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A Experimental Details

CryoAI and all the baselines are run on a single Tesla V100 GPU with 8 CPUs.
Fourier Shell Correlations between two voxel grids (aligned with an exhaustive
search over SO(3)× R3) are measured using the software EMAN v2.91 [14].

A.1 Generation of Ground Truth Volume from Atomic Model

The python library gemmi [15] was used to assemble a complete atomic model of
the 80S Ribosome [16] from its small (PDB:3J7A) and large (PDB:3J79) subunits
deposited in different files in the Protein Data Bank (PDB) [3]. The atomic
models of the pre-catalytic Spliceosome (PDB:5NRL) [7] and the SARS-CoV-2
spike ectodomain structure (PDB:6VYB) [2] were used without pre-processing
after being downloaded from the PDB.

ChimeraX [6] was used to simulate a noise-less electrostatic potential volume
discretized on a cubic grid from each atomic model. First, an empty cubic grid
of desired spacing and extent is centered on the center of mass of the atomic
model. Second, a map of same grid spacing is simulated from the atomic model
and resampled on the first map, before being saved to a MRC file [1].

A.2 CryoAI

Each minibatch contains 32 images when L = 128 and 128 images when L = 64.
We use the Adam optimizer [4], with a learning rate of 10−4.

A.3 CryoSPARC

CryoSPARC v3.2 [8] was used. We followed the typical workflow: Import par-
ticle stacks, perform Ab Initio reconstruction before Homogeneous Refinement.
Default parameter values were used except when noted in the text.
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A.4 CryoDRGN2 [18]

All results from cryoDRGN2 are directly reported from the main paper or the
supplementary materials, because source code for cryoDRGN2 is currently not
available.

A.5 CryoPoseNet [5]

Volumes are represented with a voxel grid in real space and the image formation
model is simulated in real space in the decoder. The encoder outputs rotations
Ri in the 6-dimensional space S2×S2. Each minibatch contains 32 images when
L = 128 and 128 images when L = 64. The Adam optimizer [4] is used, with a
learning rate of 10−3.

B Encoder Architecture
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Fig. S1. Architecture of the encoder. The “rotation” layer duplicates each image and
rotates one of the copies. “Gaussian filters” are low-pass filters. “FC” stands for “fully
connected”.

The encoder takes as input an image Yi and outputs a rotation matrix Ri

and a translation vector ti. The rotation is represented in the 6-dimensional
space S2 × S2 [19] and converted in a matrix using the PyTorch3D library [9].
The architecture of the encoder is summarized in Fig. S1. Each image is first
duplicated by a “rotation” layer, which applies an in-plane rotation of π to one
of the duplicates. Those duplicates are then concatenated batch-wise. Each im-
age is filtered by a set of 5 Gaussian filters of size 11 with cutoff frequencies
distributed geometrically between 0.1 and 10 pix−1. Empirically, we found this
multi-scale representation to lead to more robust convergence of our framework
in some cases. This set of filtered images is then fed into five consecutive “Dou-
bleConv” layers generating respectively 64, 128, 256, 1024 and 2048 channels.
A “DoubleConv” layer contains two convolutional layers with kernels of size 3
and a max-pooling layer dividing the height and the width of each image by
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2. The last “DoubleConv” layer is followed by another max-pooling layer after
which the dimension of each image is finally divided by 26 = 64. The feature
vector has, at this point, 8182 dimensions when the input image has a size of
1282 pixels. This feature vector is finally fed into two separated fully connected
neural networks with ReLU activation functions and two hidden layers of sizes
512 and 256.

C Implicit Representation in Fourier Domain

C.1 Electrostatic Potentials in Fourier Space

The electrostatic potential V (r) derives from the distribution of charges follow-
ing the Poisson-Boltzmann equation [10]. We know that the smoothness of the
function V at low-to-medium resolution will translate into a rapid decrease of its
Fourier coefficients V̂ . In particular, if we assume that V is a smooth function of
r, in the sense that it is an α-Lipschitz function, Sampson and Tuy [12] demon-
strated that the norm of its Fourier transform |V̂ (k)| decreases as least in 1/kβ

for all β < α. In Fig. S2, we analyze the Fourier transform of the electrostatic
potential of an adenylate kinase molecule (L = 128). We observe that |V̂ (k)|
indeed decreases rapidly with |k|, which implies that V̂ varies on several orders
of magnitude.

