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Abstract. Cryo-electron tomography (CET) combined with sub-volume
averaging (SVA), is currently the only imaging technique capable of de-
termining the structure of proteins imaged inside cells at molecular reso-
lution. To obtain high-resolution reconstructions, sub-volumes containing
randomly distributed copies of the protein of interest need be identified,
extracted and subjected to SVA, making accurate particle detection a
critical step in the CET processing pipeline. Classical template-based
methods have high false-positive rates due to the very low signal-to-noise
ratios (SNR) typical of CET volumes, while more recent neural-network
based detection algorithms require extensive labeling, are very slow to
train and can take days to run. To address these issues, we propose a
novel particle detection framework that uses positive-unlabeled learning
and exploits the unique properties of 3D tomograms to improve detec-
tion performance. Our end-to-end framework is able to identify particles
within minutes when trained using a single partially labeled tomogram.
We conducted extensive validation experiments on two challenging CET
datasets representing different experimental conditions, and observed
more than 10% improvement in mAP and F1 scores compared to ex-
isting particle picking methods used in CET. Ultimately, the proposed
framework will facilitate the structural analysis of challenging biomedical
targets imaged within the native environment of cells.

Keywords: Cryo-electron microscopy, cryo-electron tomography, 3D
detection, positive-unlabeled training, contrastive learning

1 Introduction

Cryo-electron tomography (CET) combined with sub-volume averaging (SVA)
is currently the only imaging technique capable of determining the structure of
proteins imaged inside cells at molecular resolution [8]. Bypassing the need for
protein purification, CET allows determination of protein structures within their
native context while also providing information on their distribution and partner
interactions. Unlike cryo-EM single particle analysis (SPA) that requires sample
purification and collects 2D projections of particles [2], CET can recover 3D infor-
mation from proteins by recording a series of 2D images as the biological sample
is rotated around a tilt axis (Figure 1). The sequence of 2D images, termed a tilt-
series, is then aligned and used to calculate a 3D tomographic reconstruction or

https://orcid.org/0000-0002-7082-5257
https://orcid.org/0000-0002-0489-3614
https://orcid.org/0000-0001-9302-7648
https://orcid.org/0000-0002-7360-1523


2 Q. Huang et al.

Fig. 1: Overall processing pipeline for CET. (a) Projections of the protein sample are acquired
at different angles by rotating the microscope stage using small tilt increments. (b) The acquired
tilt-series are aligned and used to reconstruct 3D tomograms containing a few hundred sub-volumes
which are identified and extracted. (c) Orientations of each extracted sub-volume are estimated
followed by averaging to obtain the final high-resolution 3D reconstruction.

tomogram of the sample. A typical CET dataset usually contains between tens to
a few hundred tomograms and each tomogram contains a few hundred copies of
the same protein of interest. To obtain a single high-resolution structure, tens of
thousands of sub-volumes containing randomly oriented and distributed copies
of the protein of interest first need to be detected within tomograms in a pro-
cess commonly referred to as particle picking. Sub-volumes are then extracted,
aligned and combined in 3D using SVA, making the detection task critical for
the downstream data processing. The low signal-to-noise ratios (SNR) charac-
teristic of CET images, caused in part by the limited electron doses used during
acquisition to prevent radiation damage of the biological samples, makes particle
localization very challenging. High false-positive rates can prevent successful 3D
reconstruction altogether due to the presence of confounding sub-volumes corre-
sponding to noise, while high true-positive rates are desirable as they can lead to
better denoising performance and increased resolution of the final reconstruction.
For 2D SPA data, fully-supervised and semi-supervised learning-based particle
picking methods can achieve good results due to the higher SNRs and availabil-
ity of large annotated datasets [14]. In contrast, training of deep learning-based
3D CET particle picking algorithms remains impractical due to: (1) the lack of
enough annotated CET datasets caused by the time consuming nature of doing
manual labeling of 3D tomograms, and (2) the challenges imposed by the intrin-
sically lower SNR of tomographic projections and the effects caused by molecular
crowding in native cellular environments. Recent efforts to tackle particle pick-
ing from CET tomograms using deep-learning only work on simulated datasets
with full annotation, and use network architectures with millions of parameters
that take days to train and hours to perform detection on a single tomogram,
making their use impractical in real applications [11]. Currently, particle pick-
ing from CET tomograms remains a major bottleneck that has slowed down
the reconstruction of high-resolution protein structures using SVA. To overcome
the challenges in training deep learning-based particle identification models for
CET, we propose a semi-supervised learning-based framework that only requires
a few annotations on a single tomogram. The proposed method can be trained
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within minutes, which makes it suitable for a data-specific model. Specifically,
our approach uses a positive unlabeled learning-based center localization mod-
ule, allowing us to leverage information from both annotated and unlabeled
data, effectively removing the burden of doing full data annotation. To enable
better feature representation learning, we adopt a voxel-level contrastive learn-
ing module. The proposed module exploits both supervised and self-supervised
contrastive learning and improves learned features. To validate our approach,
we carried out extensive experiments on two challenging CET datasets acquired
under different SNR conditions. We show that our method is able to outperform
existing methods, while requiring smaller amounts of training data (less than
0.5% of the total data) and being time-efficient (under 10 minutes).

