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Abstract. Medical image segmentation under federated learning (FL)
is a promising direction by allowing multiple clinical sites to collabo-
ratively learn a global model without centralizing datasets. However,
using a single model to adapt to various data distributions from differ-
ent sites is extremely challenging. Personalized FL tackles this issue
by only utilizing partial model parameters shared from global server,
while keeping the rest to adapt to its own data distribution in the lo-
cal training of each site. However, most existing methods concentrate
on the partial parameter splitting, while do not consider the inter-site
in-consistencies during the local training, which in fact can facilitate the
knowledge communication over sites to benefit the model learning for
improving the local accuracy. In this paper, we propose a personalized
federated framework with Local Calibration (LC-Fed), to leverage the
inter-site in-consistencies in both feature- and prediction- levels to boost
the segmentation. Concretely, as each local site has its alternative atten-
tion on the various features, we first design the contrastive site embed-
ding coupled with channel selection operation to calibrate the encoded
features. Moreover, we propose to exploit the knowledge of prediction-
level in-consistency to guide the personalized modeling on the ambigu-
ous regions, e.g., anatomical boundaries. It is achieved by computing
a disagreement-aware map to calibrate the prediction. Effectiveness of
our method has been verified on three medical image segmentation tasks
with different modalities, where our method consistently shows superior
performance to the state-of-the-art personalized FL methods. Code is
available at https://github.com/jcwang123/FedLC.

1 Introduction

As a data-driven approach, deep learning model heavily relies on the data quan-
tities to prompt its efficacy. Collaborative training using the data across multiple
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Fig. 1: Federated frameworks. Dash lines with arrow denote the parameter com-
munication. (a) FedAVG, the classical federated framework that designs the
global model averaging all parameters from local sites. (b) FedRep, the latest
personalized framework under federation, which splits the model into represen-
tation part and head part. The former is updated through global averaging while
the latter is trained only using local data. (c) Our method LC-Fed, that explores
inter-site in-consistencies to calibrate the local learning from both feature- and
prediction- levels.

medical sites is increasingly essential for yielding the maximal potential of deep
models for medical image segmentation [38, 9, 28]. However, it is generally in-
feasible to accomplish the data communication over multiple sites owing to the
privacy protection for patients [15]. Federated Learning (FL) [16] has recently
received significant research interests from the community [24, 27, 15], as it en-
ables the different sites to jointly train a global model with no need to share
and centralize the data. Instead, each local client (e.g., medical site) trains the
model from their own data, and the coordinating is achieved by aggregating the
model parameters from the local clients to a global server and broadcasting the
updated parameters to them. See a typical and standard federate paradigm in
Fig. 1(a), a single global model is generated in the server by averaging the model
parameters from the local clients.

Although FL has recently achieved the promising progress in medical image
segmentation [29, 19, 18, 21], most existing works fall into the standard federate
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learning paradigm, i.e., concentrating on learning a single global model with more
robustness and generalization on clients via balanced average weight [19], image
simulation [18], image style transformation [21]. However, the single global model
can not perform well on all local sites due to the data heterogeneity, where the
underlying data sample distribution of local sites could be substantially different
from each other [10, 33]. The potential model degradation is more severe in the
medical scenario, where the difference of scanners, imaging protocols, patient
populations bring the high diversity of data distribution. In this work, we focus
on improving the performance of each local client, by exploiting the data of all
clients but learning a personalized model for each client, which is highly desired
for practical usage yet still underexplored in medical image segmentation tasks.

Personalized FL emerges and establishes a promising approach for improving
the quality of each local client model [36, 37, 6, 1, 20, 7]. Among them, the vanilla
solution is delivering the global model to local clients back and using their own
data to do the model finetuning [36, 37]. However, these methods adjust the full-
dimensional parameters, which may destroy the common representation gained
by FL and negatively affect the performance. Recent advances reduce the com-
munication part of local parameters, where only the partial parameters will be
sent to the global server for updating (global part) and others (personalized part)
are maintained in the local site. The personalized part can be concluded into two
streams. One is at feature-level such as the high-frequency components of con-
volutional parameters [6] or Batch Normalization layers [1, 20]. The other one is
at the prediction level, i.e., the prediction head layers [7] (as shown in Fig. 1(b)).
However, the two streams still only consider the intra-site information during
local training, while they have ignored to exploit the inter-site inconsistency.
The valuable knowledge from other sites shall be inevitably lost. Additionally,
most existing literature on personalized FL tackles the classification problem,
in which the classification models contain much fewer and simpler layers than
the segmentation models so that whether they are useful and how to effectively
form the personalization for segmentation tasks are still under-explored so far.

