-
mantic consistency training policy to improve the generalization performance on
unseen target domains. In medical image segmentation, several prior literature
have studied DG segmentation. For instance, Zhang et al . [43] proposed a deep-
stacked transformation approach that utilized a stack of image transformations
to simulate domain shift in medical imaging. Liu et al . [26] introduced a shape-
aware supervision combined with meta-learning to help generalizable prostate
image segmentation. Wang et al . [38] stored domain-specific prior knowledge in a
pool as domain attributes for domain aggregation. Liu et al . [25] proposed a con-
tinuous frequency space augmentation with episodic training policy to improve
the generalization ability across different domains. Similar to Liu et al . [25],
we apply frequency space information for image augmentation in our method.
However, we utilize augmented images for image segmentation and the auxiliary
image-level-recovering task. This will help our model be more robust to domain
shifts and alleviate overfitting.

Self-supervisied Regularization. Self-supervised learning have gained
much attention in computer vision, natural language processing etc. [10,16,2],
recently. It utilizes annotation-free tasks to learn feature representations of data
for the downstream tasks. In DG scenario, some methods have also introduced
self-supervision tasks to regularize the semantic feature learning [3,37]. We also
develop an image-level-recovering self-supervision task to help regularize the
model. Different from [3,37] solving a Jigsaw Puzzles, our image-level-recovering
task is more complicated, which can better regularize the model.

3 Our Method

3.1 Definition and Overview

We denote a set of K source domains as Ds = {(xk
i , y

k
i )

Nk
i=1}Kk=1, where xk

i is the
i-th image from k-th source domain; yki is the segmentation label of xk

i ; Nk is
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the number of samples in k-th source domain. We aim to learn a generalizable
medical image segmentation model Fθ on Ds. The model Fθ is expected to show
a satisfactory generalization performance on unseen target domainDt = {xi}Nt

i=1,
where xi represent the i-th image in target domain, and Nt is the number of
image samples in target domain.

Our proposed method contains an encoder-decoder segmentation model with
an auxiliary domain-specific image restoration (DSIR) decoder. In front of our
training pipeline, we introduce a data augmentation and corruption module
named as random amplitude mixup (RAM). The workflow of our method con-
tains three steps. First, in the RAM module, we apply the Fourier transform
on two source domain images that share different domain labels to obtain their
frequency space signals; then, we incorporate their low-frequency signals and
utilize inverse Fourier transform to generate new images. Secondly, in our DSIR
module, the encoder of the segmentation model obtains low-level features of im-
ages generated by RAM. A decoder with domain-specific batch normalization is
trained to recover original images in a specific source domain from the low-level
features. Finally, the encoder-decoder segmentation model is trained by the seg-
mentation loss of source domain images and augmented images; also we adopt
a consistency loss between the outputs of source domain images and augmented
images to help the segmentation model better resist domain shifts. We discuss
all of these components next in detail.

3.2 Random Amplitude Mixup

To address the restriction of domain discrepancy between source and target do-
mains, a reasonable idea is to apply data augmentation on source domains to
diversify source domain data. In this case, we can regularize the model and allevi-
ate overfitting to source domains. Among plenty of data augmentation methods,
Mixup [42] has been widely used in image recognition tasks. Image-level-Mixup
(IM) incorporates two different images from the training dataset. However, IM
will also disturb the semantic information of images, which may negatively influ-
ence semantic segmentation tasks. Inspired by prior literature [39,25], we propose
to exploit the inherent information of source domains in the frequency space and
incorporate distribution information (i.e., style) in the amplitude spectrum of
different images. We name our module as random amplitude mixup (RAM).

To be specific, we randomly take a sample image xk
i ∈ RH×W×C (C rep-

resents the number of image channels; H and W are height and width of the
image) from source domain k. Then, we perform the Fourier transform [31] F
to obtain the frequency space signal of image xk

i , which can be written as:

F(xk
i )(u, v, c) =

H−1∑
h=0

W−1∑
w=0

xk
i (h,w, c)e

−j2π( h
H u+ w

W v), j2 = −1. (1)

