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Abstract. Manifold learning (ML) aims to seek low-dimensional em-
bedding from high-dimensional data. The problem is challenging on real-
world datasets, especially with under-sampling data, and we find that
previous methods perform poorly in this case. Generally, ML methods
first transform input data into a low-dimensional embedding space to
maintain the data’s geometric structure and subsequently perform down-
stream tasks therein. The poor local connectivity of under-sampling data
in the former step and inappropriate optimization objectives in the latter
step leads to two problems: structural distortion and underconstrained
embedding. This paper proposes a novel ML framework named Deep
Local-flatness Manifold Embedding (DLME) to solve these problems.
The proposed DLME constructs semantic manifolds by data augmenta-
tion and overcomes the structural distortion problem using a smoothness
constrained based on a local flatness assumption about the manifold.
To overcome the underconstrained embedding problem, we design a loss
and theoretically demonstrate that it leads to a more suitable embedding
based on the local flatness. Experiments on three types of datasets (toy,
biological, and image) for various downstream tasks (classification, clus-
tering, and visualization) show that our proposed DLME outperforms
state-of-the-art ML and contrastive learning methods.

1 Introduction

The intrinsic dimension of high-dimensional data is usually much lower and how
to e↵ectively learn a low-dimensional representation is a fundamental problem
in traditional machine learning [32], data mining [1], and pattern recognition [6].
Manifold learning (ML), based on solid theoretical foundations and assumptions,
discusses manifold representation problems under unsupervised conditions and
has a far-reaching impact. However, practical applications of the manifold learn-
ing method are limited in real-world scenarios, and we attribute the reasons to
the following two reasons. (D1) Underconstrained manifold embedding.
ML methods focus on local relationships, while it is prone to distorted em-
beddings that a↵ect the performance of downstream tasks (in Fig. 1 (D2) and
Fig. 6). Paper [18,19] suggests even the most advanced ML methods lose perfor-
mance on downstream tasks due to inadequate constraints on the latent space.
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Fig. 1. Problems in ML and CL. (D1) Local field of view & first-order (similarity/dis-
similarity) constraints ! underconstrained manifold embedding. (D2) complexity of
real-world data (ultra-high dimensionality or non well-sampling) ! broke the local
connectivity of manifold ! structure distortions. (D3) unsmoothed losses function !
local collapse embedding.

The reason is attributed to the limitations of traditional ML methods based on
similarity/dissimilarity loss function design. (D2) Structural distortion. ML
methods focus on handcraft or easy datasets and are not satisfactory in handling
real-world datasets. Most of these approaches use the locally connected graphs
constructed in the input space to define structure-preserving unsupervised learn-
ing loss functions [28,27]. These methods introduce a stringent assumption (local
connectivity assumption (LCA)) which suggests the metric of input data well
describes the data’s neighbor relationship. However, LCA requires the data to
be densely sampled and too ideal in the real world, e.g., pictures of two dogs are
not necessarily similar in terms of pixel metric (in Fig. 1 (D2)).

Meanwhile, Contrastive Learning (CL) is enthusiastically discussed in the
image and NLP fields [3,14,11]. These methods have shown excellent performance
by introducing prior knowledge of the data with the help of data augmentation.
However, we have encountered significant di�culties applying such techniques
to the ML domain. The above methods require a large amount of data for pre-
training [39,42], so it is not easy to achieve good results in areas where data
is expensive (e.g., biology, medicine, etc.). We consider that the core issues can
be summarized as (D3) Local collapse embedding. The unsmoothed loss of
the CL leads to the model that is prone to local collapse and requires a large
diversity of data to learn valid knowledge (in Fig. 2 (D3)).

We want to propose a novel deep ML model to constrain the latent space
better and solve the structural distortion problem with the help of CL. At the
same time, we hope the proposed method avoids the local collapse phenomenon
in the CL. The process of ML perspective includes structural modeling sub-
processes and low-dimensional embedding sub-processes. The structural modeling
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Fig. 2. DLME includes the structure modeling network f✓(·) and low-dim embedding
network g�(·). The f✓(·) maps the input data into structure space to describe the
data relationship. The g�(·) maps the curled manifold into the flat embedding space
to improve the discriminative performance and friendliness to downstream tasks. f✓(·)
and g�(·) are compatible with any neural network.

sub-process obtains the graph structures of data manifolds by measuring the
relationship of each sample pair which serves as the guidance for low-dimensional
embedding. The low-dimensional embedding process maps the provided graph
structures into the embedding space.

