ConCL: Concept Contrastive Learning for Dense Pre-training in Pathology 19
A Bootstrapping

Bootstrapping. As stated in BYOL [12]: “the term bootstrap is used in its id-
iomatic sense rather than the statistical sense,” e.g., DeepCluster [2] uses boot-
strapping on previous versions of its representation to produce targets (cluster
indices) for the next representation. Methods based on self-training or pseudo-
labels are also considered bootstrapping since they use information from previous
steps to provide targets for next step.

A.1 BYOL

BYOL [12] proposes to bootstrap the representations directly. In particular,
BYOL has two networks, referred to as online and target networks. Given two
augmented views of the same image, BYOL uses two networks to extract their
representations and employs an additional MLP head, called the prediction head,
to predict the latent representation produced by the target network from the
representation produced by the online network.

Learn from a randomly initialized model. One of the core motivations
for BYOL [12] is an interesting observation: they train a model to predict the
representations of a fized randomly initialized model and can reach 18.8% top-1
accuracy in linear probing protocol' on ImageNet, whereas the randomly initial-
ized model itself only achieves 1.4% top-1 accuracy.

Improve latents with momentum. Learning from a randomly initialized
model can yield significantly better results (e.g., +17.4%). Therefore, learning
from a dynamically improved model seems to be intuitive. In practice, BYOL
[12] optimizes the online network to predict the target network’s latent (feature
representation). The target network is updated by a slowly moving exponential
average of the online network, i.e., the target network is a momentum copy of
the online network. The momentum mechanism is similar to the momentum
encoder in MoCo [14,5].

A.2 b-ConCL

Bootstrap your own perception. b-ConCL resembles BYOL [12] in terms
of using the cluster results from a momentum key encoder. b-ConCL bootstraps
the perception from the momentum encoder while simultaneously improving it
and refining it via momentum. Figure A.1 shows how the concepts grouped by
b-ConCL are refined as training continues.

! In linear probing protocol, the backbone, e.g., a ResNet, is frozen, while a newly
added fully-connected layer is optimized with respect to ImageNet classification [8].

20 J. Yang et al.

Epoch 10 Epoch 50 Epoch 100 Epoch 150 Epoch 200

Figure A.1: b-ConCL refines concepts. We resize images to 448 x 448 and
visualize the concepts clustered from f4(-) with K =8, i.e., 8 clusters. Initially,
the grouped concepts are edge-related, but later they become more semantic
structure-related.

B Additional Implementation Details

B.1 ConCL

Data augmentation. Following MoCo-v2 [5], we use: RandomResizedCrop,
and ColorJitter with (brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
and probability of 0.8, RandomGrayscale with probability of 0.2, GaussianBlur
with probability of 0.5, and RandomHorizontalFlip.

Practical Complement. In practice, the training process of MoCo [14,5] is dis-
tributed across multiple GPUs. Therefore, features need to be gathered from all
GPUs before updating the queue. The gathering operation requires tensors from
different GPUs to have the same shape. However, this usually does not hold for
ConCL, where the number of the shared concepts (i.e., concepts in both views)
varies per pair. We resolve this problem by padding concept keys with randomly
re-sampled concepts from the current batch to match the requirement. Specifi-
cally, we pad the number of features in each GPU to K x batch_size/num_GPUs,
where K is the number of clusters. When such padding is infeasible (e.g., K >
8), we only randomly sample 4xbatch_size/num_GPUs concepts. This ensures
the validity of the “gather” operation.

B.2 Other Self-supervised Methods

All self-supervised methods use ResNet-18 [17] as the backbone. We subsequently
modify the numbers of input and hidden channels of the projection head and
the prediction head to match the outputs’ dimension from ResNet-18. For data
augmentation and other hyper-parameters (e.g., temperature, optimizer), we use
the default settings specified in each config file in OpenSelfSup,’> which should
be the same as the original methods.

2 https://github.com/open-mmlab/OpenSelfSup

https://github.com/open-mmlab/OpenSelfSup

ConCL: Concept Contrastive Learning for Dense Pre-training in Pathology 21

SimCLR[4] & BYOL [12]. Since both SimCLR and BYOL require a large
batch size, we use 1024 for them, which is the maximum number we can afford.
For SimCLR, the numbers of channels in each layer of the projection head are set
to 512-512-128 (input, hidden, output layers). For BYOL, we set them to 512-
512-256 (input, hidden, output layers); the numbers of channels in each layer of
the prediction head are then set to 256-512-256 (input, hidden, output layers).

MoCo-v1[14], MoCo-v2[5] and DenseCL[36]. These three methods require
an instance queue. We change the length of the instance queue to 16394 since
our pre-training dataset only has 100k samples, far less than 1.28M samples
in ImageNet [21]. For MoCo-v1, the numbers of channels in each layer of the
projection head are set to 512-128 (input, output layers). For the remaining two
methods, we set them to 512-512-128 (input, hidden, output layers).

