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Abstract Detecting and segmenting objects within whole slide images is
essential in computational pathology workflow. Self-supervised learning
(SSL) is appealing to such annotation-heavy tasks. Despite the exten-
sive benchmarks in natural images for dense tasks, such studies are,
unfortunately, absent in current works for pathology. Our paper in-
tends to narrow this gap. We first benchmark representative SSL meth-
ods for dense prediction tasks in pathology images. Then, we propose
concept contrastive learning (ConCL), an SSL framework for dense
pre-training. We explore how ConCL performs with concepts provided
by different sources and end up with proposing a simple dependency-
free concept generating method that does not rely on external segmen-
tation algorithms or saliency detection models. Extensive experiments
demonstrate the superiority of ConCL over previous state-of-the-art SSL
methods across different settings. Along our exploration, we distill sev-
eral important and intriguing components contributing to the success
of dense pre-training for pathology images. We hope this work could
provide useful data points and encourage the community to conduct
ConCL pre-training for problems of interest. Code is available at https:
//github.com/TencentAILabHealthcare/ConCL.

Keywords: Pathology image analysis · Whole slide image · Self-supervised
learning · Object detection · Instance segmentation · Pre-training

1 Introduction

Computational pathology is an emerging area in modern healthcare. More whole
slide images (WSIs) are now analyzed by deep learning (DL) models [29]. To alle-
viate the heavy annotation burden required by DL models, reusing weights from
pre-trained models has become a common practice. Besides transferring from
fully-supervised models, recent attention has been attracted to self-supervised
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Figure 1: (a) Example pathology images with tissue class names. (b,c) Com-
parisons of pre-trained models by fine-tuning on the GlaS [28] and CRAG [9]
datasets. The detector is Mask-RCNN [14] with a ResNet-18 backbone [15], and
an FPN head[20]. Results are averaged over 5 independent runs.

learning (SSL) methods [12,3,10]. They are annotation-free but can achieve com-
parable or even better performance when transferring.

The breakthrough of SSL methods starts with contrastive learning [11,34,3,12,4],
where the most popular task is instance discrimination [34]. It requires a model
to discriminate among individual instances. To achieve that, it first defines some
positive pairs and negative pairs. It then optimizes a model to maximize the rep-
resentation similarity between positive pairs and minimize it between negative
pairs. Later, more SSL methods based on cross-view prediction are proposed,
e.g ., [2,10,3,38]. However, these methods are optimized for image-level repre-
sentations and might be sub-optimal for dense prediction tasks such as object
detection and instance segmentation. This motivates works for detection-friendly
pre-training methods, e.g ., DenseCL [33], InsLoc [37], Self -EMD [22], SCRL [27],
and more [16,30,35,36]. Despite many interests raised in the natural image do-
main for dense prediction problems, such studies, which are of important clinical
and practical values, are absent in the pathology image domain. Our research is
intended to bridge the gap between SSL in natural images and pathology images
for dense prediction tasks, as well as to distill the key components to the success
of dense pre-training in the pathology data.

To that end, we start by presenting a general Concept Contrastive Learning
(ConCL) framework. Rather than contrasting image-level representations [34,3,12],
it contrasts “concepts” that mark different local (semantic) regions. ConCL is
an abstraction of dense contrasting frameworks that can resemble most concur-
rent related works. We first benchmark current leading image-level SSL methods
and a grid-level dense SSL method (i.e., DenseCL [33]) in two public datasets.
We observe a considerable performance gap between DenseCL [33] and the oth-
ers. These gaps indicate the importance of contrasting densely (grid-level) than
roughly (image-level). Then, directed by the performance differences and the
characteristics of pathology images, we gradually develop and improve ConCL
via a series of explorations. Specifically, we explore: 1) what makes the success
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of dense prediction pre-training? 2) what kind of concepts are good for pathology
images? The nature of having rich low-level patterns in pathology images (see
Fig. 1-(a)) gives some surprising and intriguing results, e.g ., a randomly initial-
ized model can group meaningful concepts and help dense pre-training. Along
the exploration, we distill several key components contributing to the trans-
ferring performance for dense tasks. At the end of exploration, the presented
ConCL can surpass various state-of-the-art SSL methods by solid and consistent
margins across different downstream datasets, detector architectures, fine-tuning
schedules, and pre-training epochs. For example, as shown in Figure 1-(b), the
200-epoch pre-trained ConCL wins all the other methods but with 4× to 8×
fewer epochs. To summarize, this paper makes the following contributions:

• It makes one of the earliest attempts to systematically study and benchmark
self-supervised learning methods for dense prediction problems in pathology
images, which are of high practical and clinical interest but, unfortunately,
absent in existing works. We hope this work could narrow the gap between
studies in natural images and pathology images.

