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Abstract. For retinal image matching (RIM), we propose SuperRetina,
the first end-to-end method with jointly trainable keypoint detector and
descriptor. SuperRetina is trained in a novel semi-supervised manner.
A small set of (nearly 100) images are incompletely labeled and used to
supervise the network to detect keypoints on the vascular tree. To attack
the incompleteness of manual labeling, we propose Progressive Keypoint
Expansion to enrich the keypoint labels at each training epoch. By uti-
lizing a keypoint-based improved triplet loss as its description loss, Su-
perRetina produces highly discriminative descriptors at full input image
size. Extensive experiments on multiple real-world datasets justify the
viability of SuperRetina. Even with manual labeling replaced by auto
labeling and thus making the training process fully manual-annotation
free, SuperRetina compares favorably against a number of strong base-
lines for two RIM tasks, i.e. image registration and identity verification.

Keywords: Retinal image matching, trainable detector and descriptor,
progressive keypoint expansion

1 Introduction

This paper is targeted at retinal image matching (RIM), which is to match color
fundus photographs based on their visual content. Matching criteria are task de-
pendent. As the retinal vasculature is known be unique, stable across ages and
naturally anti-counterfeiting [28], retinal images are used for high-security iden-
tity verification [19]. In this context, two retinal images are considered matched
if they were taken from the same eye. RIM is also crucial for retinal image regis-
tration, which is to geometrically align two or more images taken from different
regions of the same retina (at different periods). Aligned images can be used
for wide-field imaging [4], precise cross-session assessment of retinal condition
progress [8], and accurate laser treatment on the retina [31]. RIM is thus a
valuable topic in computer vision.

Developing a generic method for RIM is nontrivial. Due to varied factors in
fundus photography such as illumination condition, abnormal retinal changes
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Fig. 1: Retinal image matching by different methods. Keypoints corre-
sponding to geometrically valid/invalid matches are shown in green/red dots.
The first three rows are positive pairs, i.e. retinal images taken from the eye.
More green dots and fewer red dots on the positive pairs indicate better match-
ing. For the negative pair, fewer green is better. Best viewed on screen.

and natural motions of the fixating eye, retinal images of the same eye may vary
significantly in terms of their visual appearance. Common lesions in diabetic
retinopathy such as microaneurysm and intraretinal hemorrhage appear as dark
dots, while cotton-wool spots look like white blobs [34]. The classical SIFT de-
tector [17], which finds corners and blobs in a scale-invariant manner, tends to
respond around the lesions and the boundary between the circular foreground
and the dark background, see Fig. 1. SIFT keypoints detected at these areas
lack both repeatability and reliability.

Recently, GLAMpoints [31] is proposed as a trainable detector for RIM.
GLAMpoints learns to detect keypoints in a self-supervised manner, exploiting
known spatial correspondence between a specific image and its geometric trans-
formation produced by a controlled homography5. Such full self-supervision has
a downside of having many detections on non-vascular areas that are adverse to
high-resolution image registration, see Fig. 1. The non-vascular areas are also
unreliable for identity verification. As GLAMPoints is a detector, an external
descriptor, e.g . rootSIFT [3], is needed. To the best of our knowledge, RIM with
jointly trainable keypoint detector and descriptor is non-existing.

We depart from SuperPoint [7], a pivotal work on natural image matching
with end-to-end keypoint detection and description. SuperPoint is a deep net-
work with one encoder followed by two independent decoders. Given a h × w
gray-image input, SuperPoint first uses the encoder to generate a down-sized fea-
ture map of h

8 ×
w
8 ×128. With the feature map as a common input, one decoder

produces a full-sized keypoint detection map, while the other decoder produces
256-dimensional descriptor per pixel on a h

8 ×
w
8 image. Despite its encouraging

performance on natural image matching, directly applying SuperPoint for RIM is

5 As fundus images depict small area of retina, it is justified to apply the planar as-
sumption in generating homographies [4, 31].
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problematic due to the following issues. First, in order to optimize its descriptor,
SuperPoint has to compute hinge losses between all pixels, resulting in a com-
plexity of O((w×h)2) for both computation and memory footprint. Such a high
complexity significantly limits the input image size, in particular for training,
making SuperPoint suboptimal for high-resolution retinal image registration.
Second, the description loss is computed without taking the detected keypoints
into account, making the learned descriptors less discriminative for disentangling
genuine pairs from impostors for identity verification. Lastly, while the loss is
computed on the h

8 ×
w
8 × 256 descriptor tensor, the tensor has be upsampled

to h×w× 256 to provide descriptors for keypoints detected at the original size.
Such an inherent discrepancy between descriptors used in the training and the
inference stages affects the performance, see our ablation study. More recent ad-
vances such as R2D2 [21] and NCNet [23] have similar or other issues, as we will
discuss in Section 2, motivating us to develop a novel method for RIM.