PCL-v2[22]. We use the officially released code® for PCL’s experiments. We
change the numbers of channels in each layer of the projection head to 512-512-
128 (input, hidden, output layers) and the number of clusters in PCL to (20000,
35000, 50000).

C Detection Configuration Details

C.1 GlaS.

Introduction. Glands are important tissue structures for diagnosing adenocar-
cinomas, a prevalent type of malignant tumor in the prostate, breast, lung, colon,
and more. Gland segmentation in pathology images challenge (GlaS) dataset [31]
collects images from H&E stained slides with object-instance-level annotation.
It consists of a variety of malignant grades. We follow the official train/test split
for evaluation, where the training split contains 37 benign and 48 malignant
images, and the test split consists of 37 benign and 43 malignant images.

Transferring setup. The batch size is 16, and the base learning rate is 0.02.
For learning schedules, we refer the 1x fine-tuning schedule to as training for 5k
iterations, with the learning rate decayed by ten times smaller at 4k iteration.
Similarly, the 0.5x schedule has a total of 2.5k training iterations with decay
at 2k iteration; the 2x schedule has a total of 10k iterations, with decay at 8k
iteration, and so forth for other schedules.

C.2 CRAG.

Introduction. The colorectal adenocarcinoma gland (CRAG) dataset [11] col-
lects 213 H&E stained images taken from 38 WSIs with a pixel resolution of

3 https://github.com/salesforce/PCL

https://github.com/salesforce/PCL

22 J. Yang et al.

0.55um /pixel at 20x magnification. Images are mostly of size 1512x1516 with
object-instance-level annotation. We follow the official split for evaluation, where
the training set has 173 images, and the test set has 40 images with different
cancer grades.

Transferring setup. The batch size is 16, and the base learning rate is 0.02.
For learning schedules, we refer the 1x fine-tuning schedule to as training for 15k
iterations, with the learning rate decayed by ten times smaller at 10k and 13k
iterations, respectively. Similarly, the 0.5x schedule has a total of 7.5k training
iterations with decay at bk and 6.5k iterations; the 2x schedule has a total of 30k
iterations, with decay at 20k and 26k iterations, and so forth for other schedules.
The intuition behind the different fine-tuning schedules for GlaS and CRAG is
the difference in dataset sizes, i.e., CRAG has around 2.5 times more training
samples than GlaS.

D More Results

Training speed. Currently, b-ConCL relies on a third reference view for con-
cept matching between different views, which does slow down the training speed.
For K-Means, we implement it using matrix multiplication so that the clustering
process is parallel to a batch of images. Table D.1 compares the training speed of
different approaches measured in 200-epoch pre-training. Despite our implemen-
tation not being optimized thoroughly, ConCL’s training speed is satisfactory
given the large gains it attains.

|MoCo-v2 [5]|DenseCL[36]| PCL[22]|BYOL [12]|b-ConCL (ours)
1—epoch‘ 59.6s ‘ 65.7s ‘ 137.0s ‘ 68.8s ‘ 77.4s
Table D.1: Training speeds. Results are measured in 8-GPU machines.

Qualitative comparison of downstream tasks. Figures D.1 and D.2 show
some visualizations of different pre-trained models in the GlaS dataset [31] and
CRAG dataset [11], respectively. We non-exhaustively annotate different de-
tection errors by arrows in different colors. Overall, ConCL outperforms other
pre-training methods in terms of less false negative (the black arrows), less false
positive (the blue arrows), and more complete detection and segmentation (the
red arrows).

Numerical results of longer pre-training. In complement to Figure 1-(b,c),
we further report the numerical results of the transferring performance of 800-
epoch pre-trained models in Table D.2.

ConCL: Concept Contrastive Learning for Dense Pre-training in Pathology 23

GlaS CRAG
AP® APL|APY APY
SimCLR 50.6 56.8 |48.1 52.0
BYOL 50.2 56.9|49.3 54.1
MoCo-v1 49.8 55.1 [47.2 51.9
MoCo-v2 55.2 63.6 | 51.8 57.6
DenseCL 56.0 64.8]52.5 58.2
b-ConCL (ours)|58.6 68.1|55.1 61.4
Table D.2: Transferring performance of different 800-epoch pre-trained
models on GlaS and CRAG datasets.

Methods

0

(d) DenseCL [0

* Black Arrow: False negative Red Arrow: Falsely separate a single gland into multiple parts

FigureD.1: Qualitative comparison on GlaS dataset [31]. We show the
results with Mask-RCNN R18-FPN under 1x schedule.

24 J. Yang et al.

(a) Input Image
»

* Black Arrow: False negative Blue Arrow: False positive Red Arrow: Falsely separate a single gland into multiple parts

Figure D.2: Qualitative comparison on CRAG dataset [11]. We show the
results with Mask-RCNN R18-FPN under 1x schedule.