• It presents ConCL, an SSL framework for dense pre-training. We show how
ConCL performs with concepts provided by different sources and find that a
randomly initialized model could learn semantic concepts and improve itself
without expert-annotation or external algorithms while achieving competi-
tive, if not the best, results.

• It shows how important the dense pre-training is in pathology images for
dense tasks and provides some intriguing observations that could contribute
to other applications such as few-shot and semi-supervised segmentation and
detection, or more, in pathology image analysis or beyond.

We hope this work could provide useful data points and encourage the commu-
nity to conduct ConCL pre-training for problems of interest.

2 Related work

Contrastive learning. The success of deep learning is mainly attributed to
mining a large amount of data. When limited data is provided for specific tasks,
an alternative is to transfer knowledge by re-using pre-trained models [8,13].
SSL methods learn good pre-trained models from label-free pretext tasks, e.g .,
colorization [39,40], denoising [31], and thus attract much attention. Recently,
contrastive learning [12,4,3,24,34,2], a typical branch of SSL, has made signifi-
cant progress in many fields, where instance discrimination [11,34,12,4,3] serves
as a pretext task. It requires a model to discriminate among individual instances,
i.e., image-level representations [34]. MoCo [12,4] and SimCLR[3] are two repre-
sentatives. Specifically, they generate two views of the same image via random
data augmentations (e.g ., color jittering, random cropping) and mark them as
a positive pair. Then, views from other different images are marked as negative
instances or pairs. After that, they learn embeddings by maximizing the simi-
larity between the representations of positive pairs while minimizing it between
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the representations of negative pairs. Later methods combine contrasting with
clustering, e.g ., SwAV[2] proposes to contrast views’ cluster assignments, and
PCL [19] contrasts instances with cluster prototypes.

Dense prediction pre-training. Despite their success in transferring to clas-
sification tasks, good image-level representations do not necessarily result in bet-
ter performance in dense prediction tasks. Therefore, recent efforts have been
made for dense prediction pre-training. Related works are mostly concurrent
[33,37,27,30,35,36,22,16]. Among them, DenseCL [33] learns the correspondence
among pixels of a positive pair and optimizes a pairwise contrastive loss at a pixel
level, yielding a dense contrasting behavior. Self -EMD [22] does dense predicting
in a non-contrastive manner as in BYOL [10], i.e., predicting a grid-level feature
vector from one view when given its counterpart from another (positive) view.
SCRL [27] argues the importance of spatially consistent representations, so it
maximizes the similarity of box region features in the intersected area. The most
relevant works concurrent to ours are [16,30]. They also optimize contrastive loss
over mask-averaged representations. Those masks are generated by external al-
gorithms that are successful for natural images, e.g ., Felzenszwalb-Huttenlocher
algorithm [7], or models, e.g ., MCG[1], BASNet[25], and DeepUSPS[23]. How-
ever, the success of such mask generators is unfortunately unverified in pathology
images. In this paper, we provide some of their empirical results. Their different
performances yield the disparity between natural and pathology images, from
which we are motivated to propose a dependency-free concept mask generator. It
directly bootstraps the structural concepts inherent in pathology images, learns
from scratch, and has better potential.

SSL in pathology images. Studying SSL methods in pathology images is still
at an early stage. In addition to studies on natural images, SimCLR [3] is also
studied and benchmarked for classification, regression, and segmentation tasks in
pathology images [6]. Some domain-specific self-supervised pretext tasks, e.g .,
magnification prediction, JigMag prediction, and hematoxylin channel predic-
tion, are proposed and studied [18]. However, despite interest raised in natural
images for dense problems, existing works have not studied, to our knowledge,
detection/segmentation-friendly SSL methods in pathology images. Our work
aims to bridge this gap and provide our exploration roadmap toward better
dense prediction performance for pathology images.

3 Method

3.1 Preliminary: Instance Contrastive Learning

MoCo[12] abstracts the instance discrimination task as a dictionary look-up
problem. Specifically, for each encoded query q, there is a set of encoded keys
{k0, k1, k2, ...} in a dictionary. The instance discrimination task is to pull closer q
and its matched positive key k+ in the dictionary while spreading q away from all
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Figure 2: ConCL overview. ConCL has three steps: (1) Given a query view xq

and a key view xk, their union region is cropped as a reference view xr. ConCL
obtains concept proposals by processing xr with a “concept generator.” (2) For
the shared concepts, ConCL computes their representations via masked average
pooling (MAP). (3) ConCL optimizes concept contrastive loss (Eq. (2)), and
enqueues the concept prototypes from the key encoder to the concept queue.

other negative keys k−. When using the dot-product as similarity measurement,
a form of contrastive loss function based on InfoNCE[24] becomes:

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k−
exp(q · k−/τ)

(1)

where τ is a temperature hyper-parameter [34]. Queries q and keys k are com-
puted by a query encoder and a key encoder, respectively [12,4]. Formally,
q = h(GAP(f5(xq))), where h is a MLP projection head as per [3]; GAP(·) de-
notes global-average-pooling, and f5(x) represents the outputs from the stage-5
of a ResNet [15]. Keys k are computed similarly using the key encoder. In MoCo
[12], the negative keys are stored in a queue to avoid using large batches [3].