In this paper, we propose a personalized federated segmentation framework
that is able to unify the personalized feature representation and target prediction
through Local Calibration, so-called LC-Fed as shown in Fig. 1(c). The feature-
and prediction-level personalization is respectively achieved by the Personalized
Channel Selection (PCS) module and the Head Calibration (HC) module.

– PCS can calibrate the encoded features after standard encoding layers de-
pending on our proposed contrastive site embedding, which is unique for each
site and inter-site contrastive. Specifically, given a site embedding and the
encoded features, as each site pays its personalized attention to the vari-
ous channels, the PCS module augments the site embedding and yields an
attention channel factor to calibrate the features.

– HC is designed with the insight that, the inter-site in-consistency at prediction-
level always implies the most ambiguous areas which demand more concen-
tration in model training. In order to take advantage of this prior knowledge,
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HC gathers prediction heads from other sites and calculates a disagreement-
aware map to calibrate its own prediction.

We conduct comparison experiments with several personalized FL methods
on three typical medical image segmentation tasks, which are prostate segmen-
tation on T2-weighted MR images (PMR), polyp segmentation of endoscopic
images (EndoPolyp), and optic disc/cup segmentation of retinal fundus images
(RIF). We evaluate the local accuracy of all federated sites and calculate the
averaged score to assess the performance. Experimental results demonstrate the
effectiveness of the proposed method, consistently achieving better segmentation
results than the state-of-the-arts.

2 Related Work

2.1 Medical Image Segmentation

Medical image segmentation aims to predict a certain region from an input im-
age, such as organ at risk from MR image [35, 38], optic disc and cup from retinal
fundus image [34, 28], and polyp from endoscopic image [11, 40, 9]. It contributes
a lot to the improvement of clinical efficiency, treatment effect, and quality con-
trol. A large proportion of current research focuses on architecture adjustment to
improve representation ability, by attention-like mechanism [9], multi-scale fea-
ture fusion [11], hyper-architecture [28] and so on. However, learning powerful
representation requires a large amount of data in general, or the performance will
meet a serious drop. To increase the data amount, collecting data over different
sites is mostly necessary as each institution has limited patients especially for
some rare diseases, while the data communication is sometimes hard to come true
due to privacy protection of patients’ information. Hence, instead of improving
the architectures, we pay attention to building a federated segmentation frame-
work with no need to centralize data from different sites. Also, we make efforts
to personalize the federation so that local accuracy can be extensively improved
that benefits the local application.

2.2 Federated Learning

With the consideration of increasing attention on privacy legislation, federated
learning is catching more and more eyes in recent years, particularly in the med-
ical area, which requires no need to centralize data over different sites [31, 19, 27,
15]. The federated learning paradigm is meant to protect patients’ privacy and
can even achieve competitive performance compared to that of models trained on
centralized data [15]. Its workflow can be realised with several different topolo-
gies, i.e. centralized server and decentralized sever, but the goal remains the
same that is to aggregate knowledge from different sites without data commu-
nication [27]. For example, the most classical one, FedAVG [24], proposes to
average parameters from all local sites at the centralized server. In the medical
area, Sheller et al. [29] firstly conducts a pilot study to investigate the usefulness
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of FL in multi-site brain tumor segmentation and recent studies aim to tackle
the quantity imbalance over sites [18, 39] or enhance the generalization ability
during federated setting [21] In other areas, numerous methods have been intro-
duced to solve the various FL challenges [14], such as reducing communication
cost [24, 26], privacy protection [41]. However, in whatever areas, when applied
for practice, the goal of each participated host is to obtain an accurate model
for its local data, while using a single global model to adapt to different data
distribution is extremely hard. With the motivation to boost the local accuracy
as much as possible and ignore the probable performance drop on the unseen
domain, we propose to personalize the federated medical image segmentation,
in which each site has its own parameters and simultaneously catch knowledge
from other sites.