We propose SuperRetina, a semi-Supervised deep learning method for joint
detection and description of keypoints for Retinal image matching. In contrast
to [7, 21, 31] which limit themselves to fully self-supervised (without using any
manual annotation), we opt to initialize the training procedure with a relatively
small set of (nearly 100) images, sparsely labeled to make the labelling cost well
affordable. Such small-scale, incomplete yet precise supervision lets SuperRetina
quickly focus on specific vascular points such as crossover and bifurcation that
are more stable and repeatable. To overcome the incompleteness of manual la-
beling, we propose Progressive Keypoint Expansion (PKE) to enrich the labeled
set at each training epoch. This allows SuperRetina to detect keypoints at pre-
viously untouched areas of the vascular tree. Moreover, we modify the network
architecture of SuperPoint to directly produce a full-sized descriptor tensor of
h× w × 256, see Fig. 2b. Consequently, our description loss is a keypoint-based
improved triplet loss, which not only leads to highly discriminative descriptors
but also has a quadratic complexity w.r.t. the number of detected keypoints. As
this number is much smaller than h × w, SuperRetina allows a larger input for
training. Hence, SuperRetina detects keypoints that are spread over the image
plane and at the same time on the vascular tree, making it versatile for multiple
RIM tasks. In sum, our contributions are as follows:
• We propose SuperRetina, the first end-to-end method for RIM with jointly
trainable keypoint detector and descriptor.
• We propose PKE to address the incompleteness of manual labeling in semi-
supervised learning. To enlarge the input size for both training and inference
and for highly discriminative descriptors, we re-purpose and adapt a triplet loss
as our keypoint-based description loss.
• Extensive experiments on two RIM tasks, i.e. retinal image registration and
retina-based identity verification, show the superior performance of SuperRetina
against the previous methods including three dedicated to RIM, i.e. PBO [19],
REMEP [8] and GLAMpoints [31], and four generic, i.e. SuperPoint [7], R2D2
[21], SuperGlue [25] and NCNet [23]. Code is available at GitHub6.

6 https://github.com/ruc-aimc-lab/SuperRetina

https://github.com/ruc-aimc-lab/SuperRetina
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2 Related Work

Progress on Retinal Image Matching. Previous works on RIM are tailored
to a specific task, let it be single-modal [8, 31] or multi-modal [1, 15, 33] im-
age registration, or identity verification [2,14,19]. For retinal image registration,
LoSPA [1] and DeepSPA as its deep learning variant [15] focus on describing im-
age patches by step pattern analysis (SPA), with keypoints found by detecting
intersection points. Designed for feature matching between multi-modal retinal
images of the same eye, the SPA descriptor lacks discrimination in revealing
eye identity. GLAMpoints [31] is trained in a labeling-free manner by exploiting
spatial correspondences between a given image and its geometric transforma-
tions. However, such full self-supervision tends to detect many keypoints on
non-vascular areas. REMPE [8] first finds many candidate points by vessel bi-
furcation detection and the SIFT detector [17], and then performs point pattern
matching (PPM) based on eye modelling and camera pose estimation to iden-
tify geometrically valid matches. The PPM algorithm involves expensive online
optimization, requiring over three minutes to complete a registration, and thus
putting its practical use into question.

For identity verification, existing works focus on detecting a few landmarks
on the vascular tree, mainly crossover and bifurcation points known to be unique
and stable across persons and ages [2, 14, 19]. With the detected landmarks as
input, PPM is then performed. PBO [19] improves PPM by considering princi-
pal bifurcation orientations. BGM [14] formulates the retinal vasculature as a
spatial graph and consequently implements PPM by graph matching. Aleem et
al . [2] enhance point patterns of a given image based on spatial relationships
between the landmarks, and then vectorize the patterns to a matching tem-
plate. The number of keypoints required for identity verification is much less
than that for image registration. Probably due to this reason, we see no attempt
to re-purpose an identity verification method for image registration. In short,
while there are few separated efforts on trainable detector (GLAMpoints) and
descriptor (DeepSPA) for RIM, a joint effort remains missing.

