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S1 Applications for DL-based Automatic CXR Analysis

Current deep learning (DL)-based CXR analysis tasks not just diagnose disease
but provide explainable results such like saliency map or quantified severity level
to assist clinicians [2,3,8,9]. Accordingly, we further investigated applications of
the proposed method using COVID-19 pneumonia CXR dataset [6]. For gener-
ating saliency map, we referenced a public source code 1. In addition, for severity
quantification, we followed array-based methods [9, 14].

Fig. S1 shows that Proposed and Proposed+`self models provide the most
suitable segmentation mask for saliency map or severity array generation. The
results demonstrate that our methods can be utilized for various automatic CXR
analysis tasks.

S2 Network Architecture

We provide details of the proposed framework, as shown in Table S1, S2, S3 and
S4. Note that each input and output dimension for the domain adaption task
is single channel (Cda), whereas the segmentation task requires two channels
(Cseg) to separate foreground and background channels.

S3 Adaptive Instance Normalization

AdaIN has been proposed as an extension of the instance normalization [4].
AdaIN layer receives a content input x and a AdaIN code a, and simply aligns
the channel-wise mean and variance of x to match those of desirable style by:

AdaIN = f(a)
(x− µ(x)

σ(x)

)
+ g(a) (1)

where f and g compute affine parameters from AdaIN code a, µ and σ represent
mean and variance, respectively. In this way, AdaIN simply scales the normalized
content input with σ(a), and shifts with µ(a).

1 https://github.com/priyavrat-misra/xrays-and-gradcam.git

https://github.com/priyavrat-misra/xrays-and-gradcam.git
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Supplementary Figure S1. Model performance comparison on various DL-based
automatic CXR analysis. Red and blue triangles indicate highly consolidated lung
regions in CXRs. Yellow boxes indicate array-based six subdivisions of lung for severity
quantification.

Supplementary Table S1. Generator network architecture.

Module Layer Norm Resample
Input dimension
(C × H × W )

In Conv 1×1 - - Cda × 256 × 256

Encoder
ResBlock × 4 AdaIN Down 64 × 256 × 256
ResBlock × 2 AdaIN - 512 x 16 x 16

Decoder
ResBlock × 2 AdaIN - 512 × 16 × 16
ResBlock × 4 AdaIN Up 512 × 16 × 16

Unshared
Norm IN -

64 × 256 × 256Leaky ReLU - -
Conv 1×1 - -

Output - - -
Cda × 256 × 256
Cseg × 256 × 256



CXR Segmentation by AdaIN-based DA and KD 3

Supplementary Table S2. AdaIN code generator architecture.

Module Layer
Input dimension

(C)

In Latent z 4

Shared
Linear × 3 4
Linear × 1 512

Unshared
Linear × 3 512
Linear × 1 512

Output - 16 × K

Supplementary Table S3. Style encoder architecture.

Module Layer
Input

channel
Input size

(C) (H × W )

Unshared Conv 1×1 Cda, Cseg 256 × 256

Shared

ResBlock × 6 64 256 × 256
Leaky ReLU 512 4 × 4

Conv 4×4 512 4 × 4
Leaky ReLU 512 1 × 1

Unshared Linear 512 1 × 1

Output - 16 × K
-

Supplementary Table S4. Discriminator architecture.

Module Layer
Input

channel
Input size

(Cda) (H × W )

Shared

Conv 1×1 1 256 × 256
ResBlock × 6 64 256 × 256
Leaky ReLU 512 4 × 4

Conv 4×4 512 4 × 4
Leaky ReLU 512 1 × 1

Unshared Conv 1×1 512 1 × 1

Output - 1 × K -

S4 Ablation Study

For ablation study, we analyzed contribution of different losses for the supervised
segmentation task. We cumulatively added each loss to the baseline model, and
compared segmentation performance on abnormal CXR.

Fig. S2 compares performance of each configuration. In configuration (b)
with additional segmentation loss, domain adaptation performance was superior
to the baseline. However, we observed that the segmentation results have several
concave regions (blue boxes), which failed to resemble the general shape of lung
structure. In configuration (c) with additional style loss, we observed that the
segmentation results resemble normal lung better than (b), thanks to the style
loss, which can extract common features of normal and abnormal CXR via the
shared layer of the style encoder. In configuration (d) with additional cycle-
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Supplementary Figure S2. Ablation study with different losses for the segmentation
task.

consistency loss, we observed rather degraded lung segmentation performance as
depicted as blue boxes, which have more concave regions compared to that of (c).
The cycle-consistency loss, which tries to revert the generated lung mask back to
the original image, may disturb the network to segment extremely consolidated
lung regions.

Based on the ablation study results, we set the configuration (c) as our su-
pervised segmentation loss.