2.3 Personalized Federated Learning

The data heterogeneity, differences in data distribution, makes it hard to learn
a single global model that can be applied to all sites. To cope with this issue,
personalized federated learning is introduced to personalize the global model
uniquely for each participating client in the setup [17]. Some work treats per-
sonalized federated learning as a multi-task learning problem where each site’s
learning process is a unique task [8, 23]. Other approaches divide the network
architecture into shared and personalized layers, where the shared layers are ag-
gregated by FedAVG at the centralized server and the personalized layers are
not. The shared layers could be batch normalization layers [20], high-frequency
convolution layers [6] or prediction head layers [7]. However, these setups are all
designed and evaluated for classification tasks while the segmentation models
have more complex architecture so the effectiveness has not been verified. Addi-
tionally, these methods have not adequately investigated the inter-site disagree-
ment at both feature- and prediction-level, which is beneficial to concurrently
learn the personalization and communication. To fill this gap, our work intro-
duces a novel personalized FL paradigm considering the inter-site information
in the local training and demonstrates the promising performance on medical
image segmentation task.

3 Method

An overall of our personalized federated segmentation framework of LC-Fed is
visualized in Fig. 2. It takes the first attempt to enhance the inter-site communi-
cation by exploring inconsistencies between sites in the local training. We start
with introducing the overview of our personalized federation paradigm with local
calibration, then describe the two modules in detail at the rest parts.

3.1 Locally Calibrated Federation Paradigm

Denote (X ,Y) as the joint image and label space with K sites. For the k-th
site, the data samples establish its own data distribution (xk,yk) ∼ Dk, where
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Fig. 2: Overview of our personalized federated learning framework with local
calibration, LC-Fed. It locally calibrates the features and predictions using the
personalized channel selection (PCS) module and head calibration (HC) module.
In PCS, we propose an unique and contrastive site embedding for each site,
through which we calculate a channel selection map to calibrate the feature
representation. In HC, we gather all sites’ prediction heads and measure their in-
consistency as the prediction-level disagreement to calibrate segmentation map.

xk ∈ Xk and yk ∈ Yk. Instead learning a single shared model, our LC-Fed aims at
learning K unique models stylized for K local sites {Mi}Ki=1 : X → Y using the
whole data space. The models hold the same network architecture, containing
two components: a base body for representation learning Mr with parameter
θ, a prediction head to map the representation to produce predicted values for
each classMh with parameter β. Specifically, an U-shape network is exploited as
the base bodyMr, consisting of five encoding-decoding stages. Our feature-level
calibration is achieved by injecting the contrastive site embedding ξk into the
final encoding stage in the local training, to incorporate the stylized information
of each local site into the representations from coarse to fine. Our prediction-
level calibration is established within the prediction head Mh, which contains
two cascaded fully-connected layers, to produce a coarse map and a calibrated
segmentation map, respectively.

To learn K unique local models, our LC-Fed alternates between the local
site update and global server update on each communication round. At each
federated round t, all local sites receive the same parameters θt−1

g for the base
body part from the global server at the last round, while the parameters of the
prediction head are initialized from the local training itself, i.e., βt−1

k in k-th
local site. Each site will update the model for its optimal solution using its local
data (Xk,Yk) and the stylized site embedding ξk as

θtk, β
t
k ← GRD(θt−1

g , βt−1
k |Xk,Yk, ξk), (1)

where GRD(.) represents the local gradient-based update. After the update fin-
ished in all local sites, the global server then collects the parameters for the rep-
resentation portion θt to update the global model. We employ the most popular
federated averaging algorithm (FedAvg) [24], which performs an average oper-

ation on the local parameters for global model updating, i.e., θtg = 1
K

∑K
i=1 θ

t
i .