3.2 Concept Contrastive Learning

Instance contrastive methods [3,12,34] do well in discriminating among image-
level instances, but dense prediction tasks usually require discriminating among
local details, e.g ., object instances or object parts. We abstract such local de-
tails, or say, fine-grained semantics as “concepts.” A concept does not necessarily
represent an object. Instead, any sub-region in an image could be a concept since
it contains certain different semantics. From the perspective of dense prediction,
it is desirable to build concept-sensitive representations. For example, one WSI
patch usually contains multiple small objects, e.g ., nucleus, glands, and multiple
texture-like tissues, e.g ., mucus [29,17]. To successfully detect and segment ob-
jects in such images, models need to learn more information from local details. To
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this end, we propose a simple but effective framework — Concept Contrastive
Learning (ConCL). Figure 2 shows its overview, which we elaborate on below.

Concept discrimination. We first define a pretext task named concept dis-
crimination. Similar to instance discrimination [34,11], concept discrimination
requires a model to discriminate among the representations of the same but
augmented concepts and the representations of different concepts. We formu-
late concept discrimination by extending the instance-level queries and keys to
concept-level. Specifically, given an encoded query concept qc and a set of en-
coded key concepts {kc0, kc1, kc2, ...}, we derive concept contrastive loss as:

Lc = − log
exp(qc · kc+/τ)

exp(qc · kc+/τ) +
∑

kc
−
exp(qc · kc−/τ)

(2)

where τ is the same temperature parameter and kc− are keys in the concept queue
— the queue to store concept representations. This objective brings representa-
tions of different views of the same concept closer and spreads representations
of views from different concepts apart.

Concept mask proposal. We use masks to annotate fine-grained concepts
explicitly. Assume a mask generator is given, as diagramed at the bottom of
Figure 2; we first pass a reference view xr, defined as the circumscribed rectangle
crop of the union of two views, into the mask generator to obtain a set of concept
masks — Mr = {mi}Ki=1, where K is the number of concepts. Since the reference
view contains both the query view and the key view, their concept masksMq and
Mk are immediately obtained if we restore them in the reference view. Then, we
derive concept representations in both views by masked average pooling (MAP)
with resized concept masks. Specifically, we compute qc = h (MAP (f5(xq),mc))
and kc similarly, where MAP (z,m) =

∑
ij mij · zij/

∑
ij mij , and z ∈ RCHW

denotes feature maps, m ∈ {0, 1}HW is a binary indicator for each concept. Here,
only the shared concepts in both views are considered, i.e., mc ∈ Mq ∩Mk.

Our analysis hereafter focuses on 1) What makes the success of dense pre-
diction pre-training? 2) What kind of concepts are good for pathology images?
Different answers to these two questions reveal the characteristics of pathology
images and the disparity between natural and pathology images, as we explore
in Section 4. Below, we first introduce the benchmark pipeline and setups.

3.3 Benchmark Pipeline

Despite the extensive benchmarks in natural images for dense tasks, to our
knowledge, such studies are unfortunately absent in current works for pathology.
Note that studying SSL methods in pathology images is still at an early stage.
Most current works focus on employing image-level SSL methods for classifica-
tion tasks. Orthogonal to theirs, we investigate a wider range of SSL methods
for object detection and instance segmentation tasks, which are of high clinical
value. We hope our work could provide useful data points for future work.
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Implementations. For implementation details, please refer to Appendix B. We
briefly introduce the datasets here and elaborate on them in Appendix C:

• Pre-training dataset. We use NCT-CRC-HE-100K[17] dataset, referred to as
NCT, for pre-training. It contains 100,000 non-overlapping patches extracted
from hematoxylin and eosin (H&E) stained colorectal cancer and normal
tissues. All images are of size 224 × 224 at 0.5 MPP (20× magnification).
We randomly choose 80% of NCT to be the pre-training dataset.