To summarize, the main contributions of this paper are:

1. We propose a 3D particle detection framework that achieves high localiza-
tion accuracy with only a few annotations. The framework consists of two
modules: (1) a positive unlabeled learning-based particle center localization
module, and (2) a debiased voxel-level contrastive learning module. Both
modules leverage information from annotated and unannotated data.

2. To the best of our knowledge, our work is the first to enable protein identi-
fication of hundreds of tomograms within minutes (training time included).

3. Through extensive experiments, we demonstrate that our framework is ro-
bust and performs well, even under the challenging SNR conditions of CET.

2 Related Work

Object Detection and Applications in Cryo-Electron Microscopy (EM) Neural
network based object detection algorithms have been applied and shown promis-
ing results in various fields ranging from photography to medical imaging. Ex-
isting object detection approaches can be broadly divided into two categories:
anchor-based and anchor-free. Representative examples of anchor-based methods
include faster R-CNN [26], a region-based two-stage object detector, and YOLO
[25] and SSD [21], which are one-stage object detectors. To address problems
with class imbalance, the use of a focal loss term was proposed in [20]. Build-
ing on top of anchor-based methods, anchor-free methods were later introduced.
This category includes FCOS [31], which performs per-pixel bounding box pre-
diction, and CenterNet [36], which predicts bounding box location by estimating
its center coordinates. Following the success of object detection algorithms based
on neural networks, there have been multiple CNN-based particle picking algo-
rithms for 2D cryo-EM SPA [13,1,23], including Topaz [3], a positive-unlabeled
learning-based algorithm that learns to identify particles by minimizing both
the supervised classification loss and the divergence between estimated empiri-
cal distribution and prior distribution; and crYOLO [32], a YOLO-based fully
supervised particle detector. In contrast, there is very limited work on particle
identification from 3D CET tomograms, where the most commonly used particle
detection method is template matching [28]. Examples include recently proposed
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3D-CNN based methods [11,22,34], and concurrent work, DeepPict [30], that
uses a 2D-CNN for segmentation and a 3D-CNN for particle localization. These
methods all require a large amount of annotated data and long training time.

Positive Unlabeled Learning PU learning can be broadly generalized into two
categories: (1) two-step techniques that first identify reliable negative examples
and learn based on labeled positives and reliable negatives; (2) class prior in-
corporation. The two-step techniques are similar to the teacher-student model
that have been widely adopted in semi-supervised learning [33,27,16]. Class prior
information can be incorporated in two ways: (1) the expected distribution of
the classified unlabeled data should match the known prior distribution (this
is a form of posterior regularization called GE criteria [9] and this approach is
adopted by [3]), and (2) unbiased PU learning, where the unlabeled data is used
as negatives while being properly down-weighted [18,24]. Based on unbiased PU
learning, debiased instance level contrastive learning that takes sampling bias
into account was also proposed [7].

Contrastive Representation Learning The goal of contrastive learning is to learn
an embedding space in which similar sample pairs are close to each other while
dissimilar pairs are far apart. Our proposed contrastive learning utilizes the In-
foNCE loss, which has been adopted by many self-supervised contrastive learn-
ing frameworks such as simCLR [5] and MoCo [12]. In most self-supervised con-
trastive learning frameworks, heavy data augmentation, large batch size and hard
negative sampling are crucial components. More recently, supervised contrastive
learning [17] using InfoNCE was proposed and shown to be a generalization
of triplet loss and N-pair loss. In addition to image-wise contrastive learning,
there are pixel-wise contrastive learning frameworks used for image segmenta-
tion [35,4]. In our case, instead of using contrastive learning as a pre-training
framework, we use it as a regularization component to the detection task.