Till now, the current federated round finishes and the global server shall deliver
the updated representation θtg to local sites to turn to the next round.
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3.2 Personalized Channel Selection via Contrastive Site Embedding

The strong representation ability of convolutional layers can be owing to various
feature channels to some degree, where each channel represents a unique per-
spective for the target learning. Considering the underlying distribution variance
of image data between different local sites, it is desirable for each site to pay its
personal attention to alternative channels. With this motivation, we propose a
stylized site embedding, coupled with the designed channel selection operation,
to calibrate the local sites to pursue their own feature representation modeling
with different directions. Moreover, the simple site embedding design invokes the
inter-site communication during the local feature learning, which prompts the
inter-site inconsistency in the feature level. It is achieved by incorporating the
contrastive objective on the site embeddings to incite them to be dissimilar.

Concretely, in the k-th local site, the encoded feature of a image data at

the l-th encoding stage is denoted as f l
k ∈ RC×H

2l
×W

2l , where C is the channel
number and (H,W ) are the image size and l = 5 in this work. To simplify
the communication cost, we initialize the site embedding as a one-hot vector,
with the length set as the site number K: ξk ∈ RK . The k-th value is 1 and
others are 0. We further integrate the textural semantics from the feature in the
current stage f l

k to enhance the site embedding. To achieve this, we first extend
the length of site embedding to keep balance with the textural semantics for
better training stability, i.e., the updated one ξ∗k ∈ RC . We employ two fully-
connected layers, with instance normalization and Relu activation in between,
to accomplish the extension. We then perform the global averaging on each
channel of the feature f l

k, to generate a channel descriptor that can represent
the abundant textural information and save the computational cost. The feature
concatenation on channel descriptor and ξ∗k, followed by a full-connection and a
gating sigmoid activation is used for augmenting site embedding by the textural
knowledge. The augmented site embedding ξ̂k can serve as the attentive factor for
selecting feature channels. We use the residual design for reducing the negative
effects caused by wrong selection: f

′

k = fk + fk ⊗ ξ̂k, where ⊗ denotes the pixel-

wise multiplication. f
′

k is then fed into the decoder followed by the prediction
head to generate the segmentation map. As the initially injected site embeddings
ξk are mutually independent and different among local clients, they can generate
different augmented versions to calibrate the feature representation learning to
adapt to their own data distributions and not affect others.

Site-Contrast Regularization. To prompt the inter-site inconsistency in the
current feature-level calibration, we present the site-contrast regularization to
encourage a larger distance between different site embeddings. Taking the k-
th site’s regularization as an example, we sequentially couple fk with each site
embedding in {ξi}Ki=1, and feed them into the generator Fcs one by one to obtain

a set of augmented version {ξ̂i}Ki=1, which are used for channel selection. It is
noteworthy that the site embeddings from other sites are one-hot vectors so
that the calculation requires no extra transmissions and the privacy protection
is guaranteed. We maximize distance between k-th augmented site embedding
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Fig. 3: Illustration of head calibration. It starts with calculating an in-consistency
map, then encourages the map to concentrate on ambiguous boundaries, and
finally utilizes a spatial attending mechanism to empower representations.

ξ̂k and others as:

Lcon = − 1

K − 1

∑K

i=1
|ξ̂k − StopGradient(ξ̂i)|, s.t. i ̸= k. (2)

Note that we stop the gradient when augmenting the site embeddings designed
for other sites. To this end, the inter-site feature learning can be facilitated
towards different directions by pushing apart the site embeddings.

3.3 Disagreement-aware Head Calibration

Previous studies share the base body with the global server while storing the
prediction head locally. The personalized head is verified to be beneficial for the
performance improvement of each site. In fact, they can be wisely utilized to
estimate the inconsistency in prediction level across different sites, and these
disagreement regions generally imply the most ambiguous areas that demand
more concentration in model training. For example, the ambiguous boundary of
anatomy in Fig. 3. In this regard, we propose to impose disagreement-aware cal-
ibration to incorporate the knowledge of prediction-level inter-site inconsistency,
which can guide the model optimization focusing on these challenging regions.