We propose a novel deep ML framework named deep local-flatness manifold
embedding (DLME) to solve both problems by merging the advantages of ML
and CL. Firstly, a novel local flatness assumption (LFA) is proposed to obtain a
reasonable latent space by adding a second-order manifold curvature constraint
(for D1), thus improving the performance on downstream tasks. Secondly, a
new neural network framework is designed to accommodate data augmentation
and emhance the net work trainging (for D2). DLME framework accomplishes
the two sub-processes with two networks (f✓(·) and g�(·)) optimized by the
proposed DLME loss between the latent space of f✓(·) and g�(·) in an end-
to-end manner (framework is in Fig. 2). Furthermore, an LFA-based smoother
loss function is designed to accommodate data augmentation. It is based on a
long-tailed t-distribution and guides the network learning through the two latent
spaces (for D3). Finally, we further illustrate mathematically: (1) the di↵erences
between DLME loss and conventional CL loss and (2) why DLME loss can obtain
a locally flat embedding.

In short, DLME makes the following contributions: (1) DLME provides a
novel deep ML framework that utilizes neural networks instead of distance met-
rics in data space to better model structural relationships, thus overcoming struc-
tural distortions. (2) DLME put forward the concept of local flatness and theo-
retically discusses that the DLME loss can enhance the flatness of manifolds and
obtain transfer abilities to downstream tasks. (3) The e↵ectiveness of DLME is
demonstrated on three downstream tasks with three types of datasets (toy, bi-
ological, and image). Experiment results show that DLME outperforms current
state-of-the-art ML and CL methods.
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2 Related Works

In manifold learning, MDS [20], ISOMAP [38], and LLE [33] model the struc-
ture of data manifolds based on local or global distances (dissimilarity) and lin-
early project to the low-dimensional space. SNE [16], t-SNE [27] and UMAP [28]
use normal distribution to define local similarities and apply the Gaussian or t-
distribution kernel to transform the distance into the pair-wise similarity for
structural modeling. They perform the manifold embedding by preserving the
local geometric structures explored from the input data.

In deep manifold learning, Parametric t-SNE (P-TSNE) [26] and Para-
metric UMAP [35] learn more complex manifolds by non-linear neural networks
and can transfer to unseen data. However, they inherit the original structural
modeling strategies in t-SNE and UMAP. Topological autoencoder (TAE), Ge-
ometry Regularized AutoEncoders (GRAE) [7], and ivis [37] abandon the ac-
curate modeling of input data and directly achieve low-dimensional embedding
using distances or contrast training.

In self-supervised contrastive learning, contrastive-based methods [41,3,14,11]
which learns instance-level discriminative representations by contrasting positive
and negative views have largely reduced the performance gap between supervised
models on various downstream tasks. Deep clustering methods is another popu-
lar form of self-supervised pertraining.

3 Methods

3.1 Problem Description and Local Flatness Assumptions

According to Nash embedding theorems [31], we mainly discuss manifolds repre-
sented in Euclidean coordinates and provide the definitions of manifold learning
(ML) and deep manifold learning (DML) in practical scenarios.
Definition 1 (Manifold Learning, ML). Let M be a d-dimensional embed-
ding in Euclidean space Rd and f : M ! RD be a di↵eomorphic embedding
map, for D > d, the purpose of manifold learning is to find {zi}Ni=1