• Transferring dataset. We use two public datasets, the gland segmentation
in pathology images challenge (GlaS) dataset [28] and the colorectal ade-
nocarcinoma gland (CRAG) dataset [9], and follow their official train/test
splits for evaluation. GlaS [28] collects images of 775×522 from H&E stained
slides with object-instance-level annotation; the images include both malig-
nant and benign glands. CRAG [9] collects 213 H&E stained images taken
from 38 WSIs with a pixel resolution of 0.55µm/pixel at 20× magnification.
Images are mostly of size 1512×1516 with object-instance-level annotation.
We study the performance of object detection and instance segmentation.

Experimental setup. We pre-train all the methods on the NCT training set
for 200 epochs. For ConCL pre-training, we warm up the model by optimizing
instance contrastive loss (Eq. (1)) for the first 20 epochs and switch to concept
contrastive loss (Eq. (2)). Then, we use the pre-trained backbones to initialize
the detectors, fine-tune them on the training sets of transferring datasets, and
test them in the corresponding test sets. Unless otherwise specified, we run all
the transferring experiments 5 times and report the averaged performance.

4 Towards Better Concepts: a Roadmap

In this section, we first benchmark some popular state-of-the-art SSL methods
for dense pathology tasks. Then, we start with DenseCL [33] and derive better
concepts along the way, directed by the questions raised in the previous section.

4.1 Benchmarking SSL methods for Dense Pathology Tasks

Benchmark results. Table 1 (baselines and prior SSL arts) shows the trans-
ferring performance for GlaS dataset (left columns) and CRAG dataset (right
columns), respectively. We report results using 200-epoch pre-trained models and
a 1× fine-tuning schedule. On the GlaS dataset [28], we observe that the gap
between training from randomly initialized models and training from supervised
pre-trained models is relatively smaller compared to those in the natural image
domain [5,4,10,3]. Nonetheless, state-of-the-art SSL methods all exceed super-
vised pre-training, meeting the same expectation as in natural images. Yet, on
the CRAG dataset [9], most of the pre-trained models, including both the self-
supervised ones and the supervised one, fail to achieve competitive performance
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GlaS CRAG
Detect Segment Detect Segment

Category Methods
APbb APbb

75 APmk APmk
75 APbb APbb

75 APmk APmk
75

Baselines
Rand. Init. 49.8 57.3 52.1 60.7 51.1 57.0 50.6 57.3
Supervised 50.2 56.9 53.2 62.1 49.2 55.2 49.4 55.0

Sec. 4.1
Prior SSL arts

SimCLR[3] 50.7 56.9 53.6 62.7 49.2 54.8 49.1 54.7
BYOL[10] 50.9 57.7 53.9 62.6 49.9 55.8 49.3 55.3

PCL-v2† [19] 49.4 55.9 51.9 61.0 51.0 56.6 50.5 56.7
MoCo-v1[12] 50.0 56.2 52.1 59.9 47.2 51.1 47.5 52.0
MoCo-v2[4] 52.3 60.0 55.3 65.0 50.0 55.7 50.3 56.8
DenseCL[33] 53.9 62.0 56.5 66.2 52.3 58.2 52.2 59.8

Our differently instantiated ConCLs:

Sec. 4.2
Grid concepts

(1) g-ConCL(s=3) 54.9 64.1 57.1 66.3 55.4 62.3 54.4 62.0
(2) g-ConCL(s=5) 55.4 65.2 57.4 67.2 55.5 62.7 54.6 62.2
(3) g-ConCL(s=7) 54.9 63.8 57.0 66.5 55.3 62.5 54.7 62.6

Sec. 4.3
Natural-image
priors concepts

(4) fh-ConCL(s=50) 55.8 65.6 58.3 68.8 54.8 60.7 54.1 60.7
(5) fh-ConCL(s=500) 56.2 65.9 57.7 67.9 54.7 61.9 53.8 60.5
(6) bas-ConCL 56.1 66.1 58.1 68.1 54.2 61.1 53.4 60.8

Sec. 4.4
Bootstrapped

concepts
(7) b-ConCL(f4) 56.8 66.2 58.7 68.9 55.1 62.2 54.1 61.4
(8) b-ConCL(f5) 56.1 65.6 57.8 67.7 56.5 63.3 55.3 62.9

Table 1: Main results of object detection and instance segmentation.
APbb: bounding box mAP, APmk: mask mAP.

compared to training from randomly initialized weights. The only exception is
DenseCL [33], a dense contrasting method.

Among the image-level SSL methods, MoCo-v2 [4] performs the best in GlaS
and the second-best in CRAG. Enhanced by dense contrasting, DenseCL [33]
achieves the best results in both datasets. It should be emphasized that DenseCL
[33] gets + 1.6 APbb for GlaS by using grid-level contrasting. This demonstrates
the importance of designing dense pre-training frameworks when transferring to
dense tasks since all the stragglers are only optimized for image-level represen-
tations. Thus, we here conclude dense contrasting matters.