We first extract the inter-site prediction inconsistencies. Considering that the
prediction head partMh is a simple full-connection layer with few parameters,
we collect all sites’ heads in each local site, that are {Mh

i }Ki=1. For the k-th site,

we input the feature f̂k extracted from its base body, into these prediction heads,
and result in a set of segmentation maps {Si}Ki=1, where each Sk ∈ RN×H×W and
N is the number of classes (i.e., one for prostate segmentation and two for optic
disc/cup segmentation). Then we construct the disagreement-aware calibration
map Uk by calculating the standard deviation along each class channel:

Uc
k =

√
1

N − 1

∑K

i=1
(Sck − Sci )2, (3)

where c denotes the class channel. The calibration map keeps the same size as the
segmentation map and the pixel value can indicate the disagreement between the
other sites and the current local site. The larger value suggests more difference
that desires more attention in model optimization.
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We do not utilize the map directly, instead, we further emphasize the most
disagreement regions which can better benefit the model training (see experi-
ments in Sec. 4.4). To do this, we first utilize the Non-Maximum Suppression
(NMS) operator Fnms to identify such regions. Given each element ui in Ui, it is
only kept when its value is the largest in the surrounding δ×δ values, otherwise,
the value is set as 0, where δ is set as 11 by default, We then employ a Gaussian
filter FGauss to enlarge the attention area, which is also beneficial for stabilizing
the training process [13]. The updated calibration map with the same size as
the original one is obtained. We finally perform a pixel-wise multiplication be-
tween the updated calibration map and the representation feature f̂k, enhanced
by a residual design, to incorporate the prediction-level inter-site inconsistency
knowledge into the model training: f̂∗

i = FGauss(Fnms(Ui)) ∗ f̂i + f̂i. The re-
fined feature is fed into another full-connection layer with Sigmoid activation to
predict the segmentation map S∗k .

3.4 Overall Objective in Local Training

Our model predicts two segmentation maps, i.e., the coarse map Sk and cali-
brated map S∗k in each local site k. We utilize Dice loss to minimize their differ-

ence between the ground-truth segmentation map S̃k, as Lcoarse = 1−2∗ |Sk∗S̃k|
|Sk|+|S̃k|

and Lcalib = 1 − 2 ∗ |S∗
k∗S̃k|

|S∗
k |+|S̃k|

. Apart from the segmentation loss, the site-

contrast regularization enforces our model to yield different site embeddings.
To this end, the overall joint loss for each local site is defined as: Ljoint =
Lcoarse + Lcalib + λLcon, where λ is used to balance the regularization and seg-
mentation. As too large regularization leads to meaningless selection maps, we
set it to 0.1 empirically.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets: Extensive experiments are conducted to verify the effectiveness of
our proposed framework on various medical modalities, including the prostate
segmentation from T2-weighted MR images, the polyp segmentation from endo-
scopic images, and the optic disc/cup segmentation from retinal fundus images.

– Prostate MR (PMR) images are collected and labeled from six different
public data sources for prostate segmentation [22]. All of them have been re-
sampled to the same spacing and center-cropped with the size of 384× 384.
We follow the site division [21] to divide them into six sites, each of which
contains {261, 384, 158, 468, 421, 175} slices as well as the labels.

– Endoscopic polyp (EndoPolyp) images are collected and labeled from four
different centers [4, 30, 3, 12] for polyp segmentation. All the images and an-
notations are resized to 384 × 384 following the general setting. We follow
the latest work [5] to divide the sites into four parts, each of which contains
{1000, 380, 196, 612} images and labels.



10 Wang and Jin et al.

– Retinal fundus (RIF) images are collected and labeled from four different
clinical centers for optic disc and cup segmentation [2, 25, 32]. We pre-process
the data following general setting [21], where a 800× 800 disc region in each
image is center-cropped uniformly and then resized to 384× 384. We follow
the site division [21] to split them into four sites, each of which contains
{101, 159, 400, 400} images as well as the labels.