After the Fourier transform, we can decompose the frequency signal F(xk
i ) into

an amplitude spectrum Ak
i ∈ RH×W×C and a phase image Pk

i ∈ RH×W×C ,
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where the amplitude spectrum contains low-level statistics (e.g., style) while the
phase image includes high-level (e.g., object) semantics of the original image.
We incorporate the amplitude spectrum of different images from multiple source
domains. To this end, we randomly select another sample image xn

j (n ̸= k) from
source domain n and perform the Fourier transform on it as well. So that, we
obtain another amplitude An

j of image xn
j . To incorporate the low-frequency

component within amplitude Ak
i and An

j , we introduce a binary mask M which
can control the scale of low-frequency component in amplitude spectrum to be
incorporated. After that, we incorporate the amplitude information of image xk

i

and image xn
j by:

An→k
i,λ = Ak

i ∗ (1−M) + ((1− λ)Ak
i + λAn

j ) ∗M, (2)

where An→k
i,λ is the newly interpolated amplitude spectrum; λ is a parameter

that used to adjust the ratio between Ak
i and An

j . Finally, we can transform

the merged amplitude An→k
i,λ into a newly stylized image through inverse Fourier

transform F−1 as follows:

xn→k
i,λ = F−1(An→k

i,λ ,Pk
i ), (3)

where the generated image xn→k
i,λ contains the semantic information of xk

i and its

low-level information (e.g., style) is a mixture of low-level information of xk
i and

xn
j . In our implementation, we follow [25] to dynamically sample λ from [0.0, 1.0]

to generate images. Fig. 1 (a) illustrates the overall architecture of RAM.

(a) Original Images (b) RAM Images 

Fig. 2. t-SNE visualization of features of
original images and RAM augmented im-
ages from Fundus dataset. We use differ-
ent colors and markers to denote different
domains.

To further indicates that RAM
can increase the diversity of source
domain and narrow the domain dis-
crepancy. We show the t-SNE [28] vi-
sualization of image features in Fun-
dus dataset in Fig. 2. Fig. 2 (a) shows
the original distribution information
of different domains in the Fundus
dataset. From the visualization, we
can observe that the image features
from different domains are clearly sep-
arated. This leads to the problem that
training the model on original source
domains make the model easily over-
fit to specific source domains, which
might degrade generalization perfor-
mance on target domains. However, in
Fig. 2 (b), we discover that, by apply-
ing RAM on original source domains,
we can narrow domain gaps signifi-
cantly, showing domain invariant representation. The distribution of different
domains is more compacted and diversified.
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3.3 Semantic Consistency Training

To segment images from the target domain, one straightforward method is to
train a vanilla segmentation model in a unified fashion by directly feeding multi-
source domain images into the model. We name training such a vanilla segmen-
tation model as “DeepAll”. Although the “DeepAll” method might have good
generalization performance on multi-source domains, it may not preserve satis-
factory segmentation performance on target domain images. Training a vanilla
segmentation model on multi-source domains does not introduce supervision to
combat domain shifts. Also, we have mentioned that original multi-source do-
main images lack sufficient diversity in feature distribution, which may lead to
overfitting to a specific source domain.

We design a semantic consistency training strategy to tackle problems of
the “DeepAll” method. To be specific, we introduce an encoder-decoder struc-
ture [33] as our segmentation model. The encoder E will extract low-level seman-
tic features from images while the segmentation decoder Dseg is used to predict
segmentation masks. We formulate the forward propagation of the segmentation
model on source domain image xk

i as:

ŷki = Dseg(E(xk
i )), (4)

where ŷki is the predicting segmentation mask. Since we utilize RAM to generate
newly stylized images from original source domains, we can use these augmented
images to help train the segmentation model. This can also regularize the seg-
mentation model and improve its generalization performance on target domains.
Similar to Eq. (4), the forward propagation on xn→k

i,λ can be written as:

ŷn→k
i,λ = Dseg(E(xn→k

i,λ )), (5)

where ŷn→k
i,λ represents the prediction. Then, we utilize the unified cross-entropy

(CE) loss [30] and Dice loss [29] as our segmentation loss to optimize the model.
The CE and dice loss on original source domain k are formulated as:

Lk
ce = − 1

N

N−1∑
i=0

(
yki log ŷ

k
i + (1− yki ) log(1− ŷki )

)
, (6)

Lk
dice = 1−

2
∑N−1

i=0 ŷki y
k
i∑N−1

i=0 (ŷki + yki + ϵ)
, (7)

where yki is the shared ground truth of xk
i and xn→k

i,λ ; N represents the number
of samples from domain k; ϵ is a smooth factor to avoid dividing by 0. The CE
loss Ln→k

ce and dice loss Ln→k
dice on the generated images are similar as above. So,

segmentation losses on xk
i and xn→k

i,λ can be written as:

