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1 Architecture

We tested our proposed framework using: 1) ResNet-based architecture, and 2)
UNet-based architecture. Detailed architectures are shown in the following. The
main difference between these two architectures is the skip connection. Through
skip connection, the decoder layers have access to feature maps at higher levels,
thereby preserving finer detail information.

Fig. 1: ResNet-based architecture. Res-9 includes 4 basic blocks and Res-13 includes 5 basic
blocks for encoder. As shown, most convolutional operations are performed in 2D, with the final layers
being 3D. Res-9 encoder performs 8x downsampling and Res-13 encoder performs 16x downsampling.
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Fig. 2: UNet-based architecture. UNet-4 encoder includes 4 blocks and UNet-5 encoder includes
5 blocks. As shown, most convolutional operations are performed in 2D, with the final layers being
3D. UNet-4 encoder performs 8x downsampling and UNet-5 encoder performs 16x downsampling.

2 Experimental Dataset

EMPIAR-10304 This is a purified ribosome dataset that includes 12 tilt-series
taken between −60 to +60 degrees of tilting. 12 tomograms of size 512×512×256
were reconstructed using standard CET protocols [1]. To reduce input size, we
merge every two X − Y slices into one slice and obtained tomograms of size
512 × 512 × 128. The predicted heatmap Ŷ is of size 256 × 256 × 128. Since
this dataset is from a purified protein sample, ice thickness is relatively thin
resulting in relatively high SNR and high visibility of particles. Each tomogram
contains around 800-1000 particles. We used one partially annotated tomogram
for training. 5% of labeling corresponds to a total of 45 particles.

EMPIAR-10499 This is a ribosome dataset from native M. pneumoniae cells
treated with chloramphenicol. The dataset contains 65 tilt-series taken from
−60 to +60 degrees and tomograms of size 512 × 512 × 256 are reconstructed.
Ribosomes in this dataset are imaged within their native environment, resulting
in thick ice and very low SNR and particle visibility. To reduce input size and
improve SNR, we downsampled the tomograms in each dimension by a factor
of two, resulting in volumes of size 256 × 256 × 128. The predicted heatmap
Ŷ has size 128 × 128 × 128. Tomograms from this native dataset have lower
particle concentrations, each containing between 100 to 300 particles. We use
one partially labeled tomogram for training. 5% of the labeling corresponds to
a total 12 particles.
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3 Experimental results with different architectures

Detection results obtained using different architectures are shown in Table 1.
Specifically, we investigated the effect of depth of the network on detection per-
formance. As shown, increasing depth does not necessarily improve the perfor-
mance. On the contrary, if no skip connections exist, the performance worsens
as depth increases (Res-9 vs. Res-13). This can be explained by the fact that
as depth increases, the size of the receptive field also increases, and for smaller
sized objects like particles, an increase in receptive field does not add useful
information to their corresponding feature vectors. Skip connections can allevi-
ate the problem by concatenating feature maps obtained at higher levels (which
includes finer detail information since receptive field is smaller for higher levels)
to the decoding layers. Overall, shallower network depths give better detection
performance.

Table 1: Particle detection results obtained using different architectures.

EMPIAR-10304
5% 10% 30% 50% 70%

mAP .5 .75 .5 .75 .5 .75 .5 .75 .5 .75

Res-9 54.5 44.0 57.0 45.2 67.9 56.8 71.5 62.0 72.1 62.5
Res-13 35.5 12.6 43.9 14.4 47.3 11.2 44.6 17.2 41.9 17.9
UNet-4 65.3 55.4 72.5 64.0 76.2 71.5 76.6 71.9 76.8 72.0
UNet-5 67.2 57.9 66.8 57.9 70.2 65.0 78.9 69.2 79.0 73.1

EMPIAR-10499
5% 10% 30% 50% 70%

mAP .5 .75 .5 .75 .5 .75 .5 .75 .5 .75

Res-9 31.1 22.0 33.2 22.4 40.1 29.8 41.3 30.2 42.5 31.3
Res-13 16.5 5.2 19.1 6.1 19.3 6.2 22.1 12.9 24.9 13.1
UNet-4 31.4 22.9 30.5 19.6 31.7 22.6 31.6 23.8 32.3 24.1
UNet-5 28.0 17.1 29.1 18.2 27.9 17.0 28.2 17.5 27.6 18.1

4 Experimental results with consistency regularization

We also investigated how consistency regularization affects the performance of
the proposed particle detector. As shown in Table 2, consistency regularization
is able to improve the performance when fewer data annotations are available.
When more labeled data is available, the benefit of consistency regularization is
less significant.
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Table 2: Effect of consistency regularization on particle detection

EMPIAR-10304
5% 10% 30% 50% 70%

mAP .5 .75 .5 .75 .5 .75 .5 .75 .5 .75

Res-9 54.5 44.0 57.0 45.2 67.9 56.8 71.5 62.0 72.1 62.5
Res-9 no consis 48.9 39.9 49.4 40.8 64.8 52.6 70.6 61.3 71.0 62.8

UNet-4 65.3 55.4 72.5 64.0 76.2 71.5 76.6 71.9 76.8 72.0
UNet-4 no consis 64.1 54.0 70.8 60.9 73.6 68.5 75.6 69.7 76.4 71.6

EMPIAR-10499
5% 10% 30% 50% 70%

mAP .5 .75 .5 .75 .5 .75 .5 .75 .5 .75

Res-9 31.1 22.0 33.2 22.4 40.1 29.8 41.3 30.2 42.5 31.3
Res-9 no consis 30.4 21.5 29.7 21.4 38.2 29.0 40.3 30.8 40.8 31.0

UNet-4 31.4 22.9 30.5 19.6 31.7 22.6 31.6 23.8 32.3 24.1
UNet-4 no consis 30.7 21.8 30.8 21.9 31.5 22.0 31.9 21.3 33.7 25.6
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