We employ the standard 80% − 20% train-test split widely used in medical
vision field for PMR and RIF. The train-test split protocol is slightly different
in EndoPolyp where we follow the standard split in the latest work for polyp
segmentation [5].
Metrics:We quantitatively evaluate each local site’s optimized model on its test
data by two commonly-used metrics, including a region-based metric, IoU, and
a boundary-based metric, ASSD. The larger IoU and smaller ASSD represent
the better segmentation results. The averaged scores of all local sites are used
for the eventual assessment.

4.2 Implementation Details

In the federated learning process, all sites adopt the same hyper-parameters. δ
in the NMS operator and Gauss filter size are set to 11, and λ is set to 0.1,
empirically. The Adam optimizer with an initial learning rate of 0.0001 is used
to optimize the parameters and the batch size is set as six in all experiments.
Totally, we train the network with 200 rounds as the global model has converged
stably and in each federated round, each local site’s network is trained with one
epoch. The whole training process is achieved on the PyTorch platform using
one NVIDIA Titan X GPU.

4.3 Comparison with State-of-the-Arts

Experimental setting. We compare our methods to several federated frame-
works including the conventional federation, FedAVG [24], and recent state-of-
the-art personalized federation methods, i.e., FedAVG with fine-tuning (FT) [36],
PRR-FL [6], FedBN [20], and FedRep [7]. For implementation, as these methods
are originally designed for the image classification task, we try our best to keep
their design principle and adapt them to our image segmentation task. Specifi-
cally, we personalize all model parameters in FT; the high-frequency components
of convolutional layer parameters in PRR-FL; all the BN layers in FedBN; and
the final full-connection layer in FedRep. We also compare with the baseline
setting (Local Train) where each local model is trained using its own data.
Quantitative Comparison. Table 1 presents the quantitative results of the
PMR dataset. It could be seen that with participating in the federated learning
paradigm, the IoU score of Site F largely increases. The underlying reason is
due to the patient distribution variance, some institutions like Site F have little
data to train a powerful deep model if only using their own data. Thanks to
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Table 1: Quantitative results on PMR dataset. “FT” means the FedAVG with
fine-tuning and ∗ denotes the personalized federation.

IoU ↑ ASSD ↓
Sites A B C D E F Avg. A B C D E F Avg.

Local Train 77.01 74.15 77.80 76.73 79.67 45.39 71.79 0.60 0.93 0.53 0.84 0.86 12.40 2.69

FedAVG ([24]) 79.74 80.89 84.91 82.59 83.69 73.27 80.85 0.47 0.52 0.32 0.59 0.36 2.02 0.71
FT∗ ([36]) 81.66 81.51 83.04 80.93 82.09 72.76 80.33 0.41 0.59 0.36 0.68 0.39 1.00 0.57

PRR-FL∗ ([6]) 75.10 68.67 79.67 79.71 69.99 51.05 70.70 0.79 1.60 0.46 0.79 1.34 12.69 2.95
FedBN∗ ([20]) 78.91 52.30 77.15 61.75 77.58 64.14 68.64 0.54 19.95 0.49 13.80 0.60 1.67 6.17
FedRep∗ ([7]) 81.09 81.41 84.70 83.46 82.31 73.81 81.13 0.41 0.49 0.32 0.58 0.39 0.64 0.47

LC-Fed (Ours) 85.91 82.27 86.28 85.31 86.08 79.47 84.22 0.35 0.48 0.25 0.49 0.32 0.75 0.44

Table 2: Quantitative results on EndoPolyp dataset. “FT” means the FedAVG
with fine-tuning and ∗ denotes the personalized federation.

IoU ↑ ASSD ↓
Sites A B C D Avg. A B C D Avg.