4.2 Correspondence matters

From the previous section, we find dense contrasting is favored in both nat-
ural and pathology images, where DenseCL [33] all achieves top performance.
The next question is: can we improve the dense contrasting framework? To an-
swer it, we first summarize the overall pipeline of DenseCL [33]. DenseCL com-
putes the dense representations of two views without global average pooling,
i.e., f5(xq), f5(xk), and passes them to a dense projection head to obtain final
grid features of size R128×7×7. Then it sets the most similar (measured by co-
sine similarity) grids in two views as positive pairs. As such, the correspondence
of positive pairs is learned. However, the reliability of learned correspondence
remains questionable and would affect the quality of learned representations.
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(b) Grid(s=5) (c) FH(s=50)(a) Human (d) FH(s=500) (e) BASNet (f) Cluster-  f3 (g) Cluster-  f4 (h) Cluster-  f5

Figure 3: Concept descriptors. (a) Tissue concept illustration. (b) Grid con-
cepts (s: grid number). (c-d) FH concepts (s: scale). (e) Binary saliency concepts,
obtained from BASNet [25]. (f-h) Clustering concepts (fi: ResNet output stage).
The image is resized to 448× 448 for better visualization.

To address that, we instantiate DenseCL [33] in ConCL by regarding the
grid-prior as a form of concept, as shown in Figure 3-(b). We denote this ConCL
instance as g-ConCL. Compared with DenseCL [33] (learned matching), ConCL
naturally restores the positive correspondence from a reference view (precise
matching Fig. 2-xr). Table 1-(1-3) compares the original DenseCL [33] and
ConCL-instantiated g-ConCL. The results indicate that g-ConCL with precise
correspondence can boost DenseCL [33] by a large margin. Even with the sim-
plest form of concepts, g-ConCL already has topped entries above it in Table 1.
We believe other dense pre-training methods that learn the matching between
grids, e.g ., Self -EMD [22], should perform similarly to DenseCL [33], and g-
ConCL could outperform them. Thus, we conclude that correspondence matters.

4.3 Natural Image Priors in Pathology Images

ConCL is a general framework for using masks as supervision to discriminate
concepts. Some previous works in natural image [42,16,41,30,32] also combines
masks with contrastive learning, where the masks are provided by ground truth
annotation [42,32,16], or supervised/unsupervised pseudo-mask generation [16,41,30].
The mask generators can be graph-based (e.g ., Felzenszwalb-Huttenlocher algo-
rithm [7]), MCG [1], or other saliency detection models [25,23] trained on desig-
nated natural image datasets. However, those methods werer originally proposed
for nature images, and their success for pathology images remains unknown.

Here we instantiate ConCL by using Felzenszwalb-Huttenlocher (FH) algo-
rithm [7] and BASNet [25] as concept generators, dubbed as fh-ConCL and
bas-ConCL, respectively. FH [7] is a conventional graph-based segmentation al-
gorithm that relies on local neighborhoods, while BASNet [25] is a deep neural
network pre-trained on a curated saliency detection dataset, which only con-
tains daily natural objects. We use these two as representatives to study if these
natural image priors win twice in both natural and pathology images.

Specifically, we use the FH algorithm in the scikit-image package and set
both “scale” and “size” hyper-parameters to s. We use the pre-trained BASNet
provided by [25]. Figure 3-(c-e) shows some examples. Table 1 reports the results.

It is not surprising that the BASNet [25] cannot generate decent concept
masks (Fig. 3-(e)) for pathology images since it is pre-trained on curated saliency
detection datasets. What is surprising is that bas-ConCL does yield satisfactory
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results (Tab. 1-(6)). Similar observations are also found in fh-ConCLs (Tab. 1-
(4,5)) that though the generated concept masks are coarse-grained, the resulted
transferring performances are unexpectedly good. After inspecting more exam-
ples, we find that the generated masks maintain high coherence and integrity
despite their coarse-grained nature. That said, each concept contains semantic-
consistent objects or textures. For example, Figure 3-(d,e) can be seen as spe-
cial cases of Figure 3-(a) that merge fine-grained semantics with coarse-grained
ones. This property makes the major difference between fh-/bas-ConCLs and
g-ConCLs, where the grid-concepts are less likely to have coherent semantics.

Thus, we here conclude that coherence matters and natural image priors also
work in pathology images, though they mostly provide coarse-grained concepts.

4.4 Pathology Image Priors in Pathology Images

Can we obtain concept masks away with natural image priors? External depen-
dency is not always wanted and sometimes may fail to provide the desired masks
(e.g ., Fig. 3-(e)). We thus task ourselves to find a dependency-free concept pro-
posal method. One of the key characteristics in pathology images is that they
have rich low-level patterns and tissue structures. Can we use that prior instead?