Fig. S2. (Left) V̂ is the Fourier transform of the electron scattering potential of adeny-
late kinase (1283 voxels of size 3.2 Å). The radial mean of |V̂ | decreases following a
power law of |k| and varies over 2 orders of magnitude. (Right) Slice (kx, ky, 0) of |V̂ |,
varying over 5 orders of magnitude.

C.2 Performance of FourierNet on 2D images

We show here that the architecture proposed in Fig. 2 is relevant for repre-
senting the Fourier transform of “natural” 2D signals by comparing it with a
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Fig. S3. Approximations of the Fourier transform of a “natural” image with a
SIREN [13] and a FourierNet, and their inverse Fourier transforms. The SIREN poorly
fits signals that vary over several orders of magnitude.

simple SIREN. Using gradient-based optimization we optimize the weights of a
SIREN [13] and of a FourierNet to approximate the Fourier transform of a real-
world 2D image. For the comparison to be relevant, we use the same number of
optimizable parameters (300k) in the SIREN and in the FourierNet. The results
of the experiment are shown in Fig. S3. SIRENs are built in a way such that the
weights follow a normalized distribution and they can only efficiently represent
normalized functions. The ground truth Fourier transform varies on more than
6 orders of magnitude, leading to a poor reconstruction when taking the inverse
Fourier transform of the approximated function with a SIREN. On the opposite,
the FourierNet can precisely fit the given Fourier transform, leading to a quan-
titatively better reconstruction in primal (real) domain. Artifacts, however, can
still be observed at high frequency.

C.3 Architecture Details

Our neural representation uses two SIRENs with 256 hidden features, map-
ping R3 to R2. The SIREN preceding the exp (see Fig. 2) has 2 hidden layers
while the other one contains 3 hidden layers. The total number of parameters
is only 330,240, which can be compared to the number of parameters used in a
voxel-based representation (slightly faster) of resolution 128: 1283 = 2,097,152
(Table S1 also indicates the runtime on the kinase ideal dataset).

Table S1. Comparison between coordinate-based and voxel-based representations.

Representation Runtime # Parameters (L = 128)

FourierNet 0:09h 330,240

Voxel-grid 0:06h 2,097,152
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D Avoiding Spurious Planar Symmetries

D.1 Handedness Ambiguity in cryo-EM

In cryo-EM, the interaction of the electron beam with the electrostatic potential
V in the orientation Ri corresponds to an orthographic transparent projection
described by

Qi = Q(Ri) : (x, y) 7→
∫
z

V (Ri[x, y, z]
T )dz. (1)

For a set of projections {Qi}, if the associated orientations are not given, there
exists an instrinsic ambiguity on the handedness of the volume V [11]. That is to
say, one cannot distinguish a set of projections obtained with V from any other
set of projections obtained with a “mirrored” version of V .

More specifically, let us fix an orthonormal basis {ex, ey, ez} on R3. We con-
sider a volume V : R3 → R and define

Ṽ (x, y, z) = V (F [x, y, z]T ), (2)

where

F =

 1 0 0
0 1 0
0 0 −1

 . (3)

Ṽ is the mirrored version of V with respect to the (x, y) plane. We also define
the orientations Ri using Euler angles in the “ZY Z” proper Euler convention.
That is, each rotation matrix is parameterized by αi, βi, γi and

Ri = Rαi,βi,γi
=

c1c3 + s1s2s3 c3s1s2 − c1s3 c2s1
c2s3 c2c3 −s2

c1s2s3 − c3s1 c1c3s2 + s1s3 c1c2

 , (4)

where c and s represent cosines and sines (e.g c1 = cosαi). Using this definition,
we can show that

FRi = R̃iF where R̃i = Rαi+π,βi,γi+π. (5)