Local Train 48.27 55.26 38.37 62.74 51.16 27.89 21.14 36.66 22.62 27.08
FedAVG ([24]) 64.56 86.76 61.28 65.93 69.63 18.12 2.85 15.33 17.69 13.50

FT∗ ([36]) 65.95 87.45 60.63 69.04 70.77 17.43 2.62 16.42 13.65 12.53
PRR-FL∗ ([6]) 15.29 71.69 43.37 73.39 50.93 116.87 13.18 31.14 13.15 43.58
FedBN∗ ([20]) 51.76 78.23 31.21 60.55 55.44 30.59 15.16 105.40 28.41 44.89
FedRep∗ ([7]) 67.23 88.94 61.17 69.56 71.73 16.36 2.11 18.69 16.77 13.48
LC-Fed (Ours) 69.21 88.51 68.10 76.68 75.63 15.59 2.64 11.60 12.00 10.46

the federation, these institutions obtain a great opportunity to train an employ-
able model by multi-site data collaboration under privacy protection. We can
also see that PRR-FL and FedBN have the interior performance to the basic
version (FedAVG), behind which the possible reason is the training collapse.
Straightforward modifying the parameters of convolution or normalization in
the personalized part will cause mis-matching of the current feature distribution
and desired distribution of convolutional layers. In comparison, exploring shared
representation and personalizing the prediction layers (FedRep) are slightly use-
ful for the local accuracy improvement. By investigating the in-consistencies at
feature- and prediction levels, our method consistently achieves superior perfor-
mance over FedRep on all metrics, especially 3.1% increase on averaged IoU.

Results on EndoPolyp further support the advancement of our method. Seg-
mentation on this dataset is more challenging because images in each local site
only cover a few patients and present limited variance. Federated learning brings
great benefits on this dataset, by leveraging the diverse data from other sites
to enhance model learning. Excitingly, our personalized LC-Fed further attains
large result improvement, surpassing FedRep over around 4% averaged IoU.

As for the RIF dataset, FedAVG shows a close performance compared with
“Local Train”. The reason is that in the RIF dataset, each local site’s data is
enough to train a satisfactory model. Vanilla federated learning provides limited
assistance. Notably, our method still consistently outperforms FedRep across all
the metrics on this dataset. It demonstrates that, even in the situation that most
local sites can provide enough data to train their employable models (IoU ≥
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Table 3: Quantitative results on RIF dataset. “FT” means the FedAVG with
fine-tuning and ∗ denotes the personalized federation.

IoU ↑ ASSD ↓
Sites A B C D Avg. A B C D Avg.

Local Train 82.80 78.55 84.80 85.58 82.93 5.88 5.12 3.72 2.76 4.37
FedAVG ([24]) 84.81 77.88 83.91 84.51 82.77 5.19 5.68 3.99 3.00 4.46

FT∗ ([36]) 85.84 80.21 84.58 85.20 83.96 4.62 4.56 3.82 2.85 3.96
PRR-FL∗ ([6]) 81.24 78.49 83.75 83.19 81.67 7.57 5.09 4.10 3.34 5.02
FedBN∗ ([20]) 84.70 78.01 85.01 85.13 83.21 5.05 5.32 3.65 2.84 4.22
FedRep∗ ([7]) 85.33 79.81 83.95 83.53 83.15 4.84 4.93 3.95 3.14 4.21
LC-Fed (Ours) 86.33 81.91 85.15 86.81 85.05 4.54 4.29 3.62 2.51 3.74

Table 4: Ablation study about two components, PCS and HC. We report the
averaged IoU and ASSD of three public datasets in this table. The first row
without any components denotes the result of FedRep.

PCS HC
PMR EndoPolyp RIF

IoU ↑ ASSD ↓ IoU ↑ ASSD ↓ IoU ↑ ASSD ↓
81.13 0.47 72.56 11.40 83.15 3.88

✓ 82.97 0.44 73.57 11.23 83.47 4.23
✓ 81.65 0.46 72.21 13.10 84.10 3.94

✓ ✓ 84.22 0.44 75.63 10.46 85.05 3.74

80%), our LC-Fed can still yield great efficacy on personalized federation by
considering the inter-site in-consistency.
Visual Comparison. Fig. 4 visually compares the segmentation results on
three datasets produced by our method and other personalized methods. Ap-
parently, without any federated learning process (LT), the target is hard to be
determined in challenging cases (EndoPolyp). Using federation (FT) can boost
the segmentation in most cases while it fails on some samples. The results of
PRR-FL and FedBN show huge fluctuation, demonstrating that personalization
on the normalization layers and high-frequency convolutional parameters is not
stable. FedRep yields stable and better performance while it sometimes includes
the negatives and the determination of boundaries is not precise. In contrast,
our method consistently produces the best segmentation masks.