Figure 3-(f-h) shows the clustering visualization from intermediate feature
maps generated by a 10-epoch warmed-up MoCo-v2 [4]. Thanks to the rich
structural patterns in pathology images, we find that simply clustering over the
feature maps provided by a barely trained model can already generate meaning-
ful structural concept proposals. We thus build upon this “free lunch” and use
a “bootstrap your own perception” mechanism that is similar to the “bootstrap
your own latent” mechanism in BYOL [10]. ConCL generates concept proposals
from the momentum key encoder’s perception while simultaneously improving
and refining it via the online query encoder, leading to a “bootstrapping” be-
havior. Thus, we denote such ConCL as bootstrapped-ConCL (b-ConCL). We
provide an additional introduction to BYOL and “bootstrapping” in Appendix
A.

b-ConCL. The concept generator is now instantiated as a KMeans grouper.
We first pass the reference view xr to the key encoder to obtain a reference
feature map from ResNet stage-i: fi(xr) ∈ RCHW . Then, we apply K-Means to
group K underlying concepts. b-ConCL relies on neither external segmentation
algorithms nor designated saliency detection models for natural images.

Our default setting is K = 8, and clustering from f4 or f5. We postpone
the study of hyper-parameters, i.e., the number of clusters in KMeans, and the
clustering stage fi to Section 5.2 and report the main results in Table 1-(7,8). We
find b-ConCL tops other entries. Compared to MoCo-v2 [4], our direct baseline,
b-ConCL outperforms it by +4.5 APbb and +3.1 APmk. Moreover, b-ConCL
obtains more gains in terms of AP75 (+6.2 APbb

75, +3.7 APmk
75 ) compared to

MoCo-v2 [4], which means it improves MoCo-v2 [4] by more accurate bounding
box regression and instance mask prediction. This aligns with our motivation
for ConCL since discriminating local concepts helps shape object borders.
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Detector Pretrain
GlaS Detection CRAG Detection

APbb APbb
75 APbb APbb

75

MaskRCNN-C4

Rand. Init. 52.9 59.9 49.4 54.2
Supervised 49.1(-3.8) 55.1(-4.8) 46.1(-3.3) 50.6(-2.3)
MoCo-v2 [4] 53.6(+0.7) 61.8(+1.9) 48.3(-1.1) 52.6(-1.6)
b-ConCL 55.8(+2.9) 63.6(+3.7) 49.8(+0.4) 54.3(+0.1)

MaskRCNN-FPN

Rand. Init. 49.8 57.3 51.1 57.0
Supervised 50.2(+0.4) 56.9(-0.4) 49.2(-1.9) 55.2(-1.8)
MoCo-v2 [4] 52.3(+2.5) 60.0(+2.7) 50.0(-1.1) 55.7(-1.3)
b-ConCL 56.8(+7.0) 66.2(+8.9) 55.1(+4.0) 62.2(+5.2)

RetinaNet

Rand. Init. 46.4 51.0 45.2 47.6
Supervised 44.7(-1.7) 48.4(-2.6) 43.1(-2.1) 44.8(-2.8)
MoCo-v2 [4] 47.2(+0.8) 50.9(-0.1) 43.1(-2.1) 43.8(-3.8)
b-ConCL 52.6(+6.2) 58.6(+7.6) 48.4(+3.2) 51.9(+4.3)

Table 2: Detection performance using different detectors. Results are
averaged over 5 trials.

Closing remarks. So far, we have included: i) dense contrasting matters; ii)
correspondence matters; iii) coherence matters; iv) natural image priors, though
they might only provide coarse-grained concepts, work in pathology images as
well; and find v) a randomly initialized or barely trained convolutional neural
network, thanks to the rich low-level patterns in pathology images and good
network initialization, can generate good proposals that are dense, fine-grained
and coherent, as shown in Figure 3. Though the coarse-grained concepts gener-
ated from natural image priors could also help tasks in our studied benchmarks,
they might underperform when a fine-grained dense prediction task is given. We
hope our closing remarks could be intriguing and guide future works in designing
dense pre-training methods for pathology images and beyond.

5 More Experiments

In the previous section, we have explored how we can obtain concepts, what
concepts are good, and find b-ConCL to be the best. We here conduct more
experiments to study b-ConCL. Some visual comparisons are in Appendix D.