Therefore,

Q̃i = Q(R̃i) : (x, y) 7→
∫
z

Ṽ (R̃i[x, y, z]
T )dz

=

∫
z

Ṽ (R̃i[x, y,−z]T )dz

=

∫
z

Ṽ (R̃iF [x, y, z]T )dz

=

∫
z

Ṽ (FRi[x, y, z]
T )dz

=

∫
z

V (Ri[x, y, z]
T )dz

= Qi(x, y)

(6)
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The second equality is a change of variable z → −z. In conclusion, the volume V
associated with the set of orientations Ri will give the same set of projections as
the volume Ṽ with the set of orientations R̃i. For a symmetrical volume (V = Ṽ ),
Ri and R̃i will give the same projections (Fig. S4, right).

D.2 Spurious Planar Symmetries and Symmetric Loss

Symmetrical Volume Non-symmetrical Volume

Symmetrized
Loss

Fig. S4. (Left) Reconstructions obtained from the noisy adenylate kinase dataset
(L = 128) obtained with cryoAI and the L2 loss, depending on the range of simu-
lated in-plane angles. The model gets stuck in a spuriously symmetrical state when
poses are generated on all SO(3) but does not when in-plane rotations are restricted
to [−π/2, π/2]. (Right) Heatmap of the L2 loss (per image) and intuition on the role
of the symmetric loss. With a symmetrical volume (V = Ṽ ), the energy landscape is
periodic and shows an energy barrier between two minima. Each black point qualita-
tively represents the predicted Euler angles for one image. Without symmetric loss,
the model is stuck when the predicted angles are evenly distributed between the two
minima. The symmetric loss helps the model to overcome the barrier by creating a
“tunnel” in the energy landscape.

When using our framework with a simple L2 loss

L =
∑
i∈B

∥Ŷi − X̂i∥2, (7)

we observed that the model got stuck in local minima where the volume was
showing spurious symmetry planes (see Fig. 5). In order to verify that this be-
havior was linked to the ambiguity described in the previous section, we gener-
ated a simulated dataset with a αi ∈ [−π/2, π/2] instead of [−π, π]. Doing so,
the encoder only has to predict αi in [−π/2, π/2] (up to a rotation that does
not depend on i) to get a correct reconstruction of the volume and will therefore
be less likely to mis-classify the orientation (αi, βi, γi) as (αi + π, βi, γi + π). As
shown in Fig. S4, our framework is able to accurately reconstruct V with a L2
loss in that case.

We devised the symmetric loss (Eq. (10)) using the observation that the
model was able to quickly converge when supervised on images Yi for which
αi ∈ [−π/2, π/2]. As described in Fig. S5, each image is firstly duplicated and one
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Encoder Decoder

Fig. S5. For each input image, cryoAI produces two copies and rotates one them by
π rad. Two poses are predicted by the decoder and two images are reconstructed by
the decoder. The symmetric loss only penalizes (in Fourier space) the lowest distance
between the reconstructed images and the input image. During the backward pass,
gradients are only backpropagated through the pass that gave the most accurate re-
construction (the green path here). Images are shown in real space for clarity.

of the duplicates is rotated by π (rotation layer in Fig. S1). We know that one of
the two duplicates has an associated in-plane angle αi belonging to [−π/2, π/2]
(for some Euler basis). Each duplicate then goes through the whole pipeline
and the two predicted images are compared with a L2 loss. The symmetric loss
finds the minimum between the two L2 distances. This operation has the effect
of disconnecting the loss from the worse predicted image in the computational
graph. Therefore, at the backward pass, the gradients will only flow through one
the of two paths, actually enabling the model to be supervised on images Yi

for which αi ∈ [−π/2, π/2], without any loss of information. Keeping track of
which path was selected by the loss, we know which latent vector (rotation and
translation) we should consider at the output of the encoder, when estimating
the poses.