Progress on Natural Image Matching. In contrast to RIM, a number of
end-to-end methods exist for natural image matching, including SuperPoint [7],
R2D2 [21], SuperGlue [25], NCNet [23], LoFTR [29], COTR [10], PDC-Net [32],
etc. As the newly developed methods focus on natural scenes where detecting
repeatable keypoints is difficult due to the lack of repetitive texture patterns, we
notice a new trend of keypoint-free image matching. R2D2 softens the notion of
keypoint detection by producing two probalistic maps to measure the reliabil-
ity and the repeatability per pixel. In NCNet, all pairwise feature matches are
computed, resulting in a quadratic complexity w.r.t. the number of pixels. As a
consequence, the feature map used for matching has to be substantially down-
sized to make the computation affordable. LoFTR improves over SuperGlue with
transformers to exploit self-/inter- correlations among the dense-positioned local
features. These dense features are powerful for finding correspondences in low-
texture areas, desirable for scene image matching. However, this will produce
many unwanted matches in non-vasuclar areas when matching retinal images.
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3 Proposed Method

SuperRetina is a deep neural network that takes as input a (gray-scale) h × w
retinal image I, detects and describes keypoints in the given image with high
repeatability and reliability in a single forward pass. We describe the network
architecture in Section 3.1, followed by the proposed training algorithms in Sec-
tion 3.2. The use of SuperRetina for RIM is given in Section 3.3.

3.1 Network Architecture

We adapt the SuperPoint network. Conceptually, our network consists of an
encoder to extract down-sized feature maps F from the given image I. The
feature map is then fed in parallel into two decoders, one for keypoint detection
and the other for keypoint description, which we term Det-Decoder and Des-
Decoder, respectively. The Det-Decoder generates a full-sized probabilistic map
P , where Pi,j indicates the probability of a specific pixel being a keypoint, i =
1, . . . , h and j = 1, . . . , w. The Des-Decoder produces a h × w × d tensor D,
where Di,j denotes a d-dimensional descriptor. Note that in the inference stage,

Non-Maximum Suppression (NMS) is applied on P to obtain a binary mask P̂
as the final detection result. We formalize the above process as follows:

F ← Encoder(I),
P ← Det-Decoder(F ),
D ← Des-Decoder(F ),

P̂ ← NMS(P ).

(1)

As illustrated in Fig. 2b, we modify both Det-Decoder and Des-Decoder for RIM.
U-Net as Det-Decoder. Effectively capturing low-level patterns such as

crossover and bifurcation on the vascular tree is crucial for detecting retinal
keypoints in a reliable and repeatable manner. We therefore opt to use U-Net
[24], originally developed for biomedical image segmentation with its novel design
of re-using varied levels of features from the encoder in the decoder by skip
connections. In order to support high-resolution input, our encoder is relatively
shallow, with a conv layer to generate low-level full-sized feature maps, followed
by three conv blocks, each consisting of two conv layers, 2× 2 max pooling and
ReLU. Consequently, the high-level feature maps F have a size of h

8 ×
w
8 × 128.

In order to recover full-sized feature maps, our Det-Decoder uses three conv
blocks, each having two conv layers, followed by bilinear upsampling7, ReLU
and concatenation to merge the corresponding feature maps from the encoder.
Lastly, a conv. block consisting of three conv. layers and one sigmoid activation
is applied on the full-sized feature maps to produce the detection map P .

Full-sized Des-Decoder. Different from SuperPoint which computes its
description loss on a down-sized tensor of h

8 ×
w
8 × d, we target optimizing the

7 We use bilinear upsampling, as transposed convolutions originally used by U-Net are
computationally more expensive, and introduce unwanted checkerboard artifact [13].
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descriptors on the full size of h × w, where each pixel is associated with a d-
dimensional descriptor. Naturally, such dense results are obtained by interpola-
tion, meaning gradient correlation between each keypoint and its neighborhood
during backpropagation. Enlarging the neighborhood enhances the correlation,
and is thus helpful for training with a larger receptive field [5]. In that regard, our
Des-Decoder first downsizes F to more compact feature maps of h

16 ×
w
16 ×d, and

then uses an upsampling block (using transposed conv) to generate the full-sized
descriptor tensor D of h× w × d. All the descriptors are l2-normalized.

Our network adaption may seem to be conceptually trivial. Note that produc-
ing a full-sized descriptor tensor is computationally prohibitive for a pixel-based
description loss as used in SuperPoint and NCNet. A keypoint-based description
loss is needed. Nonetheless, keypoint-based training is nontrivial, as inadequate
annotations will make the network quickly converge to a local, suboptimal solu-
tion. However, having many training images adequately labeled is known to be
expensive. To tackle the practical challenge, we develop a semi-supervised train-
ing algorithm that works with a small amount of incompletely labeled images.
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Fig. 2: Proposed SuperRetina. Green/orange markers in (c) indicate gen-
uine/fake keypoints. Blue/red dots in (d) indicate the initial keypoints (auto-
detected by PBO [19]) / iteratively detected keypoints for training.



