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Overview

In this supplementary material, we provide the following items:

1. (Sec. 1) Experiments on the LiTS 2017 dataset [1] (Liver Tumor Segmen-
tation using CT scans), revealing the generalization ability of our proposed
dynamic architecture framework (i.e. Med-DANet) on other medical imaging
modalities (e.g. Computed Tomography (CT)) for the segmentation task.

2. (Sec. 2) More ablation study and analysis on BraTS 2019 and 2020 datasets
for a comprehensive investigation.

3. (Sec. 3) More visual comparison of brain tumor segmentation for qualitative
analysis.

4. (Sec. 4) Discussion about the broader impact and limitation of this work.

1 Experimental Results on LiTS 2017

In order to show that our proposed insight is not just limited to segmentation
task for MRI brain tumors but is a common phenomenon in different medial
image modalities, we also present the image content distribution along the slice
dimension of a 3D CT case from the LiTS 2017 dataset [1] in Fig. 1. CT is an-
other widely used imaging modality for various medical applications. Obviously,
Fig. 1 shows that the image content also varies significantly across different CT
slices, which is similar to the distribution across diverse MRI slices. It is also ev-
ident that the segmentation difficulties are different among CT slices. Therefore,
it is reasonable to adjust the model complexity according to different inputs (e.g.
image slices) for effective accuracy and efficiency trade-offs.

To evaluate the generalization ability of our proposed Med-DANet, we con-
duct experiments of liver tumor segmentation on CT scans using the LiTS 2017
dataset [1].
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Fig. 1. The illustration of image content distribution along slice dimension of a CT
case (Axial View) from the LiTS 2017 dataset [1]. The red regions denote the liver and
the green regions denote the tumors.

The quantitative results on LiTS 2017 testing set are presented in Table
1. It can be clearly seen that our method achieves comparable or even higher
Dice scores than previous state-of-the-art methods with much less model com-
plexity. Note that most of the comparison methods didn’t provide the source
codes. Therefore, we can not obtain the computational costs of those methods.
In comparison with recently proposed Transformer based method named Trans-
BTS [12]) for medical image segmentation task (the source code of TransBTS is
publicly available), our Med-DANet considerably advances the segmentation ac-
curacy with greatly reduced computational costs. Specifically, the computational
complexity of TransBTS [12] is 8.89 times that of our Med-DANet, which is sim-
ilar to the situation on BraTS 2019 and BraTS 2020 datasets. Thus, the results
confirm the generalization ability and effectiveness of our adaptive framework
with dynamic architecture.

2 More Ablation Study and Analysis

In this section, to further explore the potential of our dynamic framework and
justify the rationale of its design choices, more ablation experiments are con-
ducted. (1) We investigate the effect of different training strategies for training
the model candidates in our Model Bank. Experiments are carried out using five-
fold cross-validation evaluations on the BraTS 2019 training set. (2) We present
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Table 1. Performance comparison on LiTS 2017 testing set. “P” refers to pre-trained
model. Per case and per slice denote the computational cost of segmenting a 3D patient
case and a single 2D slice, respectively.

Method
Dice per case (%) ↑ Dice global (%) ↑ FLOPs (G) ↓
Lesion Liver Lesion Liver Per Case Per Slice

U-Net [5] 65.00 - - - - -
3D DenseUNet w/o P [8] 59.40 93.60 78.80 92.90 - -
2D DenseUNet w/o P [8] 67.70 94.70 80.10 94.70 - -
2D DenseNet w/ P [8] 68.30 95.30 81.80 95.90 - -
2D DenseUNet w/ P [8] 70.20 95.80 82.10 96.30 - -

I3D [3] 62.40 95.70 77.60 96.00 - -
I3D w/ P [3] 66.60 95.60 79.90 96.20 - -

Han [7] 67.00 - - - - -
Vorontsov et al. [11] 65.00 - - - - -

TransUNet [4] 61.70 95.40 77.40 95.60 1200.64 9.38
Swin-UNet [2] - 92.70 67.60 91.60 249.60 1.95
TransBTS [12] 70.30 96.00 81.50 96.40 330.00 2.58

Ours 70.50 96.10 81.90 96.60 37.12 0.29

the selection ratio of each candidate model in the Model Bank for the BraTS
2019 and 2020 datasets.