5.1 Robustness to Transferring Settings

Transferring with different detectors. Here we investigate the transferring
performance with other detectors, i.e., Mask-RCNN-C4 (C4) [26] and RetinaNet
[21]. RetinaNet is a single-stage detector. It uses ResNet-FPN backbone features
as Mask-RCNN-FPN but directly generates predictions without region proposal
[26]. C4 detector adopts a similar two-stage fashion as Mask-RCNN but uses
the outputs of the 4-th residual block as backbone features and re-targets the
5-th block to be the detection head instead of building a new one. These three
representative detectors evaluate pre-trained models under different detector ar-
chitectures. Results together with Mask-RCNN-FPN’s are shown in Table 2.
b-ConCL performs the best with all three detectors in both datasets. Notably,
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training from scratch (Rand. Init.) is one of the top competitors when the C4
detector is used. We conjecture that the pre-trained models are possibly overfit-
ted to their pretext tasks in their 5-th blocks and thus are harder to be tuned
than a randomly initialized 5-th block. In CRAG detection, only b-ConCL pre-
trained models consistently outperform randomly initialized models. In addi-
tion, the most significant gap between MoCo-v2[4] and b-ConCL is found in the
RetinaNet detector [21]. As also noted by [22], RetinaNet [21] is a single-stage
detector, where the local representations from the backbone become more im-
portant than other two-stage detectors since results are directly predicted from
them. b-ConCL is tasked to discriminate local concepts, and subsequently, the
learned representations could be better than other pre-training methods here.

Transferring with different schedules. To investigate if b-ConCL’s lead
could persist with longer fine-tuning, we fine-tune Mask-RCNN-FPN with 0.5×,
1×, 2×, 3×, and 5× schedules. Table 3 shows the results. b-ConCL maintains
its noticeable gains in longer schedules in both datasets, e.g ., b-ConCL achieves
56.2 mAP with a 0.5× schedule, which is better than MoCo-v2 [4] with a 5×
schedule but costs 10 × less fine-tuning time. Similar observations are also found
in CRAG, where the gap between b-ConCL and MoCo-v2 [4] becomes larger (see
∆ row). Together, these results confirm b-ConCL’s superiority across different
fine-tuning schedules.

5.2 Ablation Study

In this section, we ablate the key factors in b-ConCL. Our default setting clusters
K = 8 concepts from ResNet stage-4 (f4(·)). Since b-ConCL is built on MoCo-v2
[4], we use it as our direct baseline for comparisons.

Concept loss weight λ. We here study the generalized concept contrastive
loss: L = (1 − λ)Lq + λLc, where λ ∈ [0, 1] is a concept loss weight parame-
ter. It shows a natural way to combine concept contrastive loss with instance
contrastive loss. We start by asking whether instance contrastive loss is indis-
pensable during the training process of b-ConCL. We alter the concept loss

Method
GlaS dataset CRAG dataset

Fine-tuning schedule Fine-tuning schedule
0.5× 1× 2× 3× 5× 0.5× 1× 2× 3× 5×

Rand. Init. 49.1 49.8 51.4 51.8 52.7 50.2 51.1 51.9 52.4 52.8
Supervised 48.6 50.2 51.4 52.7 54.0 50.0 49.2 50.5 50.1 50.3
MoCo-v2[4] 51.4 52.3 53.7 54.2 55.7 50.2 50.0 50.2 50.8 51.8

b-ConCL 56.2 56.8 57.7 58.3 59.0 54.8 55.1 55.4 55.6 56.0
∆ +4.8 +4.5 +4.0 +4.1 +3.3 +4.6 +5.1 +5.2 +4.8 +4.2

Table 3: Detection performance under different fine-tuning schedules.
Results other than 1× schedule are averaged over 3 runs. ∆ row shows b-ConCL’s
improvement over MoCo-v2. We report APbb here.
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λ
GlaS CRAG

APbb APbb
75 APbb APbb

75

0.0 52.3 60.0 50.0 55.7

0.1 53.6 61.1 50.5 55.9

0.3 53.6 61.8 51.7 57.1

0.5 53.6 61.8 51.3 57.0

0.7 55.2 64.1 53.1 59.9

0.9 56.0 65.1 53.6 59.6

1.0 56.8 66.2 55.1 62.2

1.0\w. 56.1 66.2 54.0 60.6

(a) Concept loss weight.

K
GlaS CRAG

APbb APbb
75 APbb APbb

75

1 52.3 60.0 50.0 55.7

2 54.5 64.1 52.9 60.1

4 55.6 64.7 53.4 59.7

6 56.3 65.1 53.7 60.2

8 56.8 66.2 55.1 62.2

10 57.0 66.0 55.1 61.0

12 57.4 66.2 54.2 60.1

16 55.7 65.3 54.5 61.3

(b) Number of concepts.