SuperRetina for Retinal Image Matching 7

3.2 Training Algorithm

Semi-Supervised Training of Det-Decoder. We formulate keypoint detec-
tion as a pixel-level binary classification task [7, 31]. Due to the sparseness and
incompleteness of manually labeled keypoints, training Det-Decoder using a com-
mon binary cross-entropy (CE) loss is difficult. To attack the sparseness (and
the resultant class imbalance) issue, we leverage two tactics. The first tactic,
borrowed from Pose Estimation [35], is to convert the binary labels Y to soft
labels Ỹ by 2D Gaussian blur, where each keypoint is a peak surrounded by
neighbors with their values decaying exponentially. The second tactic is to use
the Dice loss [18], found to be more effective than the weighted CE loss and the
Focal loss to handle extreme class imbalance [34]. The Dice-based classification
loss ℓclf per image is computed as

ℓclf (I;Y ) = 1−
2 ·

∑
i,j (P ◦ Ỹ )i,j∑

i,j (P ◦ P )i,j +
∑

i,j (Ỹ ◦ Ỹ )i,j
, (2)

where ◦ denotes element-wise multiplication.
To attack the incompleteness issue, we propose Progressive Keypoint Ex-

pansion (PKE). The basic idea is to progressively expand the labeled keypoint
set Y by adding novel and reliable keypoints found by Det-Detector, which itself
is continuously improving after each epoch. To distinguish from such a dynamic
Y , for each training image we now use Y0 to indicate its initial keypoints, and
St to denote keypoints detected at the t-th epoch, t = 1, 2, . . .. We obtain the
expanded keypoint set Yt as Y0∪St, which is used for training at the t-th epoch.

As St is auto-constructed, improper keypoints are inevitable, in particular
at the early stage when the Det-Decoder is relatively weak. Given that a good
detector shall detect the same keypoint under different viewpoints and scales,
GLAMpoints performs a geometric matching to identify keypoints that can be
repeatedly detected from a given image and its projective transformations. We
improve over GLAMpoints by adding a content-based matching, making it a
double-matching strategy. As Fig. 2c shows, suppose a keypoint detected in a
non-vascular area in I (orange circle) has a geometrically matched keypoint
(orange square) in I ′ = H(I), with H as a specific homography. Non-vascular
areas lack specificity in visual appearance, meaning descriptors extracted such
areas are relatively close. Hence, even if the square is the best match to the circle
in the descriptor space, it is not sufficiently different from the second-best match
to pass Lowe’s ratio test [17]. Double matching is thus crucial.

As illustrated in Fig. 3, the PKE module works as follows:
1) Construct I ′, a geometric mapping of I, using I ′ = H(I).
2) Feed I ′ to SuperRetina to obtain its probabilistic detection map P ′. The
inverse projection of the map w.r.t. I is obtained as P ′

∗ = H−1(P ′).

3) Geometric matching: For each point (i, j) in P̂ , add it to St if (P
′
∗)i,j > 0.5.

4) Content-based matching: For each point (i, j) in St, we obtain its descriptor
by directly sampling the output of the Des-Decoder, resulting in a descriptor set
Dt. Similarly, we extract D′

t from I ′ based on H(St). Each descriptor in Dt is
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Fig. 3: Key dataflow within the PKE module.

used as a query to perform the nearest neighbor search on D′
t. A point (i, j) will

be preserved in St, only if its spatial correspondence (i′, j′) passes the ratio test.
The above procedure allows us to progressively find new and reliable key-

points, see Fig. 2d. Moreover, in order to improve the holistic consistency be-
tween the detection maps of I and its geometric transformation I ′, we addi-
tionally compute the Dice loss between P and P ′

∗, termed as ℓgeo(I,H). Our
detection loss ℓdet conditioned on Yt and H is computed as

ℓdet(I;Yt,H) = ℓclf (I;Yt) + ℓgeo(I,H). (3)

Self-Supervised Training of Des-Decoder. Ideally, the output of the
Des-Decoder shall be invariant to homography. That is, for each keypoint (i, j)
detected in I, its descriptor shall be identical to the descriptor extracted at
the corresponding location (i′, j′) in I ′. To avoid a trivial solution of yielding
a constant descriptor, we choose to optimize a triplet loss [27] such that the
distance between paired keypoints shall be smaller than the distance between
unpaired keypoints. Recall that keypoints are automatically provided by the
Det-Decoder, our Des-Decoder is trained in a fully self-supervised manner. Such
a property lets the Des-Decoder learn from unlabeled data with ease.

Feeding I and I ′ separately into SuperRetina allows us to access their full-
sized descriptor tensors D and D′. For each element (i, j) in the non-maximum

suppressed keypoint set P̂ , let Di,j be its descriptor. As (i, j) and (i′, j′) shall be
paired, the distance of their descriptors, denoted as ϕi,j , has to be reduced. With
(i′, j′) excluded, we use ϕrand

i,j to indicate the descriptor distance between (i, j)

and a point chosen randomly from H(P̂ ). Let ϕhard
i,j be the minimal distance.