3 Methodology

We first introduce the problem formulation of semi-supervised protein localiza-
tion in crowded CET volumes and some special characteristics of CET data. We
then give an overview of our proposed framework, which consists of two modules:
positive unlabeled learning-based protein center localization, and voxel-level de-
biased contrastive feature learning. A detailed description of each module is then
given. Finally, we present the overall training objective.

3.1 Characteristics of CET volumes

There are two important properties of CET tomograms, apart from their low
SNR nature (Figure 3). First, due to the use of limited tilt angle ranges, the
reconstructed tomograms contain a “missing-wedge” of information that distorts
particle images due to lack of full orientation information. This distortion is
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Fig. 2: (a) Proposed framework for 3D protein detection. We use a combination of 2D and 3D
convolutional layers. The 2D CNN-based feature extractor follows a encoder-decoder architecture.
The feature extractor is applied to each slice of the tomogram. The extracted features are then fused
together through 3D convolutional layers. The fused 3D features are used for: (1) center coordinate
heatmap prediction, and (2) voxel-level contrastive learning. During inference, only the heatmap
is used for particle identification. (b) Voxel-level debiased contrastive learning module. For
illustration purposes, we use a 2D image with stars in different orientations. These stars represent
naturally augmented positive pairs. Feature vectors at the star locations encode information about
the location of the objects and the feature vectors serve as input to our contrastive learning module.

especially obvious from the Y −Z view of the data which is perpendicular to the
specimen plane. Second, there is data recurrence within each tomogram since
a single tomogram usually contains up to a few hundred sub-volumes of the
protein-of-interest. These copies are all present in different relative orientations
(with respect to the missing wedge) and are distorted in different ways. Our
particle detection technique leverages these unique properties of CET datasets.

3.2 Problem Formulation

Fig. 3: An example CET slice from all three
views. (a) X-Y view. (b) Y-Z view. (c) X-
Z view. X-Y view provides most amount of
useful information for particle identification.

The aim of semi-supervised protein local-
ization in CET volumes is to obtain a
model that is able to detect locations of
proteins-of-interest in 3D tomograms, by
learning from just a few annotated exam-
ples. A typical CET dataset D contains j
tomograms {Ti ∈ RW×H×D, i = 1, ..., j},
with j ranging from tens to a few hun-
dreds. A single tomogram Ti is scattered
with a few hundreds to thousands of pro-
teins. In the semi-supervised protein iden-
tification setting, in order to reduce the
labor of manual labeling, the training set
Dtr includes one tomogram Ttr with a few
proteins annotated. The remaining tomo-
grams are used as testing set Dte. Unlike standard object detection algorithms
which aim to produce bounding box locations of objects-of-interest, in most
cryo-EM applications, center coordinates of proteins are the desired outputs for
the particle detection task. Therefore, instead of outputting bounding box lo-
cations and sizes, inspired by [36], we aim to train the particle detector using
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Dtr to produce a center point heatmap Ŷ ∈ [0, 1]C× W
R1

× H
R1

× D
R2 where Ri is the

output stride and C is the number of protein species. The output stride down-
samples the prediction by a factor Ri on each dimension. We set C = 1 as we
only consider monodisperse samples and omit the dimension in the following sec-
tions. We extend the method used by [19] to generate the ground truth heatmap

Y ∈ [−1, 1]
W
R1

× H
R1

× D
R2 using the partially annotated tomogram. For each an-

notated center coordinate position p = (x, y, z), its downsampled equivalent is
computed as p̃ = (⌊ x

R1
⌋, ⌊ y

R1
⌋, ⌊ z

R2
⌋). For each p̃ on Y , we apply a Gaussian

kernel Kxyz = exp (− (x−p̃x)
2+(y−p̃y)

2+(z−p̃z)
2

2σ2
k

) where σk is determined by the

particle size [19]. The remaining unlabeled coordinates on Y have a value of −1.

3.3 Proposed Approach

Overview As shown in Figure 2, our framework is composed of: (a) an encoder-
decoder feature extraction backbone, (b) a protein center localization module,
and (c) a voxel-level contrastive feature learning module. We used a fully con-
volutional architecture for the backbone and since the input training tomogram
is only partially labeled, we incorporated a positive unlabeled learning-based
strategy for both the localization and contrastive learning modules.