, zi 2 M from
the su�cient sampled(observed) data X = {xi}Ni=1

, xi 2 RD.
Based on Definition 1, the DML aims finding the embedding {zi}Ni=1

, zi 2 M
by mapping g✓ : RD ! Rd with the neural network parameters ✓. Each ML
method designs a loss function based on the specific manifold assumption to
map the observed data {xi} back to the intrinsic manifold {zi}. For example,
LLE [34] assumes that the local manifold is linear, and UMAP [28] assumes that
the local manifold is uniform. We propose a novel assumption, considering the
nature of the manifold is local flatness.
Assumptions 1 (Local Flatness Assumption, LFA). Let M be a manifold,
and {xi} be a set of observations in the manifold. We expect each data point and
its neighbors to lie on or close to a local flatness patch. The mean curvature KM
is introduced to quantify the flatness of high-dimensional manifolds according
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to the Gauss-Bonnet theorem [36],

KM =
X

xi2X

k(xi)

k(xi) =2⇡�(M)� ✓(x|H1(xi)|, xi, x0)�
X

j2{0,1,··· ,|H1(xi)|�1}

✓(xj , xi, xj+1),
(1)

where �(M) is Euler Characteristic [13]. The H1(xi) is the hop-1 neighbor of
xi, and ✓(xi, xj , xk) is the angle of three point xi xj , xk.

From first-order constraint to second-order curvature constraint.
ML methods (e.g., LLE and UMAP) design distance-preserving or similarity-
preserving objective functions, hoping to guarantee the first-order relationship
of the data. However, first-order relation preservation is not a tight enough con-
straint if the local structure of the manifold is simple, thus leading to undercon-
strained manifold embedding in ML. We introduce a second-order (curvature)
constraint to solve the distortion problem. Due to the expensive complexity of
second-order losses, we directly minimize the manifold’s curvature by a mundane
flatness assumption.

The Empirical benefits of LFA. Similar to most ML and CL methods,
LFA is an assumption of latent space, which is beneficial for downstream tasks. In
the case of the single-manifold, the assumption of ‘Local Flatness’ reduces curling
in the unsuitable embedding space (see Fig. 6), thus avoiding distortion during
embedding. In the case of the multi-manifolds, assuming ‘Local Flatness’ can
simplify the discriminative relations of multi-manifolds. Therefore, the proposed
assumption can avoid representation collapse. Meanwhile, it also reduces the
possibility of di↵erent manifolds overlapping so that the downstream can be
accomplished by a simple linear model easily.

3.2 DLME Framework

As shown in in Fig. 3, the DLME framework contains two neural networks (f✓
and g�) and a DLME loss function LD. The network f✓ achieves structural
modeling in its structure space Rdy , and the network g� learns low-dimensional
embedding in the embedding space Rdz . The DLME loss is calculated based on
the Aij and the pairwise similarity in spaces Rdy and Rdz used to train two
neural networks from scratch. The Aij indicate the homologous relationships, if
xi and xj are augmentations of the same original data, then Aij = 1 else Aij = 0.

Data augmentation for solving structural distortion. ML methods
have di�culty e�ciently identifying neighboring nodes, causing structural dis-
tortions, when dealing with complex and not well-sampled data. DLME solves
this problem with a priori knowledge provided by data augmentation. Data aug-
mentation schemes have been widely used in self-supervised contrastive learn-
ing (CL) to solve problems in CV and NLP. From the ML perspective, data
augmentation is a technique to make new observations in the intrinsic manifold
based on prior knowledge. Since data augmentation changes the semantics of
the original data as little as possible, it generates specific neighborhood data
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Fig. 3. The framework of DLME. (xi, xj) is a pair of input sample, and the neighbor
relationship Aij indicates whether xi and xj are homologous pairs. The red dashed line
marks the direction of the gradient back-propagation.

for each isolated data when the local connectivity of ML data is broken. DLME
trains a neural network f✓(·). The f✓(·) is guided by data augmentation and
loss functions to map the data into a latent space that better guarantees local
connectivity.

Data augmentation is designed based on domain knowledge. For example,
in CV datasets, operations such as color jittering [43], random cropping [4],
applying Gaussian blur [9], Mixup [24,21,25] are proven useful. In biology and
some easy datasets, linear combinations ⌧lc(·) in k-nearest neighbor data is a
simple and e↵ective way. The linear combinations is

⌧lc(x) = rx+ (1� r)xn, xn ⇠ KNN(x), (2)

where xn is sampled from the neighborhood set of data x, and r 2 [0, 1] is a
combination parameter. For special domain data, the prior knowledge in the
domain can be used to establish data augmentation.