We argue that using ϕrand
i,j or ϕhard

i,j alone as the negative term in the triplet loss

is problematic. As the requirement of ϕi,j < ϕrand
i,j is relatively easy to fulfill,

using ϕrand
i,j alone is inadequate to obtain descriptors of good discrimination.

Meanwhile, as the network at its early training stage lacks ability to produce
good descriptors, using ϕhard

i,j exclusively will make the network hard to train.

To resolve the issue, we propose a simple trick by using the mean of ϕrand
i,j and

ϕhard
i,j as the negative term. Our description loss ℓdes is thus defined as

ℓdes(I;H) =
∑

(i,j)∈P̂

max(0,m+ ϕi,j −
1

2
(ϕrand

i,j + ϕhard
i,j )), (4)
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where m > 0 is a hyper-parameter controlling the margin. Note that ℓdes has
a quadratic time complexity w.r.t. the size of P̂ , which is much smaller than
h×w. Hence, our description loss is much more efficient than its counterpart in
SuperPoint, which is quadratic w.r.t. h×w. As such, given the same amount of
GPU resources, SuperRetina can be trained on higher-resolution images.

While we describe the training algorithms of Det-Decoder and Des-Decoder
separately, they are jointly trained by minimizing the following combined loss:

ℓ(I;Yt,H) = ℓdet(I;Yt,H) + ℓdes(I;H), (5)

where the homography H varies per mini-batch.

3.3 Keypoint-based Retinal Image Matching

Once trained, the use of SuperRetina for RIM is simple. Given a query image Iq
and a reference image Ir, we feed them separately into SuperRetina to obtain
their keypoint probabilistic maps Pq and Pr and associated descriptor tensorsDq

and Dr. NMS is performed on Pq and Pr to obtain keypoints as Kpq and Kpr.
Recall that Dq and Dr are full-sized, so the corresponding descriptors descq and
descr are fetched directly from the two tensors. Initial matches between Kpq
and Kpr are obtained by an OpenCV brute-force matcher. The homography
matrix H are then computed using the matched pairs to register q w.r.t. r. As
for identity verification, H is reused to remove outliers. The two images are
accepted as genuine, i.e. from the same eye, if the number of matched points
exceeds a predetermined threshold, and impostor otherwise. The above process
can be written in just a few lines of Python-style code, see the supplement.

4 Evaluation

To evaluate SuperRetina in a real scenario, we train it on fixed data. The model
is then applied directly (w/o re-training) for different RIM tasks on multiple
testsets independent of the training data (Table 1).

4.1 Common Setup

Training data. We built a small labeled set as follows. We invited 10 members
(staffs and students) from our lab. With ages ranging from 22 to 42, the subjects
are with normal retinal condition. Multiple color fundus images of the posterior
pole (FoV of 45◦) were taken per eye, using a SYSEYE Reticam 3100 fundus
camera. We collected 97 images in total. The number of keypoints manually
labeled8 per image is between 46 and 147 with a mean value of 93.3. We term
the labeled dataset Lab. In addition, to support training of our Des-Decoder, we

8 Keypoint labeling requires little medical knowledge. The first author performed the
labeling task in 4 working hours, which we believe was affordable.
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collected an auxiliary dataset of 844 retinal images from 120 subjects having var-
ied retinal diseases. Recall that Des-Decoder is trained in a fully self-supervised
manner, so the auxiliary dataset requires no extra annotation.

Implementation. We implement SuperRetina using PyTorch. Subject to
our GPU resource (an NVIDIA GeForce RTX 2080 Ti), we choose a training
input size of 768 × 768. The network is trained end-to-end by SGD with mini-
batch size of 1. The optimizer is Adam [12], with β = (0.9, 0.999) and an initial
learning rate of 0.001. Standard data augmentation methods are used: gaussian
blur, changes of contrast, and illumination. The number of maximum training
epochs is 150. The descriptor length d is 256. For inference, the NMS size is 10×10
pixels. For homography fitting, we use cv2.findHomography with LMEDS.

Table 1: Our experimental data. Large cross-dataset divergence w.r.t. sub-
jects, retinal conditions, imaging FoV etc. allows us to evaluate the effectiveness
and generalization ability of SuperRetina. All test images are resized to 768×768,
except for images from VAIRA which use 512× 512 due to their smaller FoV.

