
k-SALSA: k-anonymous synthetic averaging of
retinal images via local style alignment

(Supplementary Materials)

1 Benchmark datasets

The APTOS dataset includes 3,662 labeled fundus images. We split the data
into a training set of 3,000 images and a test set of 662 images. The EyePACS
dataset includes 35,126 labeled fundus images. We split the data into a training
set of 28,100 images and a test set of 7,026 images. We rescaled the images in
both datasets to 512-by-512 RGB pixels. The training set is used to obtain the
GAN and GAN-Inversion models.

2 Implementation details

GAN. We trained our GAN models using the official PyTorch implementation1

of StyleGAN2-ADA [6]. We set the number of mapping networks to two as
recommended based on our image resolution and GPU count. Since the desired
size of the generated images is 512×512, we used 16 progressive layers, resulting
in the latent space W with dimensions 16× 512. We train the models on 5,000
kimgs in each dataset with batch size 64, using 8 3090-RTX GPUs, Pytorch
1.7.1, CUDA 11.1, and CuDNN 8.1.1.

GAN Inversion. To obtain the GAN inversion encoder we built upon the
official PyTorch implementation2 of ReStyle [1]. We incorporated the MOCO-
based [3] similarity loss on pSp [12] architecture with ResNetBackboneEncoder [4].
We trained each model for 100,000 iterations with a batch size of 8 and 5 refine-
ment iterations per batch. Similar to the GAN setting, the output image size is
set to 512 × 512. We performed the training using 1 3090-RTX GPU with the
same environment as that of GAN training.

k-SALSA. We split the intermediate-level features into a grid of 4× 4 patches
(16 in total) to construct the local style features in all settings. For the relative
ratio of Lcontent and Lstyle, we set the parameter λ to 0.1, 0.05 and 0.03 for
k = 2, 5, 10, respectively, in APTOS. For EyePACS, we set λ to 0.01, 0.02 and
0.01, respectively for each k. We optimize our model for synthetic averaging
using standard stochastic gradient descent with Adam [7], with learning rate 0.1
and β1 = 0.9, β2 = 0.99. We use the same computational environment as above
with a single GPU.

1 https://github.com/NVlabs/stylegan2-ada-pytorch
2 https://github.com/yuval-alaluf/restyle-encoder
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Downstream classification. For all synthetic datasets, we trained a DR clas-
sifier using the ResNet50 model [5] with batch size 32, 60 epochs, stochastic
gradient descent (SGD) with Nesterov momentum 0.9 [10], weight decay 0.0005,
and cosine annealing in the learning rate schedule [9].

3 Computational costs

One-time pre-training of GAN and inversion models took 10 hrs and 3 days,
respectively, for APTOS, and 30 hrs and 3 days for EyePACS. The main runtime
of k-SALSA depends on the inference speed of GAN and inversion, only around
0.85 secs/image. Synthetic averaging takes 19 secs/cluster (k=5). Both steps can
be parallelized. Same-size clustering takes <1 min. Cosine similarity is computed
for 16 patches/image (4x4) for 2 ms/image. Overall, we expect k-SALSA to be
practical in realistic settings.

4 Choice of similarity metric for local style alignment

Here we provide additional empirical results supporting our choices of similarity
metric in the local style alignment. Recall that once the local style features are
constructed for each batch, we find the optimal matches between the target and
source images using cosine similarity (COS). Given these optimal matches, we
then use mean squared error (MSE) to optimize the synthetic average (see the
definition of Lstyle in Eq. 7), effectively transferring the local styles from the
source image to the target average. We note that these choices are inspired by
prior works; dense contrastive learning [13] uses the COS metric to perform the
alignment, whereas style transfer [2] is typically done using the MSE—our work
combines these two approaches and keeps the respective similarity metrics. As
shown in Supplementary Table 1, using either of COS and MSE metrics for both
components of the model (COS-COS or MSE-MSE) results in worse averaging
performance as measured by the downstream classification task evaluated in our
work, which intuitively captures how well the clinically relevant features are
preserved in the averaged images. This result supports our hybrid use of both
metrics.