The forward propagation of DLME is,

yi = f✓(xi), yi 2 Rdy , xi ⇠ ⌧(x), xj ⇠ ⌧(x),

zi = g�(yi), zi 2 Rdz , dz < dy,
(3)

where xi and xj sampled form di↵erent random augmentation of raw data x,
the dy and dz are the dimension number of Rdy and Rdz .

The loss function of DLME is,

LD=Exi,xj

"
D
✓

⇣
R(Aij)d

y
ij , ⌫y

⌘
,
⇣
dzij , ⌫z

⌘◆#
, (4)

where dyij = d(yi, yj), dzij = d(zi, zj) and dyij , d
z
ij are the distance metrics of

data node i and j in spaces Rdy and Rdz . The two-way divergence [22] D(p, q)
is introduced to measure the dis-similarity between two latent spaces,

D (p, q) = p log q + (1� p) log(1� q), (5)

where p 2 [0, 1]. Notice that D(p, q) is a continuous version of the cross-entropy
loss. The two-way divergence is used to guide the pairwise similarity of two latent
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spaces to fit each other. The e↵ect of the loss function on the two networks will
be discussed in Sec 3.3 and Sec 3.4.

The structure space requires a larger dimensionality to accurately measure
data relationships, while the embedding space requires su�cient compression of
the output dimension. Thus the t-distribution kernel function is used to calculate
the pairwise similarity. The di↵erent degrees of freedom ⌫y and ⌫z in di↵erent
spaces are essential to enhance the flatness of embedding space (in Sec 3.4).

 (d, ⌫) =
Gam

�
⌫+1

2

�
p
⌫⇡Gam

�
⌫
2

�
 
1 +

d2

⌫

!� ⌫+1
2

, (6)

where Gam(·) is the Gamma function, and the degrees of freedom ⌫ controls the
shape of the kernel function.

DLME design R(Aij) to integrate the neighborhood information in Aij .

R(Aij) = 1 + (↵� 1)Aij =

⇢
↵ if Aij = 1
1 otherwise

, (7)

where ↵ 2 [0, 1] is a hyperparameters. If xi is the neighbor of xj , the distance in
structure space will be reduced by ↵, and the similarity of xi and xj will increase.

3.3 Against Local Collapse by a Smoother CL Framework

The CL loss in self-supervised contrastive learning (CL) frameworks is

LC = �Exi,xj

h
Aij log (d

z
ij)+(1�Aij) log(1�(dzij))

i
, (8)

where similarity kernel function (dzij) is defined in Eq.(6). The CL is not smooth
and can be analogous to bang-bang control [8] in control systems. Because the
learning target of the point pair will switch between log (dzij) and log(1�(dzij))
with the change of Aij .

The proposed framework is a smoother CL framework because DLME com-
promises the learning process and avoids sharp conflicts in gradients. To compare
the di↵erence between the DLME loss and the CL loss, we assume that g�(·)
satisfies K-Lipschitz continuity [10], then

dzij = k⇤dyij , k
⇤ 2 [1/K,K], (9)

where k⇤ is a Lipschitz constant. The di↵erence of CL loss and DLME loss is

|LD�Lc| = Exj ,xj

"
Aij�

⇣
(1+(↵�1)Aij)k

⇤dzij

⌘
log(

1

(dzij)
�1)

#
, (10)

The detailed derivation is provided in Appendix B. If i and j are neighbors,
Aij = 1, when ↵ ! 0, then ↵k⇤dzij ! 0 and then 1 � (↵k⇤dzij)! 0, finally we
have the |LD�Lc| ! 0. When ↵ ! 0, the two losses have the same e↵ect on
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the samples within each neighbor system. When ↵ > 0, the optimal solution
of LD retain a remainder about the embedding structure dzij (in Appendix)
which indicates that the DLME loss does not maximize the similarity of the
neighborhood as the CL loss, but depends on the current embedding structure.
Eq.(10) indicates that the DLME loss is smoother and can preserve the data
structure in the embedding space. When ↵ > 0, the DLME loss is a smooth
version of the CL loss, which causes a minor collapse of local structures.