Dataset Subjects Eyes Images
Image pairs

Total Genuine Impostor

Training sets:
Lab (labeled) 10 20 97 – – –
Auxiliary (unlabeled) 120 215 844 – – –

Test set for retinal image registration
FIRE [9] – – 129 134 134 –

Test sets for retina based identity verification
VARIA [20] – 139 233 27,028 155 26,873
CLINICAL 100 180 691 16,203 1,473 14,730
BES [11,36] 2,066 4,132 24,880 99,846 49,923 49,923

4.2 Task 1. Retinal Image Registration

Test set. We adopt FIRE [9], a benchmark set consisting of 129 images of size
2, 912 × 2, 912 acquired with a Nidek AFC-210 fundus camera (FOV of 45◦)
and 134 registered image pairs. The pairs have been divided into three groups
according to their registration difficulty: Easy (71 pairs with high overlap and no
anatomical change), Moderate (14 pairs with high overlap and large anatomical
changes), and Hard (49 pairs with small overlap and no anatomical changes).

Performance metrics. Following [31], we report three sorts of rates, i.e.
failed, inaccurate and acceptable. Given a query image Iq and its reference Ir,
a registration is considered failed if the number of matches is less than 4, the
minimum required to estimate a homography H. Otherwise, for each query point
pq in Iq, we compute the l2 distance between H(pq) and its reference pr in Ir.
Per query image, the median distance is defined as the median error (MEE),
with the maximum distance as the maximum error (MAE). A registration is
considered acceptable if MEE < 20 and MAE < 50, and inaccurate otherwise.
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Besides, we report Area Under Curve (AUC) proposed by [9], which estimates
the expectation of the acceptance rates w.r.t. the decision threshold, and thus
reflects the overall performance of a specific method. Following [9], we compute
AUC per category, i.e. Easy, Mod and Hard, and take their mean (mAUC) as
an overall measure. Higher acceptance rate / AUC and lower inaccurate / failed
rates are better. All the metrics are computed on the original size of 2912×2912.

Baselines. For a reproducible comparison, we choose competitor methods
that have either source code or pre-trained models released by paper authors.
Accordingly, we have eight baselines as follows:
• SIFT detector [17] plus RootSIFT descriptor [3], using OpenCV APIs.
• PBO [19], a traditional keypoint extraction and matching method with author-
provided Matlab implementation.
• REMPE [8], performing retinal image registration through eye modelling and
pose estimation9.
• SuperPoint10 [7] trained on MS-COCO [16].
• GLAMpoints11 [31] (+ RootSIFT descriptor) trained on private fundus images.
• R2D212 [21], trained on the Aachen dataset [26].
• SuperGlue13 [25], trained on ScanNet [6].
• NCNet14 [23], pretrained on the Indoor Venues Dataset [22].

Due to the natural domain gap between retinal images and natural images,
the baseline models pretrained on natural images might not be in their opti-
mal condition for RIM. We take this into account by finetuning SuperPoint,
GLAMpoints, R2D2 and NCNet on our training data.

Comparison with the Existing Methods. As shown in Table 2, Super-
Retina, with zero failure, an inaccurate rate of 1.49% and an acceptance rate of
98.51% is the best. Interestingly, we find that REMPE, which relies on tradi-
tional image processing enhanced by geometric modeling of the retina, performs
better than the deep learning based alternatives including GLAMpoints, R2D2,
SuperPoint, SuperGlue and NCNet. SuperRetina beats this strong baseline.

Similar results are observed in terms of AUC scores. The only exception is on
the Easy group, where REMPE obtains a higher AUC (0.958 versus 0.940). Re-
call that images in this group have large overlap and no anatomic change, so the
heavy modeling of the retinal structure in REMPE is advantageous. The benefit
of end-to-end learning becomes more evident when dealing with the Moderate
and Hard groups. SuperRetina scores a substantially higher AUC-Mod than
REMPE (0.783 versus 0.660). Moreover, while REMPE takes 198 seconds to
perform one registration, SuperRetina is far more efficient, requiring 1 second,
most of which is spent on data IO and preprocessing. As only the query image
has to be computed on the fly, while images in the database can be precom-

9 https://projects.ics.forth.gr/cvrl/rempe/
10 https://github.com/rpautrat/SuperPoint
11 https://github.com/PruneTruong/GLAMpoints pytorch
12 https://github.com/naver/r2d2
13 https://github.com/magicleap/SuperGluePretrainedNetwork
14 https://github.com/ignacio-rocco/ncnet

https://projects.ics.forth.gr/cvrl/rempe/
https://github.com/rpautrat/SuperPoint
https://github.com/PruneTruong/GLAMpoints_pytorch
https://github.com/naver/r2d2
https://github.com/magicleap/SuperGluePretrainedNetwork
https://github.com/ignacio-rocco/ncnet
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Table 2:Performance of the state-of-the-art for two RIM tasks, i.e. reti-
nal image registration and retina based identity verification. Methods
postfixed with finetune have been finetuned on our training data. The proposed
SuperRetina compares favorably against the existing methods, even with the
initial keypoint set Y0 automatically detected by the PBO method.