Lk
seg = Lk

dice + Lk
ce, Ln→k

seg = Ln→k
dice + Ln→k

ce . (8)
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To combat domain shifts, we propose a novel semantic consistency loss in our
method. Specifically, we regard the generated image xn→k

i,λ as a style augmen-

tation of xk
i . We intend to force the segmentation model to predict consistent

segmentation results from xk
i and xn→k

i,λ . So that the segmentation model can be
less sensitive to domain shift. We design a loss term to minimize the Kullback-
Leibler (KL) divergence [21] between soft predictions ŷki and ŷn→k

i,λ . Our semantic
consistency loss is as follows:

Lk
consist =

1

N

N−1∑
i=0

(
KL(ŷki ∥ŷn→k

i,λ ) + KL(ŷn→k
i,λ ∥ŷki )

)
, (9)

where KL represents the KL-divergence [21]. We compute a symmetric version
of KL-divergence between ŷki and ŷn→k

i,λ . By explicitly enhancing the consistency
of results, the segmentation model can extract semantic features more robust to
domain shift, thus improving performance on unseen target domains.

3.4 Domain-Specific Image Restoration

To further regularize the segmentation model and reduce overfitting on source
domains, we propose a self-supervised auxiliary task to help train a more robust
segmentation model. To be specific, we introduce an image restoration decoder
with domain-specific batch normalization (DSBN) layers [5]. The image restora-
tion decoder is utilized to recover image from the low-level features extracted by
the segmentation encoder E from the RAM image xn→k

i,λ .
To better recover images of different source domains, we add DSBN in

our image restoration decoder. Let our image restoration decoder denote as
Drec = {D1

rec, D
2
rec, · · · , DK

rec}, where K represents the number of source do-
main, Dk

rec is used to recover images from low-level features of RAM images
generated by k-th source domain images. All of the decoders in Drec share the
same model parameters but have different batch normalization layers [20]. Since
distribution information of multi-source domains is quite different, using differ-
ent batch normalization layers in different domains can better preserve domain
intrinsic features for image restoration. The forward propagation of the image
restoration module on source domain k are as follows:

x̂k
i = Dk

rec(E(xn→k
i,λ )), (10)

where E is the encoder in our segmentation model; x̂k
i is the recovering image

from xn→k
i,λ . We utilize this image restoration decoder as a regularization of the

segmentation encoder E. We show detailed information of our image restoration
module in Fig. 1 (b).

To train the image restoration module, we employ L2 distance as recovering
loss to optimize Drec and E. The recovering loss on k-th source domain are:

Lk
rec =

1

NHWC

N−1∑
i=0

H−1∑
h=0

W−1∑
w=0

C−1∑
c=0

(
xk
i (h,w, c)− x̂k

i (h,w, c)
)2

, (11)
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where N represents the number of samples from domain K; H,W,C are width,
height and channel of the image.

Overall, we can formulate our whole framework as a multi-task learning
paradigm. The total training loss are as follows:

Ltotal =
1

K

K∑
k=1

(
λ1Lk

seg + λ2Ln→k
seg + λ3Lk

rec + λ4Lk
consist

)
, (12)

where K represents the number of source domains; λ1, λ2, λ3, and λ4 are hyper-
parameters to balance the weights of basic segmentation loss, consistency loss,
and image restoration loss respectively.

4 Experiments

4.1 Datasets

We evaluate our method on two public DG medical image segmentation datasets
as popular used in [26,38,25]: Fundus [38] and Prostate [26]. The Fundus
dataset contains retinal fundus images from 4 different medical centers for optic
cup and disc segmentation. Each domain has been split into training and testing
sets. For pre-processing, we follow the prior literature [38] and center-crop disc
regions with a 800 × 800 bounding-box for all of images in Fundus dataset.
After that, we randomly resize and crop a 256 × 256 region on each cropped
images as network input. The Prostate dataset collected T2-weighted MRI
prostate images from 6 different data sources for prostate segmentation. All of
the images have been cropped to 3D prostate region and 2D slices in axial plane
have been resized to 384× 384. For model training, we feed 2D slices of prostate
images into our model. We normalize the data individually to [-1, 1] in intensity
values on both datasets.

