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Appendices

The supplementary material provides details about our implementation (Sec-
tion A), as well as additional experiments used to evaluate our framework (Sec-
tion B). In addition to this PDF file, the supplementary material contains video
clips that visually demonstrate the constructed cell trajectories for four different
C2C12 sequences.

A Implementation Details

A.1 Graph Neural Network

We implemented the proposed graph neural network (GNN) model using the
Pytorch Geometric library [4]. We train our framework with graphs based on
microscopy sub-sequences of 10 frames while for the inference we use the entire
sequence to construct the input graph. The prediction of all edges (a classification
into ‘active’ and ‘non-active’ edges) is performed simultaneously.

The spatio-temporal features are normalized by min-max scaling for each
graph, while the deep metric learning features are not pre-processed. To ac-
commodate the high number of cell instances within a frame and to reduce
the computational complexity, cell instances in consecutive frames are con-
nected by edges only if their spatial Euclidean distance is smaller than a pre-
defined threshold that is determined by the cells’ neighborhood region. The
neighborhood region NR is defined based on the size of the cells’ bounding
box sizeBB and the rate of the cells’ movement sizemove. Formally, NR =
α ·max(maxi(sizeBBi

),maxj(sizemovej )). The maximization is applied to each
axis separately. The hyper-parameter α is set to 2 or 4, depending on the se-
quence’s density. For the graph neural network, we set the number of layers
L = 6 to perform six message-passing steps, enabling information propagation
between cell instances that are 6 frames apart. We set the dimension dV of the
node feature matrix to 32, where dE = 64 for the edge feature matrix. The Adam
optimizer [7] is used with a learning rate of 1e− 3 and a weight decay of 1e− 5.

A.2 Deep Metric Learning

We use Pytorch metric learning library [10] to train ResNet18 [5] followed
by multi-layer perceptron (MLP). The final embedding is L2 normalized and
dDML = 128. The training is done using batches with a size of 32. Batches
are constructed by m-per-class sampler, which first randomly samples κ classes,
and then randomly samples m images for each of the κ classes. Since the cell’s
appearance gradually changes during the sequence we perform the m-per-class
sampling [9] using temporally adjacent frames. We set κ = 8 and m = 4. The
ResNet18 and MLP models are optimized using two separated Adam optimiz-
ers [7] for each model with learning rates of 1e− 5 and 1e− 4, respectively. We
also use weight decay of 1e − 4. We use the cell segmentation maps or marker
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(a) Control (b) FGF2

(c) BMP2 (d) FGF2 + BMP2

Fig. 1. C2C12 Dataset Visualization. Example frames of four C2C12 sequences
with different growth factor conditions [3]. Note the different appearance of the cells
between the frames.

annotations to crop each frame into sub-images of all cell instances. We con-
structed the datasets used for DML training by assigning to each cell instance
the index of its biological cell. In case the cell segmentation maps (rather than
marker annotations) are available we exploit them to filter out the background
via pixel-wise multiplication and extract features such as cell size and intensities.

B Experiments

We present additional experiments used to asses the proposed framework. In
Section B.1, we provide more details regarding the evaluated datasets. Then, in
Section B.2, we discuss the qualitative tracking results obtained for the C2C12
dataset [3]. Comparison to graph-based solutions is summarized at Section B.3.
Further ablation study experiments are presented in Section B.4. In Sections B.5
and B.6, we present an edge case and the run time of our framework, respectively.
Last, in Section B.7, we elaborate about the experiments used to evaluate our
deep-metric-learning based feature extractor.

B.1 Datasets

C2C12 dataset [3] is acquired with four different growth factor conditions:fibroblast
growth factor 2 (FGF2), bone morphogenetic protein 2 (BMP2), FGF2 + BMP2,
and control (no growth factor). In Fig. 1, we present example frames for each
condition. Note the different appearance of cells depending on the frames’ growth
factor. The FGF2 cells are partially overlapped and become thinner along the se-
quence while the BMP2 cells are spread. In BMP2+FGF2, we can observe both
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Table 1. Cell tracking challenge [8,14] datasets properties. The table provides details
regarding the datasets dimension, cell type, acquisition method (phase-contrast or flu-
orescence microscopy), number of frames, and spatial resolution.

Dataset Dim. Cell Type Acq. # Frames Resolution

PhC-C2DH-U373 2D U373 Ph.-C. 115 696× 520

Fluo-N2DH-SIM+ 2D HL60 Fluo. Varies Varies

Fluo-N3DH-SIM+ 3D HL60 Fluo. Varies Varies

Fluo-C2DL-Huh7 2D HCC Fluo. 92 1024× 1024

Fluo-N2DL-HeLa 2D HeLa Fluo. 30 1100× 700

phenomena. In Table 1, we summarize the properties of the CTC datasets [8,14]
used to evaluate our method.

B.2 Qualitative Tracking Results

Fig. 2 visually presents the trajectories of the C2C12 sequences. The figure il-
lustrates the dense and cluttered cell environment and the prevalence of mitotic
events and trajectory intersections. The video clips enclosed in this supplemen-
tary material further demonstrate the complexity of the extracted lineage trees
and the strengths of the proposed method.

B.3 Comparison to Graph-Based Methods

As mentioned in the main paper, we compare our method in Table 1 (main
paper) with two classical graph-based methods, namely Asymmetric Graph Cut
(AGC) [1], Spatio-Temporal Global Data Association (ST-GDA) [2]. Our method
far surpasses AGC and ST-GDA, where the average results are improved by more
than 15% for the AA and the TE. Moreover, a few algorithms which competed at
the Cell Tracking Challenge (CTC) are based on a graph strategy. For example,
Scherr et al. [12] adopt the coupled minimum-cost flow algorithm suggested
in [11]. Table 2 (main paper) presents our ranks for different CTC datasets with
respect to all competing methods (three times top-1, one top-2, once top-4).