Methods

Image Registration

(FIRE as the test set)

Identity Verification

(EER [%])

Failed [%] Inaccurate [%] Acceptable [%] AUC-Easy AUC-Mod AUC-Hard mAUC VARIA CLINICAL BES

Traditional:

SIFT, IJCV04 [17] 0 20.15 79.85 0.903 0.474 0.341 0.573 0.65 3.64 4.67

PBO, ICIP10 [19] 0.75 28.36 70.89 0.844 0.691 0.122 0.552 0.65 4.96 4.33

REMPE, JBHI20 [8] 0 2.99 97.01 0.958 0.660 0.542 0.720 – – –

Deep learning based:

SuperPoint, CVPRW18 [7] 0 5.22 94.78 0.882 0.649 0.490 0.674 0.01 1.06 2.00

SuperPoint-finetune 0 6.72 93.28 0.909 0.609 0.465 0.661 0.01 2.89 3.91

GLAMpoints, ICCV19 [31] 0 7.46 92.54 0.850 0.543 0.474 0.622 0.02 4.32 2.95

GLAMpoints-finetune 0 7.46 92.54 0.825 0.517 0.490 0.611 0.03 6.74 4.83

R2D2, NIPS19 [21] 0 12.69 87.31 0.900 0.517 0.386 0.601 0.05 6.23 7.16

R2D2-finetune 0 4.48 95.52 0.928 0.666 0.540 0.711 0.05 1.83 7.76

SuperGlue, CVPR20 [25] 0.75 3.73 95.52 0.885 0.689 0.488 0.687 0 2.38 2.35

NCNet, TPAMI22 [23] 0 37.31 62.69 0.588 0.386 0.077 0.350 14.19 22.13 30.67

NCNet-finetune 0 14.18 85.82 0.817 0.609 0.410 0.612 7.97 3.05 19.87

SuperRetina

Y0: Pretraining 0 2.99 97.01 0.922 0.720 0.502 0.715 0 1.04 1.93

Y0: PBO 0 3.73 96.27 0.944 0.789 0.516 0.750 0 1.02 1.10

Y0: Manual labeling 0 1.49 98.51 0.940 0.783 0.542 0.755 0 0.83 1.18

puted, the entire image matching process can be much accelerated. In short, the
advantage of SuperRetina over REMPE is three-fold: (i) The end-to-end learned
detector is more reliable than REMPE’s vessel bifurcation detector for handling
images with large anatomical changes, (ii) SuperRetina works for both image
registration and identity verification, and (iii) SuperRetina is nearly 200x faster.

Manual Labeling versus Auto-Labeling for Y0. The last three rows
of Table 2 are SuperRetina with distinct choices of the initial keypoint set Y0.
Pretraining means we tried to first train SuperRetina on the synthetic corner
dataset as used by SuperPoint, and then use this pre-trained SuperRetina to pro-
duce Y0. The second-last row means using PBO-detected keypoints as Y0. Their
results show that even with the auto-produced Y0, SuperRetina compares favor-
ably against the current methods. In particular, using PBO-based Y0 obtains
mAUC of 0.750. The number, although lower than using the manual Y0 (mAUC
0.755), clearly outperforms the best baseline, i.e. REMPE (mAUC 0.720). At
the cost of merely 0.66% relative loss in performance, SuperRetina can indeed
be trained in a manual-annotation free manner.

Evaluating the Influence of PKE. As Table 3 shows, SuperRetina w/o
PKE suffers from a clear performance drop. Without PKE, the average num-
ber of keypoints detected by SuperRetina is substantially reduced, from 530 to
109 per image. We also tried PKE without content-based matching, making it
effectively the keypoint selection strategy used by GLAMpoints. Its lower perfor-
mance (row#3 in Table 3) verifies the necessity of the proposed double-matching
strategy. The above results justify the effectiveness of PKE for expanding the
annotation data for semi-supervised learning.



SuperRetina for Retinal Image Matching 13

For the description loss, we simultaneously leverage the hard negative in-
stance and a random negative for computing the negative term in Eq. (4). We
tried an alternative strategy of semi-hard negative sampling, where the negative
ranked at the middle among all candidate negatives in a given mini-batch is
chosen for computing the negative term. This alternative strategy (row#4 in
Table 3) is ineffective.

In addition, we re-run the same training pipeline, but w/o descriptor upsam-
pling, w/o 2D Gaussain blur and using the (weighted) CE loss instead of Dice,
respectively. Their consistent lower performance supports the necessity of the
proposed changes regarding the network and its training strategy.