S5 Domain Adaptation Loss

Domain adaptation loss basically follows StarGANv2 [1], given by

`da(G,Fe, Fd, S,D) = (2)

`adv(G,D,Fd, S) (3)

+ λcycle`cycle(G,S) (4)

+ λstyle`style(G,S) (5)

− λdiv`div(G,Fd, S), (6)

where λcycle,λstyle and λdiv are hyper-parameters and `adv is the adversarial loss
defined by

`adv(G,D,Fd, S) = Es∼PS [logDS(s)] + Es∼PS

[
log(1−DT (G(s, aTda))

]
, (7)

where S and T are source and target domains, which are chosen randomly from
X and Y so that all domain combinations can be considered. Furthermore, the
learnable part of the AdaIN code aTda is generated either from the encoder AdaIN
coder generator Fd or the style encoder S given a reference target t ∈ T .
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The cycle-consistency loss `cycle is defined as follows:

`cycle(G,S) = Es∼PS

[
‖x−G(G(s, aTda), aSda)‖1

]
. (8)

Similar to the cycle-consistency loss `cycle for the images, we introduce the
style loss `style to enforce the cycle-consistency in the AdaIN code domain. More
specifically, once a fake image is generated using a domain-specific AdaIN code,
the style encoder with the fake image as an input should reproduce the original
AdaIN code. This can be achieved by minimizing the following style loss:

`style(G,S) = Es∼PS

[
‖aTda − S(G(s, aTda))‖1

]
. (9)

Finally, to make the generated fake images diverse, the difference between
two fake images that are generated by two different AdaIN codes should be
maximized. This can be achieved by maximizing the following loss:

`div(G,Fd, S) = Es∼PS

[
‖G(s, aTda)−G(s, a′

T
da)‖1

]
, (10)

where an additional a′
T
da is generated either from the encoder AdaIN coder gen-

erator Fd or the style encoder S given an additional reference image.

S6 Implementation Details

The proposed method was implemented with PyTorch library [10]. We applied
Adam optimizer [7] to train the models and set the batch size 1. The model
was trained using a NVIDIA GeForce GTX 1080 Ti GPU. Hyper parameters
were chosen to be λcycle = 2, λstyle = 1, λdiv = 1, λseg = 5, λinter = 10
and λintra = 1. Learning rate was optimized to 0.0001. Once training iteration
reaches certain fixed iteration points throughout the total iterations, the learning
rate was reduced by factor of 10.

The network was trained for 20K iterations to simultaneously train domain
adaptation and supervised segmentation tasks. We adopted early stopping strat-
egy based on validation performance of abnormal chest X-ray radiograph (CXR)
segmentation results. In terms of the training sequence, the self-supervised train-
ing started after training the domain adaptation and supervised segmentation
tasks until they guaranteed certain performances. For self-supervised learning,
the network was continued to be trained in self-supervised manner for additional
5K iterations.

At the inference phase, as for post-processing steps, two largest contours
were automatically selected based on contour areas, and any holes within each
contour were filled. The post-processing technique was identically applied to all
the comparative model outputs for fair comparison.

S7 Comparative Model Implementations

For comparative study, baseline models for domain adaptation and supervised
segmentation tasks, i.e., CycleGAN [15], MUNIT [5], StarGANv2 [1] and U-
Net [11], were trained with identical conditions to that of the proposed model.
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For comparing performance of the unified domain adaptation and segmentation
network, we inferenced pre-trained networks optimized for abnormal CXR seg-
mentation, i.e., XLSor [13] and lungVAE [12], by utilizing their official source
codes. 23

S8 Error Analysis

We analyzed typical error cases, which failed to be segmented, and the error
cases were grouped into three categories: (a) Over-segmentation on background
pixels, (b) distorted lung shape, and (c) distorged lung boundary, as shown in
Fig. S3.

Ground Truth

Proposed 
+ ℓ!"#$

CXR

a)

Proposed

c)b)Base

Supplementary Figure S3. Representative error cases. (a) Over-segmentation on
background pixels, (b) distorted lung shape and (c) distorted lung boundary. Base
indicates standard segmentation result.

S9 Computational Costs

The proposed unified framework costs less training computation resources, com-
pared to training individual domain adaptation and segmentation networks. Ta-
ble S5 shows total network parameters utilized for either training or inference of
comparative networks.

Once the model is trained, only the generator with pre-built AdaIN codes
are used at the inference phase, thus the model costs only the single generator.

2 https://github.com/raghavian/lungVAE
3 https://github.com/rsummers11/CADLab/tree/master/Lung Segmentation XLS

or

https://github.com/raghavian/lungVAE
https://github.com/rsummers11/CADLab/tree/master/Lung_Segmentation_XLSor
https://github.com/rsummers11/CADLab/tree/master/Lung_Segmentation_XLSor
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As shown in Table S5, Proposed and Proposed+`self models need the least
number of network parameters, with most promising segmentation performance.
Specifically, compared to Proposed model, Proposed+`self model only needs a
single inference without preceding domain adaptation task, with comparable
segmentation performance to that of Proposed model.

Supplementary Table S5. Number of trainable and inference parameters.

Method
Training Inference(S) Inference

Generator(S) Others Total Generator(S) Others Total Time

SS
U-Net [11] 29M - 29M 29M - 29M × 1
XLSor [13] 71M - 71M 71M - 71M × 1
DA
CycleGAN [15] - 29M 29M - - -
MUNIT [5] - 47M 47M - - -
StarGANv2 [1] - 78M 78M - - -
DA+SS
CycleGAN + U-Net 29M 29M 58M 29M 11M 40M × 2
StarGANv2 + U-Net 29M 78M 127M 29M 34M 63M × 2
Proposed 34M 45M 79M 34M - 34M × 2
UDS/Self
MUNIT + XLSor 71M 47M 118M 71M - 71M × 1
lungVAE [12] 34M - 34M 34M - 34M × 1
Proposed+`self 34M 46M 80M 34M - 34M × 1
Note: SS, supervised segmentation; DA, domain adaptation; UDS, unified DA+SS; Self, self-
supervised segmentation; (S), segmentation task; Others, other module parameters.
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