Fig. S4 (right) gives an intuition on the role of the symmetric loss. For a
symmetrical volume (V = Ṽ ), the L2 loss is periodic for each image (L(α, γ) =
L(α+ π, γ + π), see D.1). Therefore, there exists two identical global minima in
the energy landscape. The model is stuck when predicted angles are distributed
evenly between the two minima. The symmetric loss creates a “tunnel” in the
energy landscape, helping the model to overcome the energy barrier and dis-
tribute the predicted angles in a way that is consistent with a non-symmetrical
volume.

D.3 Symmetric Loss on PoseVAE

In [18], Zhong et. al. proposed to use a variational auto-encoder to predict the
pose and named their technique “PoseVAE”. Visual reconstruction show that
their reconstructed volume gets stuck in symmetric states. We reproduced their
method and added the symmetric loss thereby enabling PoseVAE to work on
the hand pointer dataset (Fig. S6).
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Vanilla PoseVAE PoseVAE+Sym. Loss

Fig. S6. Comparison between L2 loss (vanilla) and the symmetric loss with the Pose-
VAE method on the hand pointer dataset, both from [18].

E Datasets

Table S2 summarizes the parameters of the simulated and experimental datasets
we used. Fig. S7 (resp. Fig. S8) shows in more details the statistics of the poses,
the defoci and the shifts in the dataset for the simulated spliceosome (resp.
experimental 80S).

Spliceosome (noisy)

Fig. S7. Statistics and samples from the simulated noisy spliceosome dataset.

F Additional Results

F.1 Full Evaluation of Poses

We compared in Fig. 3 the runtime of cryoAI and cryoSPARC to reach a resolu-
tion of 10 Å on the reconstructed volume with the simulated noisy 80S dataset.
In that experiment, cryoAI may reach convergence before processing all images
in the dataset. For the sake of completeness, we run a second experiment, whose
results are shown in Fig. S9. Once cryoAI has reached the threshold resolution
of 10 Å, we use our model in evaluation mode (the computational graph is not
maintained anymore, which decreases the memory cost of a forward pass and
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80S (experimental)

Fig. S8. Statistics and samples from the experimental 80S dataset.

Table S2. Parameters for our datasets. L is the image size, N is the number of images
in the dataset. We give samples of the datasets in Fig. S7 and S8 to show the level of
noise.

Dataset L N Å/pix. Shift? SNR (dB)

Simulated 80S noisy 128 10k-9M 3.77 N 0

Spike ideal 128 50,000 3.00 N ∞
Spike noisy 128 50,000 3.00 N −10

Spliceosome ideal 128 50,000 4.25 Y ∞
Spliceosome noisy 128 50,000 4.25 Y −10

Kinase ideal 64 10,000 3.20 N ∞
Kinase noisy 128 10,000 3.20 N −5

Experimental 80S EMPIAR-10028 256 105,247 1.89 Y NA

enables us to increase the batch size) to predict the poses associated with all
images in the dataset. We report the time required to evaluate the whole dataset
with cryoAI and with cryoSPARC. With cryoAI, we show the time required for
CPU-to-GPU and GPU-to-CPU data transfers since this time could potentially
be compressed with smart data handling. When a solid-state drive (SSD) is avail-
able, cryoSPARC can significantly decrease the time of ab initio reconstruction
with particle caching. We can deduce from Fig. S8, that the runtime per image
is 1.1 ms (2:35h / 9M) for cryoAI vs. 4.7 ms (11:36h / 9M) for cryoSPARC ab
initio without SSD, which goes to show the computational benefits of using an
encoder to estimate poses.

F.2 Experimental 80S

Additional Results. Table S3 and Fig. S10 show quantitative and qualitative
results obtained with the experimental dataset of the 80S. In the absence of a
ground truth volume, we perform a volume reconstruction with cryoAI using
published poses.
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Fig. S9. (Left) Time required to estimate all the poses in the simulated noisy 80S
dataset, with cryoAI and cryoSPARC. CryoAI switches to evaluation mode once a
resolution of 10 Å is achieved on the volume. We indicate the time spent transferring
data between the CPUs and the GPU during evaluation with cryoAI. CryoSPARC-SSD
speeds up computations by caching particles on local SSDs. (Right) Comparison of
workflows. CryoAI converges before seeing the whole dataset and can process rapidly
the remaining images in evaluation mode. CryoSPARC imports (and formats) the
dataset before processing it.