Feature extraction backbone Even though the input is a 3D tomogram, our
network is composed of mostly 2D convolutional layers. 3D convolutional layers
are only applied in the last two layers. Essentially, the network first extracts
features of each slice independently and then merges the extracted 2D features
into 3D at the final layers. The combination of 2D and 3D layers is inspired
by the actual manual particle picking process: to identify a particle, the X − Y
view of each slice is inspected most carefully (as it contains no distortions), while
the X − Z and Y − Z views only provide very limited information (due to the
heavy missing-wedge distortions, Figure 3). This architecture design has two
advantages: first, since 3D information is only considered during the final layers,
it can reduce the missing-wedge effect; second, the resulting architecture has
fewer parameters than a pure 3D CNN, greatly reducing memory requirements
and running time. We provide more details in the supplementary material.

Protein center localization module For the input tomogram T and its
output heatmap Ŷ , protein localization can be viewed as a per-voxel classification
problem such that each voxel vi,j,k at position (i, j, k) is the input and the
corresponding ŷi,j,k ∈ [0, 1] is the classification output.

Positive Negative (PN) Learning: Denote p(v) as the underlying data distribu-
tion from which vi,j,k is sampled, p(v) can be decomposed as follows:

p(v) = πppp(v|y = 1) + πnpn(v|y = 0) (1)
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where pp(v|y = 1) is the positive class conditional probability of protein voxels,
pn(v|y = 0) is the negative class conditional probability of background voxels,
and πp and πn are the class prior probabilities. Underscripts n, p, u denote neg-
ative, positive and unlabeled, respectively. Denote g : Rd → R, an arbitrary
classifier that can be parameterized by a neural network, l(g(v) = ŷ, y) being
the loss between model outputs ŷ and ground truth y. When all the voxels are
labeled, this is essentially a binary classification problem that can be optimized
using a standard PN learning approach with the following risk minimization:

R̃pn = πpR̃
+
p (g) + πnR̃

−
n (g) (2)

where R̃+
p (g) is the mean positive loss Ev∼pp(v)[l(g(v

p), y = 1)] and can be esti-

mated as 1/np

∑np

i=1 l(ŷ
i
p, 1), R̃

−
n (g) is the mean negative loss Ev∼pn(v)[l(g(v

n), y =

0)] and can be estimated as 1/nn

∑nn

i=1 l(ŷ
i
n, 0), np and nn are the number of

positive and negative voxels.

Positive Unlabeled (PU) Learning: When only a few positive voxels are la-
beled and the remainder of the data is unlabeled, we re-formulate the problem
into the PU setting: the positive labeled voxels are sampled from pp(v|y = 1)
and the remaining unlabeled voxels are sampled from p(v). As shown in [24],
by rearranging Equation 1 and 2, we obtain πnpn(v) = p(v) − πppp(v) and

πnR̃
−
n (g) = R̃−

u (g)− πpR̃
−
p (g). We therefore rewrite the risk minimization as:

Rpu = πpR̃
+
p (g)− πpR̃

−
p (g) + R̃−

u (g) (3)

with R̃−
u (g) = Ev∼p(v)[l(g(v), y = 0)] and R̃−

p (g) = Ev∼pp(v)[l(g(v), y = 0)]. In
order to prevent overfitting in Equation 3, we adopted the non-negative risk
estimation as in [18]:

R̃pu = πpR̃
+
p (g) + max{0, R̃−

u (g)− πpR̃
−
p (g)} (4)

Soft Positives and True Positives: Since the ground-truth heatmap is splatted
with Gaussian kernels, the labels are not strictly binary. Positive labels are split
into two groups: true positives (tp) where yi,j,k = 1, which is the center of each
Gaussian kernel (protein center), and soft positives (sp) where 0 < yi,j,k < 1
(voxels that are close to the center). Unlabeled voxels are labeled as −1. With
this, the positive distribution pp(v) and positive associated losses R̃+

p (g), R̃
−
p (g)

are decomposed into:

pp(v) = πtpptp(v|y = 1) + πsppsp(v|0 < y < 1)

R̃+
p (g) = πtpR̃

+
tp(g) + πspR̃

+
sp(g), R̃

−
p (g) = πtpR̃

−
tp(g) + πspR̃

−
sp(g)