Supplementary Table 1: Comparison with alternative similarity metrics in local
style alignment with respect to classification performance (APTOS, k = 5)

Method Accuracy Cohen’s κ

MSE-MSE 0.599 0.717

COS-COS 0.708 0.727

k-SALSA (COS-MSE) 0.712 0.769
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5 Addressing the reduced size of synthetic dataset

Dataset size is an important issue in medical imaging problems. The reduced
number of images in the synthetic average dataset constructed by k-SALSA is
a potential concern. To mitigate the cost of dataset reduction, we investigated
an extension of k-SALSA based on data augmentation, whereby small random
noise is added to k-SALSA’s average embeddings to generate multiple “views” of
each cluster. As shown in Supplementary Table 2, with 5 augmented images per
cluster, we observed an improved performance of 0.829 (originally 0.769) for k-
SALSA, and 0.809 (0.745) for k-Centroid in APTOS, k=5. This demonstrates the
potential of our extension in countering the size reduction of the synthetic dataset
with data augmentation. Importantly, the augmented images are independent
of private images conditioned on k-SALSA’s representative embedding of each
cluster, thus there is no additional privacy leakage.

Supplementary Table 2: Addressing the reduced size of synthetic dataset

Method Metric
APTOS, k = 5

Augmented (5×) Non-Augmented

Centroid Cohen’s κ 0.809 0.745
k-SALSA Cohen’s κ 0.829 0.769

6 Additional comparisons with Original/GAN-Inverted

In our main experiments, we subsampled the original and GAN-inverted images
to match the number of training images for the classifiers for comparison with
different synthetic average datasets. For completeness, here we include the “best-
case scenario” classification performance results for these baselines by using the
full training dataset in APTOS. The results are shown in Supplementary

Supplementary Table 3: Classification performance with and without subsam-
pling and using data augmentation with k-SALSA

Method Metric
APTOS

Full Subsampled (k = 5) Augmented

Original Cohen’s κ 0.914 0.888 -
GAN-Inverted Cohen’s κ 0.857 0.828 -

k-SALSA Cohen’s κ - 0.769 0.829
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Table 3. We obtained a Cohen’s κ of 0.914 and 0.857 for Original and GAN-
Inverted, respectively, without subsampling, compared to 0.888 and 0.828 with
subsampling with k = 5 (i.e., a 20% sampling rate), respectively. These results
suggest that, while subsampling does reduce the performance, the impact is
relatively small and that k-SALSA performance is still competitive with the
best-case scenario, especially when used with our data augmentation strategy
described in the previous section.

7 Performance dependence on the cluster size k

To further investigate the effect of cluster size k on downstream classification
performance, we compared the classifiers trained on k-SALSA synthetic datasets
for different values of k, but subsampled to the same number of clusters. Note
that larger k leads to fewer clusters and thus smaller training data for classifi-
cation. At the same time, larger k increases the potential to retain more salient
features from source images. As shown in Supplementary Table 4, we observed
a performance improvement for larger k in APTOS, suggesting that summariz-
ing key features across multiple images has a beneficial impact on the classifier
training.

Supplementary Table 4: Performance dependence on the cluster size k

Method Metric
APTOS

k = 2 k = 5 k = 10

k-SALSA Cohen’s κ 0.688 0.740 0.761

8 Challenges of differentially private GANs

To evaluate the performance of differentially private GAN approach to synthetic
generation of retinal images, we trained one of the state-of-the-art models, G-
PATE [8], on our fundus image datasets (APTOS) using the official TensorFlow
implementation3. We follow the setting in the provided code except for the num-
ber of teacher networks and batch size, which we changed to 600 and 32 (from
2000 and 64), respectively, to reflect the smaller sizes of our datasets. In order to
use the provided code, we downscaled the retinal images to 64× 64. Otherwise,
we used the following default parameters: number of epochs 1000, σ threshold
600, σ 100, step size 10−4, max ϵ 100 and z-dimension 100. As shown in Sup-
plementary Figure 1, the generated images from the differentially private GAN,
even with a lenient privacy parameter of ϵ = 100, are far from resembling retinal