Generally, f✓(·) explores the structure of the prior manifolds defined by the
given data augmentations smoothly, which can model the manifold structure
more accurately than previous ML and DML methods.

3.4 Why DLME Leads to Local Flatness

This section discusses why the DLME loss optimizes the local curvature to be
flatter. Network f✓(·) maps the data in the input space to the structure space for
accurate structural modeling, although it is not guaranteed to obtain locally flat
manifolds. Curling can cause overlap and deformation of the manifold, which can
cause degradation of downstream task performance. To improve the performance
in downstream tasks, we need to obtain an embedding space as flat as possible.
The simplest linear methods can perform the discriminative tasks (classification,
clustering, visualization).

DLME loss can enforce the flatness of the manifold in the embedded space.
Similar to t-SNE, we use the kernel function of the long-tailed t-distribution to
transform the distance metric into similarity. Further, we apply di↵erent ‘degrees
of freedom’ parameters ⌫ in the two latent spaces. The di↵erences in the degree
of freedom ⌫ form two di↵erent kernel functions (d, ⌫y) and (d, ⌫z), and the
di↵erence of kernel functions will make the manifold in the embedding space
flatter during the training process.

As described by Eq. (1), we use the local curvature description of the discrete
surface to represent the flatness of the manifold. Next, we theoretically discuss
why DLME’s loss can minimize the local curvature. We use the Push-pull prop-
erty to describe the action of DLME loss on the embedding space.

Lemma 1 (Push-pull property). let ⌫y > ⌫z and let dz+ =
�1((d, ⌫y), ⌫z) be the solution of minimizing LD. Then exists dp so that
(dy � dp)(dz+ � dy) > 0.

The proof of lemma 1 is detailed in Appendix . Lemma 1 describes the push-
pull property of the DLME loss between sample pairs in the embedding space.
LD decreases the distance between sample pairs within the threshold dp (as
similar pairs) and increases the distance between sample pairs beyond dp (as
dis-similar pairs), which shows pushing and pulling e↵ects between two kinds of
sample pairs. Next, we prove that the DLME loss minimizes the average local
curvature of the embedding based on the push-pull property.
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Fig. 4. Push-pull property: if dy < dp then dz+ < dy (in yellow), if dy > dp then
dz+ > dy (in pink).

Lemma 2. Assume f✓(·) satisfies HOP1-2 order preserving:

max({dyij}j2H1(xi)
) < min({dzij}j2H2(xi)

) Then K
z+
M < K

y
M where

K
y
M is the mean curvature in the structure space, and K

z+
M is the mean

curvature optimization results of LD in the embedding space.

Lemma 2 indicates that the DLME loss encourages the flatness of the em-
bedding space by decreasing the local average curvature. As Fig. 6, Lemma 2
describes that the optimization result of DLME loss is to flatten the manifold
of the embedded space, which means that we can represent the data in a latent
space as linear as possible. DLME’s pseudo-code is shown in Algorithm 1.

Algorithm 1 The DLME algorithm

Input: Data: X = {xi}|X|
i=1, Learning rate: ⌘, Epochs: E, Batch size: B, ↵, ⌫y, ⌫z,

Network: f✓, g�, Output: Graph Embedding: {ei}|X|
i=1.

1: while i = 0; i < E; i++ do

2: X+ X [ ⌧(X). # Data augmentation
3: while b = 0; b < [|X |/B]; b++ do

4: {xa,1, xa,2⇠X+}a2B, B = {1, · · · , B}; # Sampling
5: {ya,0, ya,1 f✓(xa,0), f✓(xa,1)}a2B; # Map to Rdy