4.2 Implementation Details

We employ a UNet-based [33] encoder-decoder structure as our segmentation
model. The DISR decoder is similar to our segmentation decoder by replacing
batch normalization layers with DSBN layers. We implement our experiment
with the PyTorch framework on 1 Nvidia RTX 2080Ti GPU with 11 GB mem-
ory. We train our model for 400 epochs on Fundus dataset and 200 epochs on
Prostate dataset. For each dataset, we set 8 as training batch size. We also
employ the Adam optimizer with an initial learning rate of 0.001 to optimize
our model. To stabilize the training process, the learning rate is decayed by the
polynomial rule. Last but not least, we set λ1, λ2, λ3, and λ4 as 1, 1, 0.1 and
0.5 empirically in Eq. (12).

Since the Fundus dataset has already split each domain into training and
testing sets, we train our model on training sets of source domains and evaluate
on testing sets of target domains. During testing, we first resize 800 × 800 test



10 Zhou et al.

images to size of 256×256 and get 256×256 segmentation masks. We then resize
segmentation masks to 800× 800 and compute evaluation metrics on them. For
Prostate dataset, we directly train segmentation model on source domains and
test on target domains. Since original images of Prostate dataset are all 3D
volumes, we first get 2D predictions and concatenate all 2D predictions of each
3D sample, then compute evaluation metrics on 3D predictions. When testing
on Prostate dataset, we also skip those 2D slices that not contain any prostate
region. All of implementations on datasets follow previous methods [26,38]. For
evaluation, we adopt commonly-used metric of Dice coefficient (Dice) and Aver-
age Surface Distance (ASD) to quantitatively evaluate the segmentation results
of whole region and the surface shape respectively. Higher Dice coefficient rep-
resents better performance and ASD is the opposite. To avoid randomness, we
repeat our experiments for 3 times and report the average performance.

4.3 Comparison with Other DG methods

Experiment setting. In our experiments, we follow the practice in prior liter-
ature of domain generalization and employ the leave-one-domain-out strategy,
i.e., training on K source domains and test on the left one target domain (total
K +1 domains). So that, for Fundus and Prostate datasets, we have four and
six distinguished tasks, respectively.

We choose five recent state-of-the-art domain generalization methods to com-
pare with ours and reproduce their results. First of all, the JiGen [3] is an
effective self-supervised based DG methods for model regularization by solv-
ing jigsaw puzzles. The BigAug [43] is an augmentateion based DG method.
SAML [26] and FedDG [25] are two meta-learning based generalizable medical
image segmentation methods. Finally, the DoFE [38] is a domain-invariant fea-
ture representation learning approach. We further train a vanilla segmentation
model by simply aggregating all source domain images as our baseline model.

In Tables 1 and 2, we show Dice coefficient and ASD results of different
domains in Fundus dataset. All of the methods successfully outperform our
baseline method except BigAug [43] (Dice coefficient 85.49% vs. 85.63%; ASD
14.18 voxel vs. 13.98 voxel). We assume that this is because BigAug [43] was
first designed to augment grey-scale medical images (e.g., CT, MRI, etc.) for
domain generalization segmentation tasks. Images in Fundus dataset are all
RGB images which have quite different image properties compared with other
medical images. So that the generalization performance of BigAug [43] could
be degraded. Other methods gain improvements above baseline more or less
and prove that different regularization and generalization strategies can help
the model to learn more robust feature representation. Compared with these
methods, we achieve higher average Dice coefficient and better average ASD
on Fundus dataset. This thanks to our RAM and DSIR module. The RAM
helps to diversify our source domain images to alleviate overfitting. Also, the
image restoration tasks can regularize our model to learn more robust feature
representation. Last but not least, we adopt a semantic consistency training
policy to resist to domain shift. All of these key components contribute to success
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Table 1. Dice coefficient of different methods on Fundus segmentation task (%). We
mark the top results in bold.

Task Optic Cup/Disc Segmentation
Avg.