(5)

We adopt voxel-wise logistic regression with focal loss for l(g(v), y). Specifically,
we have:

R̃+
tp(g) = (1− ŷijk)

α log(ŷijk), R̃
+
sp(g) = (1− yijk)

β(ŷijk)
α log(1− ŷijk)

R̃−
tp(g) = ŷαijk log(1− ŷijk), R̃

−
sp(g) = (yijk)

β(1− ŷijk)
α log(ŷijk)

R̃−
u (g) = (ŷijk)

α log(1− ŷijk)

(6)
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where α, β are the focal loss parameters and we use α = 2, β = 4. By combining
Equation 4, 5 and 6, we obtain the final minimization:

R̃pu = πp(πtpR̃
+
tp(g) + πspR̃

+
sp(g)) +max{0, R̃−

u (g)− πp(πtpR̃
−
tp(g) + πspR̃

−
sp(g))}

(7)

Voxel level debiased contrastive learning module For the input tomogram
T ∈ RW×H×D and its augmented pair T̃ , denote the output from the feature
extraction backbone as M ∈ RCh×W

R ×H
R ×D

R and the augmented pair M̃ . M and
M̃ are used to generate: (1) the output heatmap Ŷ and its augmented pair Ỹ ,
and (2) the projected feature map F and F̃ . As suggested in [5], instead of
using M , it is beneficial to map the representations to a new space through a
projection head composed of 1 × 1 × 1 convolutional layer where a contrastive
loss is applied. Denote mi,j,k ∈ RCh and m̃i,j,k as the feature vector at the
(i, j, k) position of the feature map M and its augmented counterpart. There
exists a total of W

R × H
R × D

R = N such vectors. Each of these feature vectors is
responsible for predicting ŷi,j,k. If yi,j,k = 1,mi,j,k and its projection fi,j,k should
encode particle-related features. For a partially annotated T , the voxel-level
feature vectors f can be separated into positive and unlabeled classes. Therefore,
the voxel-level contrastive loss is composed of: (1) positive supervised debiased
contrastive, and (2) unlabeled self-supervised debiased contrastive terms.

Positive supervised debiased contrastive loss: Denote Fp = {fp
i,j,k : yi,j,k = 1} as

the set of positive feature vectors obtained from np annotated proteins and its

augmented counterpart F̃p = {f̃p
i,j,k : ỹi,j,k = 1}, Fu = {fu

i,j,k : yi,j,k < 1} as the
set of unlabeled (including the soft positives) feature vectors with a total of nn.
Since each tomogram contains up to a few hundred sub-volumes of the protein
of interest, and each of these sub-volumes are the same protein with different
relative orientations and are distorted in different ways, for a feature vector
fp
i ∈ Fp, the remaining 2np − 1 feature vectors fp

j , j = 1, ..., 2np − 1 in Fp and

F̃p can be treated as its naturally augmented pair. Unlabeled feature vectors
fu
k ∈ Fu, k = 1, ..., 2nn which includes the augmented unlabeled features are
treated as negatives. However, since the unlabeled set Fu can contain positive
feature vectors, the naive supervised contrastive loss as proposed in [17] will be
biased. We therefore adopt a modified debiased supervised contrastive loss based
on [7]:

Ldb
sup = E

− log

 1/(2np − 1)
∑2np−1

j=1 ef
pT
i fp

j

1/(2np − 1)
∑2np−1

j=1 ef
pT
i fp

j + gsup(f
p
i , {f

p
j }

2np−1
j=1 , {fu

k }
2nn

k=1)


(8)

where the second term in the denominator is:

gsup(·) = max
{ 1

πn

( 1

2nn

2nn∑
k=1

ef
pT
i fu

k − πp
1

2np − 1

2np−1∑
j=1

ef
pT
i fp

j
)
, e−1/t

}
(9)

with πn and πp being the class prior probabilities and t the temperature.
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Unlabeled self-supervised debiased contrastive loss: For the unlabeled feature
vector fu

k , the only known positive is its augmented pair f̃u
k and the remaining

vectors are treated as negatives. Denote {fr
l }

2N−2
l=1 as the set of remaining vectors.