K
GlaS CRAG

APbb APbb
75 APbb APbb

75

None 52.3 60.0 50.0 55.7

f1(·) 55.0 65.1 53.3 60.0

f2(·) 55.0 64.7 53.7 60.4

f3(·) 56.2 66.4 53.0 59.6

f4(·) 56.8 66.2 55.1 62.2

f5(·) 56.1 65.6 56.5 63.3

(c) Clustering stage.

GlaS Detection

Pretrain
ResNet-18 ResNet-50

APbb APbb
75 APbb APbb

75

Rand. 49.8 57.3 49.9 56.1

Sup. 50.2 56.9 47.9 54.2

MoCo.v2 52.3 60.0 53.1 60.5

b-ConCL 56.8 66.2 57.0 65.9

(d) Backbone capacities.

Table 4: Ablation Study. We study the effect of different hyper-parameters
to b-ConCL. Default settings are marked in gray and MoCo-v2 baselines are

marked by gray. In (a), “\w.” means no warm-up.

weight λ, and Table 4a reports the results. We see a monotonically increasing
performance as λ increases in both datasets, which emphasizes the importance
of concept loss. When no warm-up is used (last row in Tab. 4a), only a slight per-
formance drop is observed, meaning that warm-up is not the key component of
b-ConCL. Warming-up with instance loss (Eq. (2)) is a special case of b-ConCL,
where at the early training stage, each instance is regarded as a concept, and we
then gradually increase the number of concepts as training goes on. Thus, the
overall findings in this ablation support b-ConCL’s advance over MoCo-v2 [4].

Number of concepts K. Here, we investigate how the number of concepts
clustered during pre-training affects performance in downstream tasks. We re-
port the results of different K in Table 4b. b-ConCL performs reasonably well
when K >= 4, with most of performance peaking at K = 8. This demonstrates
the robustness of b-ConCL to the choice of K. Note that the best performance
for the GlaS dataset is higher than our default setting and outperforms all entries
in Table 1, showing the potential room for b-ConCL.

Where to group fi(·). b-ConCL groups concepts from a model’s intermediate
feature maps. Our default setting uses feature maps from stage-4 of a ResNet
[15], denoted as f4(·). We now ablate this choice in Table 4c. Clustering concepts
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from f4(·) and f5(·) works similarly well across two datasets. We choose f4(·)
as the default since it achieves top two performance in both datasets under
both metrics. Besides, b-ConCL exceeds MoCo-v2 [4], whichever stage it groups
concepts from. This again confirms the effectiveness and robustness of b-ConCL.

Longer pre-training. We compare the pre-training efficiency of different SSL
methods w.r.t. training epochs in Figure 1-(b,c) with the numerical results in
Appendix D. Interestingly, we find SimCLR [3] and BYOL [10] fail to benefit
from longer pre-training. This shows the disparity between pathology image data
and natural image data. In the latter field, a monotonically increasing perfor-
mance in downstream tasks is usually observed [16,12,10,2,3]. For MoCo-v1/v2
[12,4], DenseCL [33] and our b-ConCL, we observe the performance consistently
improves as the pre-training epoch increases in GlaS dataset [28]. Note that the
200-epoch b-ConCL surpasses the 800-epoch MoCo-v2 [4] and DenseCL[33] by
a large margin (Fig. 1-(b)). In the CRAG dataset, we observe all pre-training
methods saturate and achieve the best performance in around 200-epoch and
400-epoch. Among them, b-ConCL is still the best (Fig. 1-(c)).

Larger model capacity. Table 4d shows the results of using a larger backbone,
ResNet-50. b-ConCL maintains its leading position. For consistency to the pre-
vious ablation, a 1× schedule is also used here, which could put ResNet-50 at a
disadvantage since it has more parameters to tune in a relatively short schedule.

6 Conclusion and Broader Impact

In this work, we have benchmarked some of the current SSL methods for dense
tasks in pathology images and presented the ConCL framework. Along our ex-
ploration, we have distilled several key components to the success of transferring
to dense tasks: i) dense contrasting matters, ii) correspondence matters, iii) co-
herence matters, and more. Finally, we ended up with a dependency-free concept
generator that directly bootstraps the underlying concepts inherent in the data
and learns from scratch. It was shown to be robust and competitive.

While our initial results are presented only for pre-training and fine-tuning,
many applications could embrace ConCL. One example is to combine it with
few-shot detection or segmentation, where clustering from feature arrays can be
an approach for mining latent objects. Another example can be semi-supervised
learning, where ConCL can be used as an additional branch for unlabeled data.
Beyond pathology image analysis, we also hope ConCL would help in speech or
tabular data, where little priors can be used. Unsupervised clustering in repre-
sentation space is likely to be modality-agnostic. Learned by using contrastive
learning and clustering, fine-grained “concepts” could also be mined from those
data modalities.
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