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4

JiGen [3] 82.45/95.03 77.05/87.25 87.01/94.94 80.88/91.34 86.99
BigAug [43] 77.68/93.32 75.56/87.54 83.33/92.68 81.63/92.20 85.49
SAML [26] 83.72/95.03 77.68/87.57 84.20/94.49 82.08/92.78 87.19
FedDG [25] 81.72/95.62 77.87/88.71 83.96/94.83 81.90/93.37 87.25
DoFE [38] 84.17/94.96 81.03/89.29 86.54/91.67 87.28/93.04 88.50

Baseline 81.44/95.52 77.20/87.96 85.11/94.56 72.30/90.97 85.63
Ours 85.48/95.75 78.82/89.43 87.44/94.67 85.84/94.10 88.94

Baseline               JiGen BigAug SAML               FedDG DoFE Ours

Fig. 3. Visualization on segmentation results of different methods on Fundus (top
two rows) and Prostate datasets (bottom two rows). The red contours indicate the
boundaries of ground truths while the green and blue contours are predictions.

of our method on Fundus dataset. Compared with baseline, our method achieves
consistent improvements over baseline across all unseen domain settings, with
the average performance increase of 3.31% in Dice coefficient and 3.66 voxel
average improvement in ASD.

To further indicate effectiveness of our method, we provide experiment results
on Prostate dataset in Tables 3 and 4. For prostate segmentation task, all
of the comparison DG method outperform baseline. Our method also obtains
the highest Dice coefficient and ASD across most unseen domains. The average
Dice coefficient 88.08% and ASD 1.37 voxel are the best compared with other
DG methods. Specially, compared with baseline, the increase in overall Dice
coefficient of our method is 4.04% and ASD decreases 1.55 voxel. In Fig. 3,
we show the visualization results of two sample images from target domains of
Fundus and Prostate datasets. It is explicit that our method can accurately
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Table 2. Average Surface Distance (ASD) of different methods on Fundus segmen-
tation task (voxel). We mark the top results in bold.

Task Optic Cup/Disc Segmentation
Avg.

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4

JiGen [3] 18.57/9.43 17.29/19.53 9.15/6.99 15.84/12.14 13.62
BigAug [43] 22.61/12.53 17.95/17.64 11.48/10.33 11.57/9.36 14.18
SAML [26] 17.08/9.01 16.72/18.63 10.87/7.87 16.28/8.64 13.14
FedDG [25] 18.57/7.69 15.87/16.93 11.09/7.28 10.23/7.51 11.90
DoFE [38] 16.07/7.18 13.44/17.06 10.12/10.75 8.14/7.29 11.26

Baseline 18.16/8.99 15.67/17.95 11.96/9.42 20.03/9.64 13.98
Ours 16.05/7.12 14.01/13.86 9.02/7.11 8.29/7.06 10.32

Table 3. Dice coefficient of different methods on Prostate segmentation task (%).
We mark the top results in bold.

Task Prostate Segmentation
Avg.

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6

JiGen [3] 85.45 89.26 85.92 87.45 86.18 83.08 86.22
BigAug [43] 85.73 89.34 84.49 88.02 81.95 87.63 86.19
SAML [26] 86.35 90.18 85.03 88.20 86.97 87.69 87.40
FedDG [25] 86.43 89.59 85.30 88.95 85.93 87.39 87.27
DoFE [38] 89.64 87.56 85.08 89.06 86.15 87.03 87.42

Baseline 85.30 87.56 82.33 87.37 80.49 81.40 84.04
Ours 87.56 90.20 86.92 88.72 87.17 87.93 88.08

segment the objective structure of unseen domain images and the boundary of
the structure is smoother while other methods may fail to do so.

4.4 Analysis of Our Method

We conduct extensive ablation studies on our method. Firstly,s we investigate
the effectiveness of our random amplitude mixup for data augmentation and
DSIR module on Fundus and Prostate dataset. We need to note that, with-
out RAM, our DISR module cannot be implemented. Since our RAM module is
utilized to conduct style augmentation and image corruption at the same time,
here we discuss the style augmentation and image corruption separately. The
experimental results are illustrated in Tables 5 and 6. The RAMAug indicates
that the RAM style augmentation is employed in our method and DSIR repre-
sents the domain-specific image restoration module with image corruption. The
method without these two components (i.e., the first row in Tables 5 and 6)
is the baseline method, which is the same with the baseline results in Tables 1
and 3. From Tables 5 and 6, we observe that each component plays a signifi-
cant role in our method. By adding RAM style augmentation in our method,
the overall segmentation performance on fundus segmentation task can increase
2.12% in Dice coefficient and on prostate segmentation tasks the improvements
of Dice coefficient is 3.23%. Besides, when equipping with domain-specific image
restoration module, our model can gain 1.58% and 1.03% overall improvements
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Table 4. Average Surface Distance (ASD) of different methods on Prostate segmen-
tation task (voxel). We mark the top results in bold.