4.4 Analytical Ablation Studies

Contribution of key components. To prove that the feature- and prediction-
level personalization are both useful to improve the local accuracy, we perform
an ablation study on all datasets and present the results in Table 4. The first row
denotes our baseline, FedRep [7]. Comparing it to the second row, we can see
that when personalizing the feature representation with our PCS module, the IoU
score gains improvement of 1.84%, 1.01%, 0.32% on the three datasets. Shown in
the third row, only using the HC module can achieve better results on PMR and
RIF datasets. It is noteworthy that the improvement of using the HC module
is smaller than that of PCS, since the segmentation maps are relatively similar
without feature calibration, lacking the ability to measure prediction-level in-
consistency. Furthermore, results in the last row from LC-Fed, largely outperform
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Fig. 4: Visualized comparison of the personalized methods on three datasets.
From each dataset, we randomly select two samples from different sites to form
the visualization. (a) Input images from two sites on each dataset; (b-g) Seg-
mentation results by model trained with “Local Train” (LT), FedAVG with fine-
tuning (FT) [24], PRR-FL [6], FedBN [20], FedRep [7], and our method LC-Fed;
(h) Ground truths (denoted as ‘GT’);

others, demonstrating the complementary advantage of both modules. Thanks to
the feature-level calibration, each site’s prediction head adapts to its own feature
space so that the HC module can measure prediction-level in-consistency better
and the disagreement map contributes to the performance increase.

Contrastive site embedding. Previous experiments have verified that the
contrastive site embedding is able to strengthen the local accuracy. To further
prove that the performance improvements come from the contrastive comparison
instead of extra computation, we conduct the experiment where site embeddings
of all local clients are initialized as the same ({ξi = [1, 1, 1...1]}Ki=1) and the site-
contrast regularization is removed. As shown in Figure 5a, the performance un-
expectedly drops significantly on all datasets compared with the baseline. While
using contrastive ξ for each site and adding the site-contrast regularization, our
method outperforms the baseline obviously. It indicates that our PCS module
improves the local accuracy by exploring inter-site contrastive features, rather
than the extra computation.

Site-contrast regularization factor. We further investigate the influence
of the hyper-parameter λ, which is a key factor in the PCS module by con-
trolling the regularization weight in the overall loss. We vary different λ ∈
{−1,−0.1, 0, 0.1, 1} and present results on the PMR dataset in Fig. 5b. It shows
that the site-contrast regularization can help the module produce more accu-
rate segmentation when comparing λ = {0} and λ = {0.1}.In addition, when
using opposite regularization (λ = {−1,−0.1}) to pull site embeddings over dif-
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Fig. 5: Detailed analysis about the PCS module (a-b) and the HC module (c).
The triangles denote the average scores.

ferent sites to be more similar, performances slightly drop as our expectation.
These results demonstrate that repelling site embeddings by our site-contrast
regularization is desired and can benefit the feature-level calibration.
NMS operator. In the HC module, the NMS operator is utilized to identify the
most disagreement regions. Fig. 5c shows the evaluation results of (not) using
the NMS operator on the EndoPolyp dataset. It is seen that the NMS boosts
the IoU score from 74.92% into 75.63%, indicating that using the NMS operator
to filter regions can benefit the model learning.

5 Conclusion

In this paper, we propose to personalize the federated medical image segmenta-
tion via unifying the feature- and prediction-level personalization by local cali-
bration. The learning paradigm, LC-Fed, is able to calibrate the feature repre-
sentation and prediction during local training through the Personalized Channel
Selection (PCS) module and the Head Calibration (HC) module. The PCS mod-
ule aims to calculate contrastive site embedding for each unique local site and
couple it with channel selection operation to pursue the personalized representa-
tion modeling. The HC module is designed to explore the inter-site in-consistency
at prediction-level as a disagreement map to calibrate the prediction from coarse
to fine. LC-Fed is evaluated on three public datasets, achieving the best IoU and
ASSD on all test sets, compared to previous personalized FL methods.
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