B.4 Ablation Experiments - Cont.

We present more ablation experiments in Table 2 to demonstrate the contribu-
tion of the distance and the similarity features in the edge encoder to the overall
cell tracking performance. As expected, the distance features are slightly better
than the similarity, as more entries in the feature vector are represented by them.
When using both features the results are more robust over all the datasets and
improved. Last, by comparing first and last rows, the significant contribution of



4

(a) Control (b) FGF2
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Fig. 2. 3D trajectories visualization. Example trajectories of four different C2C12
sequences dataset [3]. The X-Y axes present the original frame resolution (1392× 1040
pixels), while Z axis presents the frame number. Note the clutter, density, overlap, and
the random cell movements in each of the sequences.

the distance similarity block is highlighted. The results demonstrate the exclu-
sive and the joint contributions of the distance and the similarity features in the
edge encoder to the overall cell tracking performance.

Table 2. Edge encoder quantitative ablation study. The contribution of the
distance and the similarity features in the edge encoder to the overall cell tracking
performance. The symbols ✓ and ✗ indicate included or excluded, respectively. AA
and TE stand for association accuracy and target effectiveness scores.

Edge Encoder Components Results

Distance Similarity AA TE

✗ ✗ 0.840 0.598
✗ ✓ 0.991 0.987
✓ ✗ 0.993 0.988
✓ ✓ 0.994 0.989
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(a) Frame t (b) Frame t+ 1

Fig. 3. Edge case visualization. Example of two consecutive frames from PhC-
C2DH-U373 dataset. The proposed framework may fail associating cell instances in
consecutive frames when both cell dynamics and appearance change where the differ-
ence in either of them is significant and abrupt.

B.5 Limitations and Edge Cases

The proposed tracker performs well even in the presence of abrupt changes in
either cell appearance or dynamics (spatio-temporal changes). However, when
both changes occur simultaneously the tracker may fail as illustrated in Fig. 3.

B.6 Run time

We trained and tested our framework using NVIDIA Tesla V100 DGXS 32-
GB GPU. Training and evaluation run times varied between a few minutes to a
maximum of one hour depending on the sequence length (number of frames), cell
density, and dimension (2D or 3D). Most of the time is spent on the construction
of the graph. It is worth noting that cell tracking methods mainly run offline,
after the acquisition of the entire time-lapse microscopy sequence. Therefore, the
run time is not critical.

B.7 Deep Metric Learning

In this section we present the experiments conducted to evaluate the DML com-
ponent in our model.

Evaluated Metrics. For evaluation, we employ Adjusted Mutual Informa-
tion (AMI) and Normalized Mutual Information (NMI), Precision at 1 (P@1),
R-Precision (RP), and Mean Average Precision at R (MAP@R) [9] scores. AMI
and NMI quantify the clustering performances and are based on k-mean al-
gorithm, while P@1, RP, and MAP@R measure the neighboring area and are
based on k-nearest neighbors (k-nn) algorithm. Our primary evaluation metric
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Table 3. Deep metric learning ablation study scores (%)

Method Sampler P@1 RP MAP@R

Triplet+L2 [6] Proposed 80.6 33.2 27.4
Triplet+CS [6] Proposed 82.3 35.1 29.7
Circle [13] Proposed 83.1 36.8 31.7
MS [15] m-per-class 79.9 35.2 29.8
MS [15] Proposed 84.7 37.8 32.8

is MAP@R proposed recently in [9]. This metric is stable and suited for the
selection of the best performing model checkpoints.
Ablation Study. We conducted an ablation study to justify the use of multi-
similarity loss and miner [15]. We compare the results with those obtained by
the triplet loss [6] with L2 distance and Cosine similarity in the embedded space.
In both setting we use the triplet margin miner. We also examine the recently
proposed circle loss [13]. Finally, we compare the performances of the proposed
sampling mechanism which selects within-class samples from temporally adja-
cent frames.

Table 3 presents the results obtained for each setup for the CTC Fluo-N2DL-
HeLa dataset. We can observe that the multi-similarity loss and the miner that
was trained with the proposed sampler performs better than the other setups.
Furthermore, the proposed modified sampling scheme outperforms the ‘tradi-
tional’ m-per-class sampler [9] in a significant. This demonstrates its suitability
to our task.
Results. We report our results for all the datasets in Table 4. The results
differ due to the significant variability between the datasets. The better scores
obtained for the 3D sequences Fluo-N3DH-SIM+ with respect to the 2D Fluo-
N2DH-SIM+ sequences demonstrate the importance of the additional dimension
for distinguishing between cell instances.

Table 4. Accuracy measures (%) for the DML component. Performances on the
evaluated metrics for each dataset under the same setting.

Dataset AMI NMI P@1 RP MAP@R

Fluo-N3DH-SIM+ 73.1 82.4 98.3 67.7 65.1
Fluo-N2DH-SIM+ 55.6 73.2 84.8 42.9 38.1
PhC-C2DH-U373 45.9 46.8 81.6 51.6 39.3
Fluo-C2DL-Huh7 86.8 89.1 94.5 65.1 61.2
Fluo-N2DL-HeLa 60.5 74.6 82.8 39.3 34.1
C2C12 [3] 67.5 76.4 97.9 46.8 42.4
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