Task Prostate Segmentation
Avg.

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6

JiGen [3] 1.11 1.81 2.61 1.66 1.71 2.43 1.89
BigAug [43] 1.13 1.78 4.01 1.25 1.92 1.89 2.00
SAML [26] 1.09 1.54 2.52 1.41 2.01 1.77 1.72
FedDG [25] 1.30 1.67 2.36 1.37 2.19 1.94 1.81
DoFE [38] 0.92 1.49 2.74 1.46 1.89 1.53 1.68

Baseline 1.22 1.95 4.68 1.51 3.95 4.23 2.92
Ours 1.04 0.81 2.23 1.16 1.81 1.15 1.37
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Fig. 4. Ablation study of our semantic consistency training policy. Green and blue bars
represent average Dice coefficient of our complete method and the method without
consistency loss respectively. We show results on different domains from Fundus and
Prostate datasets.

in Dice coefficient on Fundus and Prostate datasets respectively. Based on
these results, we justify that, our RAM and DSIR module can help regularize
our segmentation model and improve the generalization ability. Last rows in Ta-
bles 5 and 6 display the results by adding all of the components in our method,
which are the same as results of our method in Tables 1 and 3.

As aforementioned, during the training process, we employed a semantic con-
sistency loss as a supervision signal to make the model resistant to domain shift.
In Fig. 4, we investigate the effectiveness of our semantic consistency loss on
Fundus and Prostate datasets. We observe that without the semantic consis-
tency loss, all of the results degenerate on both datasets. This indicates that the
semantic consistency loss do help improve the generalization performance of our
model which means our model can be more robust to domain shift.

Moreover, we experiment different types of consistency loss on Fundus
dataset. In Table 7, we show the results of different kinds of consistency loss.
Except for KL-divergence (KL-Div), we also employ mean squared error (MSE)
and Jensen–Shannon divergence (JS-Div). We observe that using different con-
sistency loss will not affect the overall results of our method much, which means
our method is robust to different types of consistency loss.
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Table 5. Ablation Study of key components in our method on Fundus Segmentation
Task (%). We mark the top results in bold.

Task Optic Cup/Disc Segmentation
Avg.

RAMAug DSIR Domain 1 Domain 2 Domain 3 Domain 4

- - 81.44/95.52 77.20/87.96 85.11/94.56 72.30/90.97 85.63
✓ - 83.06/94.86 78.09/89.04 86.73/95.01 82.28/92.89 87.75
- ✓ 83.76/95.31 77.43/88.07 85.84/94.19 81.58/91.48 87.21
✓ ✓ 85.48/95.75 78.82/89.43 87.44/94.67 85.84/94.10 88.94

Table 6. Ablation Study of key components in our method on Prostate Segmentation
Task (%). We mark the top results in bold.

Task Prostate Segmentation
Avg.

RAMAug DSIR Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6

- - 85.30 87.56 82.33 87.37 80.49 81.40 84.04
✓ - 87.28 89.94 85.45 87.86 86.17 86.94 87.27
- ✓ 86.57 88.04 83.19 87.42 82.08 83.14 85.07
✓ ✓ 87.56 90.20 86.92 88.72 87.17 87.93 88.08

Table 7. Dice coefficient of different consistency loss on Fundus segmentation task
(%). We mark the top results in bold.

Task Optic Cup/Disc Segmentation
Avg.

Unseen Site Domain 1 Domain 2 Domain 3 Domain 4

MSE 85.45/95.13 77.96/89.14 86.73/94.76 85.93/94.16 88.65
JS-Div 85.04/94.91 78.02/88.27 86.32/93.91 85.14/93.87 88.19
KL-Div 85.48/95.75 78.82/89.43 87.44/94.67 85.84/94.10 88.94

5 Conclusion

We present a novel generalizable medical image segmentation method for fundus
and prostate image segmentation. To combat with overfitting in DG segmenta-
tion, we introduce random amplitude mixup (RAM) module to synthesize images
with different domain style. We utilize the synthetic images as data augmentation
to train the segmentation model and propose a self-supervised domain-specific
image restoration (DSIR) module to recover the original images from synthetic
images. Moreover, to further make the model resistant to domain shift and learn
more domain invariant feature representation, we employ a semantic consistency
loss in our training process. Our experimental results and ablation analysis in-
dicate that all of the proposed components can help regularize the model and
improve generalization performance on unseen target domains.
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