3 https://github.com/AI-secure/G-PATE
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images. We attribute this failure in training to the relatively small size of our
datasets (e.g. 3000) and the high resolution of the images, compared to handwrit-
ten digit images considered in the original work. Note that the GAN architecture
used by G-PATE is DC-GAN [11], which is expected to have difficulties in the
limited-data, the high-resolution setting given its low representation power, in-
stability, and vanishing gradients compared with more recent techniques such
as StyleGAN2-ADA [6]. Consistent with the visual assessment, the Fréchet In-
ception Distance (FID) of the images generated by G-PATE is 441.23, which
is vastly higher than that of our approach (20.09), indicating the challenges of
differentially private training of GANs in our setting.

Supplementary Figure 1: 64 × 64 generated images from the G-PATE model [8]
trained on retinal images (APTOS).

9 Choice of visual fidelity metric

To evaluate the fidelity of synthetic images, we use the Fréchet inception distance
(FID), a standard metric for images generated using GANs. Other common met-
rics include PSNR and SSIM; however, these metrics quantify the degradation of
quality when a source image is transformed, whereas FID measures a distribu-
tional similarity to a set of reference images based on high-level activations. FID
uniquely assesses whether k-SALSA images are realistic compared to real reti-
nal images. Moreover, k-SALSA introduces spatial flexibility of image features,
which is not captured by pixel-level metrics like PSNR and SSIM.

10 Additional examples of synthetic averages

To complement the main results, here we include additional synthetic averages
of APTOS images along with their real source images for each k ∈ {2, 5, 10}
(4 examples each): Supplementary Figs. 2–5 for k = 10; Supplementary Figs. 6
and 7 for k = 5; and Supplementary Figs. 8 and 9 for k = 2. The results from
the EyePACS dataset are analogous. Note that the figures for both k = 2 and
k = 5 include two examples per figure. Source images (top) represent the k real
original images in the identified cluster, and the synthetic averages (bottom) are
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generated using k-SALSA, k-Centroid, k-Same-Pixel, k-Same-PCA, respectively.
Overall, k-SALSA can better detect clinically relevant features in all cases.

Supplementary Figure 2: Examples of synthetic average of retinal images
(k = 10). One example of k = 10 real images (top) along with synthetic
averages generated by different methods (bottom). k-SALSA better captures a
disease-related feature (A).
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Supplementary Figure 3: Examples of synthetic average of retinal images
(k = 10). One example of k = 10 real images (top) along with synthetic averages
generated by different methods (bottom). k-SALSA better captures a disease-
related feature (A).

Supplementary Figure 4: Examples of synthetic average of retinal images
(k = 10). One example of k = 10 real images (top) along with synthetic averages
generated by different methods (bottom). k-SALSA better captures a disease-
related feature (A).
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Supplementary Figure 5: Examples of synthetic average of retinal images
(k = 10). One example of k = 10 real images (top) along with synthetic aver-
ages generated by different methods (bottom). k-SALSA better captures disease-
related features (A, B).
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Supplementary Figure 6: Examples of synthetic average of retinal images
(k = 5). Two examples of k = 5 real images (top) along with synthetic aver-
ages generated by different methods (bottom). k-SALSA better captures disease-
related features (A, B, C, D).
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Supplementary Figure 7: Examples of synthetic average of retinal images
(k = 5). Two examples of k = 5 real images (top) along with synthetic aver-
ages generated by different methods (bottom). k-SALSA better captures disease-
related features (A, B, C ).
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Supplementary Figure 8: Examples of synthetic average of retinal images
(k = 2). Two examples of k = 2 real images (top) along with synthetic averages
generated by different methods (bottom). k-SALSA better captures a disease-
related feature (A).

Supplementary Figure 9: Examples of synthetic average of retinal images
(k = 2). Two examples of k = 2 real images (top) along with synthetic aver-
ages generated by different methods (bottom). k-SALSA better captures disease-
related features (A, B, C ).
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