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Fig.S1. Comparison of mean and std calculated in IN between adjacent
patches. Mean, and standard deviation (std) of every two adjacent or nearby patches
(up to 5,000 pixels far away) were extracted from the IN in the original CycleGAN
model and compared. The CycleGAN model comprises 6 layers and each has one or
multiple IN: (1) convolutional layer; (2) down-sampling layer; (3) down-sampling layer;
(4) residual backbone; (5) up-sampling layer; (6) up-sampling layer. We analyzed mean
and std from IN in all layers except the fourth layer, which is a backbone. It can be
noticed that there is a great discrepancy in mean and std between faraway patches in
the earlier layers.

To verify our hypothesis, we extracted the u(X) and o(X) from all the IN
layers in G for patches cropped from one single image, in which p(X),o(X) €
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Fig. S2. Distribution of cosine similarity between means of thumbnail and
patches calculated in IN. The means of patches and the thumbnail calculated in the
IN layer from layer 1 of CycleGAN’s generator are extracted and compared. Distribu-
tion of the cosine similarity is shown. An obvious discrepancy can be observed, which
indicates the inappropriateness of using thumbnail statistics for all cropped patches in
the TIN [I].

R and C is the number of channels. Then, u(X) and o(X) were further
flattened into vectors with size C' to compute the cosine similarity between every
pair. Besides, the Euclidean distances between pairs were recorded.

Fig. [S1) demonstrates that cosine similarity of p(X) and o(X) between two
patches would dramatically decrease when two patches are farther apart, espe-
cially in the first few layer blocks.

In addition, we adopted the methodology proposed in TIN [I] and measured
the u(X) and o(X) between the thumbnail and other cropped patches in Figure
It shows that extreme inconsistency occurs in the first few layers, implying
local contrast and hue information will diminish if x4 and o of thumbnail are
used. On the contrary, the convolution mechanism in our KIN can both alleviate
this inconsistency issue and further improve the assembly quality when adjacent
patches are combined.

0.2 Performance on the classification downstream task

As there is no well-developed metric that can evaluate unpaired ultra-high-
resolution (UHR) images, downstream classification task was experimented to
address this issue. We conducted a classification task for the ANHIR dataset
(breast, lung lesion, and COAD). A ResNet-50 model was trained on the patches
cropped from real WSIs in the IHC domain and tested on the patches cropped
from translated WSIs generated by patch-wise IN, TIN, and KIN with the CUT
framework. We deliberately cropped patches from the attached boundary to
evaluate the influence of tilting artifacts. The accuracies of patch-wise IN, TIN,
and KIN are 98.8%, 88.4%, and 99.2%, respectively. The results show that KIN
achieves the best performance, which might be due to the reduction of tilting
artifacts that confused the classifier. TIN obtains the worst performance since
using global statistics might lead to the loss of local information.
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0.3 Evaluated by SSIM and FSIM metrics

To evaluate KIN with SSIM and FSIM metrics, we experimented with pairwise
translating gray images of the ANHIR dataset into H&E. However, both SSIM
(patch-wise IN: 0.94, TIN: 0.90, KIN: 0.93) and FSIM (patch-wise IN: 0.79, TIN:
0.74, KIN: 0.78) cannot evaluate the presence of tilting artifacts in patch-wise

IN (see Fig. [S3).

(a) Patch-wise IN (b) TIN (c) KIN

Fig.S3. Generated RGB WSIs by different methods. The presence of tilting
artifacts, indicated by red arrows, cannot evaluated by SSIM or FSIM metrics.

0.4 Failure modes of KIN

If the training data lack enough specific scene (e.g., the sky in Kyoto dataset),
KIN will be inferior to TIN (see Fig. [S4).
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Fig. S4. Failure modes. KIN will be inferior to TIN if training data lack enough
specific scene.
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Fig. S5. H&E-to-EGFR stain transformation results on Glioma training set
(7,755 x 7,109 pixels) generated by different frameworks with IN, TIN, and KIN lay-
ers. Red arrows indicate tilting artifacts; green arrows indicate over/under-colorizing.
CUT+KIN achieved the best performance. Zoom in for better view.
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Fig. S6. H&E-to-EGFR stain transformation results on Glioma testing set
(8,078 x 8,078 pixels) generated by different frameworks with IN, TIN, and KIN
layers. Red arrows indicate tiling artifacts; green arrows indicate over /under-colorizing.
CUTHKIN achieved the best performance. Zoom in for better view.
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Fig. S7. Image-to-image translation results on Kyoto summer2autumn
training set (3,456 x 5,184 pixels) generated by different frameworks with IN,
TIN, and KIN layers. Red arrows indicate tilting artifacts; green arrows indicate
over/under-colorizing. CUT+KIN achieved the best performance. Zoom in for bet-
ter view.
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Fig. S8. Ablation study for kernel types on three ANHIR subdatasets. Con-
stant and Gaussian kernels with the size of 1, 3, 7, 11, and oo are applied to elucidate
the effect of KIN module. When kernel size is set to 1, the KIN module will operate in
a manner of patch-wise IN, whereas it would be like TIN when kernel size is set to co.



8 Ho. et al.

Constant

Gaussian

Constant

Gaussian

Constant

Gaussian

Constant

Gaussian

Kernel size =1 Kernel size =3 Kemnel size =7 Kernel size =11 Kernel size = o
(=Patch-wise IN) (=TIN)

Fig.S9. Ablation study for kernel types on Glioma and Kyoto sum-
mer2autumn datasets. Constant and Gaussian kernels with the size of 1, 3, 7, 11,
and oo are applied to elucidate the effect of KIN module. When kernel size is set to 1,
the KIN module will operate in a manner of patch-wise IN, whereas it would be like
TIN when kernel size is set to oco.
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