The resulting contrastive loss for an unlabeled feature vector is:

Lunsup = E

[
− log

[
ef

uT
k f̃u

k

ef
uT
k f̃u

k + gunsup(fu
k , f̃

u
k , {fr

l }
2N−2
l=1 )

]]
(10)

It should be noted that g(·) involves class prior probabilities, however, the actual
class of the unlabeled feature vectors is unknown. Therefore, we used the output
probabilities from Ŷ and the final unlabeled contrastive loss is calculated as the
weighted average based on the probabilities of the feature vector belonging to
the positive class:

Ldb
unsup = Ŷ Lp

unsup + (1− Ŷ )Ln
unsup (11)

where for Lp
unsup, the denominator gpunsup(·) is:

gpunsup(·) = max
{ 1

πn

( 1

2N − 2

2N−2∑
l=1

ef
uT
k fr

l − πne
fuT
k f̃u

k

)
, e−1/t

}
(12)

and for Ln
unsup, the denominator gnunsup(·) is:

gnunsup(·) = max
{ 1

πp

( 1

2N − 2

2N−2∑
l=1

ef
uT
k fr

l − πpe
fuT
k f̃u

k

)
, e−1/t

}
(13)

.

Overall Training Objective In addition, we added a consistency regulariza-
tion loss for the output heatmap Ŷ and its augmented version Ỹ such that the
probability of a voxel containing a protein should be invariant to augmentations:

Lcons = MSE(Ŷ , Ỹ ) (14)

The final training objective is:

L = R̃pu + λ1(Ldb
sup + λ2Ldb

unsup) + λ3Lcons (15)

where λ1 is the weight of the total contrastive module, λ2 is the weight of the
unsupervised contrastive loss, and λ3 is the weight of consistency regulariza-
tion. The resulting loss serves two purposes: 1) the contrastive term maximizes
similarities for encoded features belonging to the same group (particle and back-
ground) and minimizes such similarities if features are from different groups,
and 2) the heatmap loss term forces predicted particle probabilities to be higher
when they are closer to the true center location. To remove duplicate predictions,
non-max suppression is applied to the predicted heatmap using 3D max-pooling.
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4 Validation Experiments

We evaluate the performance of our algorithm on two real CET datasets. For
each dataset, we evaluated the performance when 5%, 10%, 30%, 50% and 70%
of the data from a single tomogram is annotated. We perform ablation studies
over the contrastive and positive unlabeled learning components. Performance
is measured using mean average precision (mAP) scores calculated against man-
ually labeled particle locations.

4.1 Datasets

We evaluate our method on two publicly available CET datasets from the elec-
tron microscopy public image archive (EMPIAR) [14]: EMPIAR-10304 [10] and
EMPIAR-10499 [29]. These datasets represent the two most common types of
CET biological samples, more details are included in supplementary material.

4.2 Experimental Setup

Implementation Details We initialize the network using weights obtained
from a trained network that identifies whether a slice contains particles. However,
random initialization of the network is able to achieve similar performance. Dur-
ing training, instead of using the whole tomogram, we cropped sub-tomograms
of size 64 × 64 × 5 as input to the network in batches of 2. Training time is
thus independent of input size. Inference is performed on the entire tomogram.
The network is implemented with PyTorch and trained/tested on an NVIDIA
Tesla V100 GPU. The proposed framework is trained in an end-to-end manner
using Adam optimizer with default parameter values and an initial learning rate
of 0.001. We decrease the learning rate by a factor of 10 every 200 iterations.
Training takes around 3 to 5 minutes for 600 iterations and inference on each
full tomogram takes less than a second. In all our experiments, we trained the
network for 600 iterations. We used experimentally determined values: λ1 = 0.1,
λ2 = 0.5 and λ1 = 0.1. For EMPIAR-10304, we used πp = 0.6, and t = 0.07. For
EMPIAR-10499, we used πp = 0.1, and t = 0.02.