6: {za,0, za,1 g�(ya,0), g�(ya,1)}a2B; # Map to Rdz

7: {dya,ij d(ya,0, ya,1)}a2B; {dza,ij d(za,0, za,1)}a2B; #Cal. dist in Rdy & Rdz

8: {Sy
a (R(Ba,ij)d

y
a,ij,⌫y)}a2B; {Sz

a (dza,ij , ⌫z)}a2B; #Cal. sim in Rdy & Rdz

9: LD E({D(Sy
a , S

z
a)}a2B) by Eq. (4); # Cal. loss function

10: ✓ ✓ � ⌘ @LD
@✓ , � �� ⌘ @LD

@� ; # Update parameters
11: end while

12: end while

13: {zi f✓(g�(xi))}i2{1,2,··· ,X}; # Cal. the embedding result
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4 Experiments

In this section, we evaluate the e↵ectiveness of the proposed DLME on four
downstream tasks (classification/linear test, clustering, visualization) and ana-
lyze each proposed component with the following questions.
(Q1) How to intuitively understand structural distortions? (Q2) Does DLME
overcome structural distortions? (Q3) How to intuitively understand undercon-
strained manifold embedding? (Q4) Does DLME overcome underconstrained
manifold embedding and obtain locally flat embeddings? (Q5) How much does
DLME improve the performance of downstream tasks on ML and CL datasets?
(Q6) Can smoother losses bring better performance to CL?

4.1 Visualization of Structural Distortions (Q1,Q2)

Experimental setups. This section illustrates structural distortions on image
datasets and experimentally demonstrates that DLME can overcome structural
distortions by introducing prior knowledge of data augmentation. In this experi-
ment, all the data are mapped to a 2-D latent space to facilitate the visualization.
All compared ML methods (t-SNE, PUMAP, ivis, and PHA) will fail in the CI-
FAR dataset; we only show the results of UMAP.

Structural Distortions. The ML approach uses distance metrics from ob-
servations to model the structure. The complexity of the data (data with di-
mensionality and not-well sampling) leads to a failure of the distance metric,
confusing the semantic nearest neighbors and subsequently destroying local con-
nectivity, ultimately creating structural distortions in the ML process. DLME
constructs a smoother CL framework with the help of data augmentation. The
proposed framework obtains richer prior knowledge with data augmentation. It
maps the data into the latent space for structural modeling with neural net-
works, which can achieve more accurate modeling and thus overcome structural
distortion.

4.2 Visualization of Underconstrained Manifold Embedding
(Q3,Q4)

This section illustrates underconstrained manifold embedding with toy datasets
and experimentally demonstrates the DLME potential to solve this problem
by constraining the local curvature. Experimental setups. The experiments
include two 3D toy datasets, TwainSwissRoll and StarFruit. The TwainSwissRoll
dataset has two tangled but disjoint SwissRolls. The StarFruit dataset has a
locally curved surface. The input data and outputs of compared methods are
shown in Fig. 6. The details of the datasets and outputs are shown in Appendix.

Underconstrained manifold embedding. Fig. 6 shows that the compared
ML methods produce bends that should not exist. We attribute these bends to
inadequate constraints on the loss function. These bends a↵ect downstream tasks
such as classification and clustering. In addition, these bends may cause more
significant damage when the data situation is more complex.
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Fig. 5. (left) The Bar plot of probabilities of identical label v.s. rank distance. A higher
left end of the bar plot indicates a higher probability of the same label for the nearest
neighbor sample, implying that local connectivity is guaranteed. (right) The results
of ML methods (UMAP) for four image datasets. For complex data, local connectiv-
ity cannot be guaranteed, leading to the embedding failure of the ML method. The
proposed DLME method has better embedding results on the more complex CIFAR
dataset.

Benefits of local flat embedding. Since a flat localization is assumed,
DLME tries to obtain a locally flat embedding. The statistics of the mean cur-
vature show that DLME can receive a flatter local manifold. We consider that a
flat embedding possesses practical benefits. A flatter local manifold can achieve
better performance in downstream tasks and is more suitable for interpretable
analysis of deep models. For example, it is easy to distinguish two sub-manifolds
of TwainSwissRoll using a linear classifier, and it is easy to perform regression
tasks on StarFruit.