2.1 Effect of Different Training Strategies for Candidate Networks

In order to employ the most suitable and efficient training approach for our
Med-DANet, we investigate different strategies to train the candidate models in
the model bank of our proposed framework. Since the Model Bank is composed
of four candidate networks, the simple and straightforward way of training these
candidates would be training each candidate individually (i.e. individual train-
ing). However, this individual training scheme is time-consuming. Therefore, in
our proposed Med-DANet, we simultaneously train all the candidate networks
together in a joint fashion (i.e. joint training). The comparison of the segmenta-
tion performance and training time for these two training strategies is shown in
Table 2. The joint training method can greatly reduce the training time (i.e. up
to 7.36 hours) while achieving higher model accuracy. However, the individual
training scheme yields better computational efficiency in terms of FLOPs.

Table 2. Ablation study on effect of different training strategies for candidate networks.

Training Strategy
Dice Score (%) ↑ FLOPs (G) ↓

Training Time (hour) ↓
ET WT TC Per Case Per Slice

Med-DANet(Individual Training) 75.73 90.25 82.31 962.87 7.52 21.99
Med-DANet(Joint Training) 78.75 90.40 83.13 1,551.485 10.01 14.63

2.2 Activation Ratio of Each Candidate Network

We further illustrate the activation ratio (or selection ratio) of each candidate
model in the model bank for 3D volumentric segmentation in a slice-by-slice
manner. Fig. 2 and Fig. 3 show the activation ratio of each candidate model
on BraTS 2019 and BraTS 2020 dataset, respectively. During each inference, a
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Fig. 2. The activation ratio of each candidate model for different medical image slices
in BraTS 2019 dataset. Skip, M1, M2, M3, M4 denote the operation of directly skip,
candidate 1, candidate 2, candidate 3, and candidate 4, respectively.

single candidate in the Model Bank is activated according to the segmentation
difficulty of the current slice. We can observe that the direct skipping operation
accounts for a large portion for the MRI slices (i.e. more than half of the total
number of slices). Moreover, since there are relatively more simple slices (e.g.
those only contain one or two types of tumors and with small tumor regions) than
the difficult slices, lightweight models (i.e. M1 and M2) are activated more over
the large models such as M3 and M4. Through the proposed dynamic selection
mechanism, an highly efficient and powerful architecture is achieved by our Med-
DANet to reach a good balance between accuracy and computational efficiency.

3 More Visual Comparison for Brain Tumor
Segmentation

To further demonstrate the advantage of our proposed dynamic framework, we
present more visualization of brain tumor segmentation results on BraTS 2019
for qualitative analysis in Fig. 4. The different methods utilized for visual com-
parison consist of 3D U-Net [6], V-Net [9], Attention U-Net [10], and our Med-
DANet. It is clear from Fig. 4 that our framework can segment different kinds of
brain tumors more precisely and generate much better fine-grained segmentation
masks.
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Fig. 3. The activation ratio of each candidate model for different medical image slices
in BraTS 2020 dataset. Skip, M1, M2, M3, M4 denote the operation of directly skip,
candidate 1, candidate 2, candidate 3, and candidate 4, respectively.

3D U-Net VNet Att. U-Net Ours Ground Truth

Fig. 4. More visual comparison of MRI brain tumor segmentation results on BraTS
2019. The blue regions denote the enhancing tumors, the red regions denote the non-
enhancing tumors, and the green ones denote the peritumoral edema.
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4 Broader Impact and Limitation

Our approach provides a novel solution to efficient volumetric segmentation for
medical applications, which inspires new research in this direction. Moreover,
it is generalizable to other volumetric data (e.g. CT). One potential limitation
could be the increased training cost due to several networks in the Model Bank,
as compared to single network training. However, our joint training strategy and
the multi-GPU training paradigm can greatly alleviate this issue. It also provides
a future research direction to develop more efficient training schemes to match
the cost of single network training.
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