Evaluation Metrics We use mean average precision (mAP) scores calculated
against manually labeled particle locations for evaluation. To account for small
variations in the detected particle centers, instead of looking at a single pixel, we
also look at pixels located within a certain radius from the center. If the detected
particle position is within a certain radius of a ground truth particle position,
it is considered as a true positive match. Similarly, if there is no ground truth
particle within a certain radius of a detected particle position, it is considered
as a false positive. We use radius values of 2 and 5 and denote the corresponding
mAP values as mAPr2 and mAPr5.
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Baseline Methods We compare our method with one conventional CET par-
ticle detection method, template matching, and one recently developed deep
learning-based method, crYOLO-3D [32]. Even though there are many available
deep-learning based particle picking methods for 2D SPA cryo-EM, there are
only a few methods for 3D CET. crYOLO-3D is the only deep learning-based
algorithm that is available to use. Template matching is implemented using the
EMAN2 package [28]. We use a low-pass filtered ribosome reconstruction as
template. Even though crYOLO-3D is termed as “3D” picking, it is really a 2D
picking method. For each 3D tomogram input, crYOLO-3D performs per-slice
particle detection using a pretrained 2D model. The detected 2D coordinates
on each slice are combined into 3D coordinates through a tracking algorithm.
The pretrained model is trained using 43 fully labeled datasets with more than
44,000 labeled particles. We use their official software available online1 and fine
tune the pretrained weights with images and labels from our training samples
(Note: we had to convert 3D labels to 2D (slice-level) for crYOLO training, and
therefore we used 360 annotations for EMPIAR-10304 and 1100 annotations for
EMPIAR-10499). For the baseline methods, we are only able to obtain precision
and recall values, as their implementation does not output detection scores and
we can only select a cut-off threshold. Therefore, for comparing with our frame-
work, we also calculated the corresponding precision-recall score using the same
threshold (0.25).

4.3 Results

Table 1: Precision, Recall and F1 scores for our pro-
posed method and baseline methods.

Method EMPIAR 10304 EMPIAR 10499

Precision Recall F1 Precision Recall F1
5% 80.4 59.2 68.2 49.6 58.1 53.5
10% 81.8 53.6 64.7 50.1 58.2 53.8
30% 79.5 76.5 78.0 55.9 60.3 58.0
50% 83.8 72.1 77.5 53.0 65.1 58.4
70% 82.3 77.6 80.0 54.9 66.7 60.2

crYOLO 47.6 14.6 22.4 47.8 56.8 52.0
EMAN2 58.9 65.5 62.0 26.1 55.3 35.5

In Table 2, we show mAPr2 and
mAPr5 scores for both datasets
obtained using our approach. We
show qualitative visualization of
detection results on selected slices
of tomograms from each dataset
in Figure 4. To improve particle
visibility, we use averages of mul-
tiple slices instead of a single slice.
Our method is able to outperform
the two baseline methods by a sig-
nificant margin, as shown in Table
1. We also show that when trained
only using a very small amount of
annotated data (5% and 10%), our approach is still able to obtain satisfactory
results. When more annotations are available for training, performance improves
(especially from 5% to 30%). Template matching from EMAN2 tends to pick up
more false positives and is less accurate in identifying the true center of the
particle. It tends to miss more particles when SNR is lower. While crYOLO-
3D is more robust to noise compared to template matching, it still results in

1 https://cryolo.readthedocs.io/en/stable/
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Fig. 4: Detection results on selected tomograhic slices from EMPIAR-10304 and
EMPIAR-10499. Top two rows: Slice averages from tomograms of EMPIAR-10304. Zoomed-in
views are provided at the bottom right. Bottom two rows: Slices averages from tomograms of
EMPIAR-10499. We show detected particles trained using 5%, 10%, 30%, 50% and 70% of par-
ticles annotated on a single tomogram. We also show particle detection results using crYOLO-3D
and EMAN2. Our method is able to detect more particles with highere precision. As more data
annotation is available, detection performance increases (especially from 5% to 50%). EMAN2 tends
to pick up more false positives. Note that manual picked results are not necessarily ground truth,
as it is possible to miss several particles during manual picking (as shown). We highlighted several
missed particles regions in light yellow.

many missed particles. In addition, it performs poorly on the extremely crowded
dataset (EMPIAR-10304) even though the SNR is much higher. This is because
crYOLO-3D is actually a 2D particle detector. Instead of processing the entire
tomogram as one 3D volume, the inputs are individual 2D slices: it performs
particle detection on each slice first. The 2D coordinate outputs on each slice
are then merged in the post-processing step (multi-slice tracing) into 3D coor-
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EMPIAR-10304
5% 10% 30% 50% 70%

mAP r5 r2 r5 r2 r5 r2 r5 r2 r5 r2

Ours 54.5 44.0 57.0 45.2 67.9 56.8 71.5 62.0 72.1 62.5
Ours no CR 53.0 42.1 54.1 43.2 65.1 55.7 67.5 58.1 65.8 57.4
Ours no PU 32.2 14.1 38.3 22.9 41.5 15.4 40.2 20.0 41.1 23.1