4.3 Comparison on Traditional ML Datasets (Q5, Q6)

Experimental setups: The compared methods include two MLmethods (UMAP [28],
t-SNE (tSNE) [15]) and three deep ML methods (PHATE (PHA) [29], ivis
[37] and parametric UMAP (PUM) [35].) The experiments are on six image
datasets (Digits, Coil20, Coil100, Mnist, EMnist, and KMnist) and six biological
datasets (Colon, Activity (Acti), MCA, Gast, SAMUSIK (SAMU), and HCL).
For a fair comparison, all the compared methods map the input data into a 2D
space and then evaluated by 10-fold cross-validation. The MLP architecture of
f✓ is [-1,500,300,80], where -1 is the dimension of input data. The MLP architec-
ture of g� is [80,500,80,2]. The comparison results of linear SVM and k-means are
shown in Table 1. Details of datasets, baseline methods, and evaluation metrics
are in Appendix.

Analyse: DLME has advantages over all 12 datasets, and DLME is 5%
higher than other methods in 14 items (24 items in total). We observe that the
proposed DLME has advantages in classification and clustering metrics. We sum-



12 Zelin Zang et al.

InSXW daWa InSXW daWa

PHATE

UMAP

DLME (RXUV)PHATE

UMAP

DLME (RXUV)

(a) TZainSZiVVRoll DaWaVeW (b) SWarFrXiW DaWaVeW

Fig. 6. Average local curvature and scatter plot on TwainSwissRoll and StarFruit
dataset. The two examples indicate that traditional ML produces distorted embeddings,
which a↵ect the performance of downstream tasks. In contrast, DLME can get as flat
embeddings as possible by optimizing the local curvature.
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Fig. 7. Visualization results of biological datasets, simple image datasets and complex
image datasets. The red circle indicates the clusters confused by the baseline method.

marize the reasons why DLME has performance advantages as follows. (1) Com-
pared with ML methods, DLME overcomes structural distortions to a certain
extent to model the structure more accurately. (2) DLME reduces the overlap
of di↵erent clusters, improving the performance of classification and clustering.
(3) The locally flat embeddings learned by DLME are linearly characterized and
more suitable for the linear model.

4.4 Comparison on CL Datasets (Q5, Q6)

Experimental setups: Due to structural distortions, ML methods fail in CV
Datasets, and our comparison is limited to the CL and deep clustering (DC)
domain. The compared methods include CL methods ( NPID [41], ODC [44],
SimCLR [3], MOCO.v2 [14] and BYOL [11] ) and deep clustering methods (
DAC [12], DDC [2], DCCM [40], PICA [17], CC [23], and CRLC [5] ). The
datasets include six image datasets: CIFAR10, CIFAR100, STL10, TinyIma-
geNet, ImageNet-Dog and ImageNet100. The f✓ is ResNet50, and g� is MLP
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Table 1. Performance comparison on 12 datasets. Bold denotes the best result and
Underline denotes 5% higher than others.

Classification Accuracy (linear SVM) Clustering Accuracy (K-means)

tSNE UMAP PUM ivis PHA DLME tSNE UMAP PUM ivis PHA DLME

Digits 0.949 0.960 0.837 0.767 0.928 0.973 0.938 0.875 0.763 0.726 0.794 0.956

Coil20 0.799 0.834 0.774 0.672 0.828 0.909 0.763 0.821 0.722 0.612 0.655 0.899

Coil100 0.760 0.756 N/A 0.542 0.653 0.952 0.763 0.785 N/A 0.492 0.515 0.944

Mnist 0.963 0.966 0.941 0.671 0.796 0.976 0.904 0.801 0.772 0.466 0.614 0.977

EMnist 0.420 0.588 0.384 0.190 0.416 0.657 0.478 0.537 0.363 0.178 0.352 0.641

KMnist 0.738 0.656 0.674 0.547 0.607 0.782 0.586 0.668 0.706 0.522 0.594 0.712

Colon 0.932 0.893 0.918 0.942 0.930 0.947 0.862 0.847 0.861 0.922 0.855 0.924

Acti 0.861 0.844 0.849 0.831 0.798 0.921 0.784 0.639 0.783 0.681 0.679 0.898

MCA 0.719 0.675 0.667 0.634 0.552 0.774 0.475 0.532 0.464 0.443 0.414 0.563

Gast 0.821 0.846 0.706 0.687 0.676 0.918 0.534 0.546 0.512 0.427 0.523 0.598

SAMU 0.556 0.678 0.599 0.625 0.675 0.700 0.335 0.387 0.345 0.328 0.511 0.572

HCL 0.874 0.863 0.767 0.454 0.393 0.874 0.689 0.743 0.619 0.308 0.263 0.753

Table 2. The linear-test Performance comparison on image datasets.