Table 3: Ablation study. Larger mAUC on FIRE and lower EER on VARIA,
CLINICAL and BES are better.

Setup FIRE(↑) VARIA(↓) CLINICAL(↓) BES(↓)

Full-setup 0.755 0 0.83 1.18

w/o PKE 0.685 0.01 5.14 3.11
PKE w/o content-based mathcing 0.670 0 1.48 1.19
Semi-hard negative sampling 0.407 2.75 10.18 7.83
w/o upsampling 0.697 0.03 3.46 4.15
w/o Gaussian blur 0.574 8.38 7.44 10.82
Dice → CE 0.653 0.65 4.20 2.48
Dice → weighted CE 0.704 0.02 1.79 1.32

Compare with other detectors:
Det: SIFT, Des: SuperRetina 0.585 0 4.40 4.23
Det: GLAMpoints, Des: SuperRetina 0.605 0 2.84 1.51
Det: SuperPoint, Des: SuperRetina 0.673 0 1.60 1.68

Compare with other descriptors:
Det: SuperRetina, Des: RootSIFT 0.705 0 2.81 2.10
Det: SuperRetina, Des: SOSNet 0.712 0 0.88 1.78

4.3 Task 2. Retina-based Identity Verification

Test Sets. We use three test sets: VARIA [20], Beijing Eye Study (BES) [11,36],
and a private set. VARIA has 233 gray-scale retinal images from 139 eyes, ac-
quired with a Topcon NW-100 camera. The images are optic disc centered, with a
small FoV of around 20◦. BES, acquired for a population-based study conducted
in Beijing between 2001 and 2011, has 24,880 color fundus photos taken from
4,132 eyes at different periods. As images taken at earlier periods were digital
scans of printed photos, the image quality of BES varies. Our private set, termed
CLINICAL, consists of 691 images from 100 patients, acquired with a Topcon
Trc-Nw6 fundus camera at an outpatient clinic of ophthalmology with due ethics
approval. CLINICAL exhibits more diverse abnormal conditions such as old mac-
ula lesion, retinitis pigmentosa and macular edema. The joint use of the testsets
leads to a systematic evaluation covering retinas in normal (VARIA)/abnormal
(CLINICAL) conditions and across ages (BES).
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Performance metric. We report Equal Error Rate (EER). As a common
metric for evaluating a biometric system, EER is the value when the system’s
False Accept Rate and False Reject Rate are equal. Lower is better.

Baselines. We re-use the baselines from Section 4.2 except for REMPE [8],
which is inapplicable for identity verification.

Comparison with State-of-the-Art. As Table 2 shows, SuperRetina, with
EER of 0% on VARIA, 0.83% on CLINICAL and 1.18% on BES, compares
favorably against the baselines. All the deep learning based methods perform
well on VARIA, which has a small FoV with clearly visible vessels. However,
their performance decreases noticeably on CLINICAL and BES, especially for
GLAMpoints and R2D2, both using self-supervised training. As shown in Fig. 1,
GLAMpoints and R2D2 tend to detect keypoints on non-vascular areas. By
contrast, SuperRetina keypoints are mostly distributed along the vascular tree,
thus more suited for identity verification.

Ablation Study. Table 3 shows that PKE also matters for identity verifi-
cation. As for the choice of Y0, using the PBO-produced labels achieves compa-
rable results for two out of the three test sets, i.e. VARIA and BES. Note that
its higher EER of 1.02% on CLINICAL remains better than the best baseline,
i.e. SuperPoint with EER of 1.06%. We compare the SuperRetina detector with
three existing detectors, i.e. SIFT, SuperPoint and GLAMpoints, all using the
SuperRetina descriptor. We also compare the SuperRetina descriptor with two
existing descriptors, i.e. RootSIFT previously used by GLAMPoints for RIM
and SOSNet, a widely used deep descriptor [30]. Table 3 shows that our detector
and descriptor remain competitive even used separately.

5 Conclusions

Real-world experiments allow us to conclude as follows. The proposed PKE
strategy is effective for resolving the incompleteness of manual labeling for semi-
supervised training, improving mAUC from 0.685 to 0.755 for retinal image reg-
istration on the FIRE dataset and reducing EER from 5.14% to 0.83% for retina-
based identity verification on the most challenging CLINICAL dataset. Super-
Retina beats the best baselines, i.e. REMPE for image registration (mAUC:
0.755 versus 0.720), and SuperPoint for identity verification (EER: 0.83% versus
1.06% on CLINICAL, 1.18% versus 2.00% on BES). Even with the manually la-
beled training data fully replaced by auto-labeling, and thus making the training
process fully manual annotation free, SuperRetina preserves mostly its perfor-
mance and compares favorably against the previous methods for RIM.
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