Table S3. Accuracy of pose and volume estimation for experimental 80S data. Resolu-
tion (Res.) is reported using the FSC = 0.143 criterion, in Å (↓). Rotation (Rot.) error
is the median square Frobenius norm between predicted and published poses matrices
Ri (↓). Translation (Trans.) error is the mean square L2-norm, in Å (↓). “cryoAI +
cryoSPARC” refers to cryoAI (ab initio) + cryoSPARC (refinement).

80S (exp.) cryoSPARC cryoDRGN2 cryoAI cryoAI + cryoSPARC

Res. Å 7.54 7.54 7.91 7.54

Rot. 0.0001 0.0008 0.004 0.0001

Trans. 0.0008 0.002 0.005 0.0008

Input resolution. We observed that cryoAI did not properly converge when
fed with input images of size L = 128. Increasing the input size to 256 provides
more information to the encoder for pose estimation but also implies making
2562 queries per image to the FourierNet. For the computation to fit on a 40 Gb
GPU, we need to decrease the batch size to 8, which makes the gradient-descent
too stochastic and prevents the model from converging. Our solution was to
use an image size of 256 on the encoder size and keep an image size of 128
on the decoder size. Once convergence is reached, voxel grids of sizes 2563 or
1283 can be queried in the FourierNet. However, in order to stay consistent
with the image size used during training, we chose to output volumes of sizes
1283. For the comparison with cryoSPARC to be fair, we use images of sizes 256
and downsample the volumes reconstructed by cryoSPARC from 2563 to 1283.
CryoDRGN2 only reports the results obtained with L = 128.
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CryoAI
(ab initio)

CryoAI
(refined)

CryoSPARC
(refined)

CryoAI
(given poses)

CryoSPARC
(ab initio)

80S (experimental)

FS
C

Resolution in pixels

Fig. S10. (Left) FSC reconstruction-to-reconstruction on the experimental dataset of
80S. (Right) Reconstructed volumes visualized with UCSF ChimeraX [6].

F.3 Experimental Precatalytic Spliceosome

We downloaded images of the precatalytic spliceosome from EMPIAR-10180 [7],
and downsampled to D = 128 (4.25 Å/pix). We performed homogeneous re-
construction with cryoAI on the filtered set of 139,722 images available at [17].
Particle images are shifted by their published poses, since the particles in this
dataset are significantly out of center [18]. Results are shown in Fig. S11. We
report the half-to-half FSC. We note the presence of a blurry zone in the recon-
structed volume, which correlates with the zone where the molecule can fold.

Fig. S11. Qualitative reconstruction on the EMPIAR-10180 dataset [17].
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F.4 Simulated Datasets

We show in Fig. S12-S13 quantitative and qualitative results obtained with our
simulated datasets with cryoAI and cryoSPARC. We quantitatively study the
impact on the noise level on a small (10k images) synthetic dataset of the 80S
ribosome (L = 128) in Table S4. We can see that the convergence time increases
with the noise while the final resolution decreases slightly.

FS
C

Frequency FrequencyFrequency Frequency

Fig. S12. Fourier Shell Correlations reconstruction-to-ground-truth on simulated
datasets, with a cutoff at FSC = 0.5.

Table S4. Impact of the noise on the runtime and the resolution with the synthetic
80S dataset.

SNR 0dB −5dB −10dB −15dB

Runtime 0:20h 0:29h 0:45h 2:07h

Res. (pix) 2.15 2.44 2.79 3.21

Molecular graphics and analyses performed with UCSF ChimeraX [6], devel-
oped by the Resource for Biocomputing, Visualization, and Informatics at the
University of California, San Francisco, with support from National Institutes
of Health R01-GM129325 and the Office of Cyber Infrastructure and Computa-
tional Biology, National Institute of Allergy and Infectious Diseases.
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Fig. S13. Qualitative reconstructions on simulated datasets.
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