Dataset CIFAR10 CIFAR100 STL10 TinyImageNet ImageNet100

NPID 0.827 0.571 0.825 0.382 0.721
ODC 0.799 0.521 0.734 0.287 0.645

SimCLR 0.882 0.574 0.869 0.384 0.756
MoCo.v2 0.886 0.614 0.856 0.374 0.780
BYOL 0.881 0.644 0.887 0.388 0.785

DLME 0.913 0.661 0.901 0.449 0.793

DLME-A1 0.910 0.653 0.881 0.428 0.785
DLME-A2 0.902 0.626 0.879 0.432 0.791
DLME-A3 0.888 0.624 0.873 0.401 0.783

Table 3. The clustering Performance comparison on image datasets.

Dataset CIFAR10 CIFAR100 STL10 TinyImageNet ImageNet-Dog

DAC 0.522 0.238 0.470 0.066 0.219
DCCM 0.623 0.327 0.482 0.108 0.321
PICA 0.696 0.337 0.713 0.098 0.352
CC 0.747 0.429 0.850 0.140 0.445

CRLC 0.799 0.425 0.818 0.153 0.461

DLME 0.822 0.441 0.883 0.182 0.483

DLME-A1 0.792 0.417 0.872 0.145 0.479
DLME-A2 0.783 0.421 0.859 0.133 0.480
DLME-A3 0.779 0.417 0.852 0.134 0.477
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with architecture of [2048, 256]. We use the same settings as SimCLR for the
linear test and use the same settings as CC[23] for deep clustering. The results
are shown in Table 2 and Table 3 and the detailed setup is in Appendix .

Analyse: In all datasets, DLME outperformed the SOTA method by a large
margin. And it beat the other techniques by 2% in 6 items (out of 10 items).
The reason is the smoother DLME framework avoids problems such as falling
into local collapse. Another reason is locally flat embeddings learned by DLME
are linearly characterized and more suitable for a linear model.

Ablation Study. We designed ablation experiments to demonstrate the ef-
fectiveness of DLME. Ablation 1 (DLME-A1), we detach the LD’s gradient
on the model f✓(·) and replace it with the CL loss (in Eq.(8)). The model is
divided into two separate parts. One obtains embedding with CL, and the other
emphasizes the flatness of manifold with similarity loss. Ablation 2 (DLME-
A2), based on DLME-A1, We ablate the t-distribution kernel and use a standard
distribution kernel in both spaces. Ablation 3 (DLME-A3), finally, we fur-
ther ablate the structure of the two networks and transform the model into a
CL method. The results of ablation experiments are in Table 2 and Table 3.
The experimental results show that the three critical operations of DLME can
improve the performance in complex manifold embedding tasks.

4.5 Visualization of ML and CV Datasets (Q5, Q6)

DLME is an appropriate method for visualizing high-dimensional data. A typi-
cal setup for data visualization using DLME is to embed the data directly into
2D space. As the selected visualization results are shown in Fig. 7, DLME sig-
nificantly outperforms other methods in terms of visualization results. Because
the distortion problem is overcome, the DLME embedding results in a mini-
mum mixture of di↵erent clusters with clear boundaries. The detailed results
are shown in Appendix.

5 Conclusion

We propose Deep Local-flatness Manifold Embedding (DLME), a novel ML
framework to obtain reliable manifold embedding by reducing distortion. In the
experiments, by demonstrating the e↵ectiveness of DLME on downstream clas-
sification, clustering, and visualization tasks with three types of datasets (toy,
biological, and image), our experimental results show that DLME outperforms
SOTA ML & CL methods.
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