EMPIAR-10499
5% 10% 30% 50% 70%

mAP r5 r2 r5 r2 r5 r2 r5 r2 r5 r2

Ours 31.1 22.0 33.2 22.4 40.1 29.8 41.3 30.2 42.5 31.3
Ours no CR 24.2 14.1 24.3 14.2 33.9 24.0 31.8 19.1 34.5 24.1
Ours no PU 11.4 2.1 9.4 1.7 16.2 4.1 14.8 3.5 20.0 9.2

Table 2: Particle detection results obtained using different levels of annotations available
for training. First row : mAP scores for our proposed method with both positive unlabeled center
localization module and debiased voxel-level contrastive learning module. Second row : mAP scores
for our proposed method without the contrastive learning module. Third row : Our proposed method
without positive unlabeled learning and debiased contrastive learning

dinates. During the merging step, the actual 3D tomogram is not used, only
the 2D coordinates are used as inputs to the post-processing step. When par-
ticles are crowded, tracing fails and the subsequent detection also fails. Since
our algorithm uses the whole 3D tomogram as input, we are able to avoid these
problems. Our method is also able to avoid contamination areas, as features cor-
responding to these areas are learned to be distinct from features characteristic
of true particles.

In terms of running time and level of annotation, template matching takes 2-5
minutes and a template is required. When a template is not available, a Gaussian
blob is used, which results in even higher false positive rates. crYOLO-3D takes a
total of 30-40 minutes to run including model fine-tuning. Our proposed method
takes 5-10 minutes to run and requires a minimum of 20-50 labeled particles.

Ablation Studies To evaluate the effectiveness of our proposed method we
perform ablations studies on: (1) voxel-level contrastive learning module, and
(2) positive unlabeled learning in two modules. For (1), we remove the proposed
voxel-level contrastive module and the corresponding term in the loss function.
As shown in Table 2, without this module, the performance degrades, especially
under lower SNR scenarios. This shows that our proposed module improves
the feature learning of input tomograms and in turn facilitates the detection
of particles when only limited amount of training samples are provided. In (2),
for the center localization module, we treat all unlabeled regions as negatives
and adopted a standard focal loss as in [36]; for the contrastive module, we
adopted a combination of supervised contrastive loss as in [17] for labeled regions
and self-supervised InfoNCE for unlabeled regions. As shown in Table 2, the
detection outcome decreases significantly without positive unlabeled learning,
which implies the importance of debiasing when there is lack of annotated data.
We also evaluated the effect of feature extraction backbone choices on detection
outcomes. For this, we looked at: (1) 2D convolution vs. 3D convolution, and (2)
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depth of the network. For (1), even though for volumetric data 3D convolution-
based architectures are more commonly used [6,15], due to the unique properties
of CET data and the lack of training data, we experimentally found out that full
3D convolution-based architectures (3D ResNet and UNet) failed to learn any
useful information, which is why we did not include their corresponding results
in this section. For (2), as objects-of-interest in CET are small, increasing the
depth of networks (which increases the receptive field size) can actually worsen
performance. We include more details in the supplementary material.

Limitations The main limitation of our proposed method is the necessary
knowledge of the class prior probabilities π. For crowded samples like EMPIAR-
10304, if we use a very small positive prior such as 0.1, the trained model tends
to produce more false negatives. On the contrary, for less crowded samples like
EMPIAR-10499, if we use a large positive prior, more false positives get iden-
tified. Therefore, a reliable estimation of π is required. Such estimation can be
obtained by visually inspecting the tomogram when doing annotations. In addi-
tion, the performance of our method is limited under very low SNR levels.

5 Conclusion

We propose a novel 3D particle detection framework that enables accurate lo-
calization of proteins from CET datasets within minutes when trained using a
small amount of labeled data. By leveraging the internal data statistics of CET
tomograms, we design a novel architecture for 3D particle identification that
incorporates positive unlabeled and contrastive learning. Extensive experiments
demonstrate that our proposed framework achieves superior performance on real
cryo-ET datasets compared to previous methods. The proposed framework will
expedite the current cryo-ET data processing pipeline and facilitate the struc-
tural analysis of challenging biomedical targets imaged within cells.
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