
RadioTransformer: A Cascaded Global-Focal
Transformer for Visual Attention–guided

Disease Classification

Moinak Bhattacharya , Shubham Jain , and Prateek Prasanna

Stony Brook University, Stony Brook, New York, USA
{moinak.bhattacharya,prateek.prasanna}@stonybrook.edu

Abstract. In this work, we present RadioTransformer, a novel student-
teacher transformer framework, that leverages radiologists’ gaze patterns
and models their visuo-cognitive behavior for disease diagnosis on chest
radiographs. Domain experts, such as radiologists, rely on visual informa-
tion for medical image interpretation. On the other hand, deep neural
networks have demonstrated significant promise in similar tasks even
where visual interpretation is challenging. Eye-gaze tracking has been
used to capture the viewing behavior of domain experts, lending insights
into the complexity of visual search. However, deep learning frameworks,
even those that rely on attention mechanisms, do not leverage this rich
domain information for diagnostic purposes. RadioTransformer fills this
critical gap by learning from radiologists’ visual search patterns, encoded
as ‘human visual attention regions’ in a cascaded global-focal transformer
framework. The overall ‘global’ image characteristics and the more de-
tailed ‘local’ features are captured by the proposed global and focal
modules, respectively. We experimentally validate the efficacy of Radio-
Transformer on 8 datasets involving different disease classification tasks
where eye-gaze data is not available during the inference phase. Code:
https://github.com/bmi-imaginelab/radiotransformer

Keywords: Eye-gaze, visual attention, chest radiographs, disease clas-
sification.

1 Introduction

Medical image interpretation and associated diagnosis relies largely on how do-
main experts study images. Radiologists hone their image search skills during
years of training on medical images from different domains. In fact, studies have
shown that systematic visual search patterns can lead to improved diagnostic
performance [15,43]. Current diagnostic and prognostic models, however, are
limited to image content semantics such as disease location, annotation, and
severity level, and do not take this rich auxiliary domain knowledge into account.
They primarily implement hand-crafted descriptors or deep architectures that
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Fig. 1. Overview of proposed work. Visual search patterns of radiologists on chest
radiographs are used to first train a global-focal teacher network, referred to as Human
Visual Attention Training (Section 3.3). This pre-trained teacher network teaches the
global-focal student network to learn visual attention using a novel Visual Attention
Loss (Section 3.2). The student-teacher network is implemented to explicitly integrate
radiologist visual attention for improving disease classification on chest radiographs.

learn textural and spatial features of diseases [5,62]. The spatial dependencies of
intra-image disease patterns, often implicitly interpreted by expert readers, may
not be adequately captured via image feature representation learning alone.

Recent works have utilized transformer-based architectures that leverage at-
tention from radiological scans to provide better diagnosis [54,59]. This is a sig-
nificant advancement, as the models learn self-attention across image patches to
determine diagnostically relevant regions-of-interest. Although these approaches
integrate long-range feature dependencies and learn high-level representations,
they lack apriori domain knowledge, fundamentally rooted in disease pathophys-
iology and its manifestation on images. Recently, it has been demonstrated that
deep-learning networks can be trained to learn radiologists’ attention level and
decisions [48]. However, it is still unclear how effectively and efficiently such
search patterns can be used to improve a model’s decision-making ability. To
address this gap, we propose to leverage domain experts’ systematic viewing
patterns, as the basis of underlying attention and intention, to guide a deep
learning network towards improved disease diagnosis.

Motivation. The motivation for our approach stems from a) understanding
the importance of human visual attention in medical image interpretation, and b)
understanding the medical experts’ search heuristics in decision-making. Medical
image interpretation is a complex process that broadly comprises a global-focal
approach involving a) identifying suspicious regions from a global perspective,
and b) identifying specific abnormalities with a focal perspective. During the
global screening process, a radiologist scans for coarse low-contrast features in
which certain textural attributes are analyzed and prospective abnormal regions
of interest are identified. In the focal process, the regions of abnormalities are
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re-examined to determine the severity, type of disease, or reject the assumption
of abnormality. For example, while analyzing a chest radiograph for COVID-19,
a radiologist skims through the thoracic region at a glance to identify suspicious
regions based on intensity variations. This helps in selective identification by
eliminating ‘obviously healthy’ regions. The focal feature learning process in-
volves a more critical analysis of the suspicious regions to understand the struc-
tural and morphological characteristics of specific regions and their surroundings.
This typically involves domain-specific features such as distribution of infiltrates
and accumulation of fluid. We use this as a motivation to design RadioTrans-
former, a global-focal transformer that integrates a radiologist’s visual cognition
with the self-attention-based learning of transformers. This improves their class
activation regions, leading to a probabilistic score from attention features that
correlates highly with human visual attention based diagnosis.

The objective of our work is to augment the learning capabilities of deep net-
works in a disease diagnosis setting with domain-specific expert viewing patterns
in a cognitive-aware manner.

Contributions. The primary contributions of this work can be summarized
as follows:

1. A novel student-teacher based global-focal RadioTransformer architecture,
constituting transformer blocks with shifting windows, is proposed to lever-
age the radiologists’ visual attention in order to improve the diagnostic ac-
curacy. The global module learns high-level coarse representations and the
focal module learns low-level granular representations with two-way lateral
connections to address the semantic attention gap with smoothed moving
average training.

2. A novel visual attention loss (VAL) is proposed to train the student network
with the visual attention regions from the teacher network. This loss teaches
the student network to focus on regions from teacher-generated visual atten-
tion using a weighted combination of attention region overlap and regression
of center and boundary points.

Figure 1 shows an overview of the proposed RadioTransformer architecture
consisting of the global-focal student-teacher network with a novel Visual Atten-
tion Loss. While the underlying concepts of the proposed framework are domain-
agnostic, in this work we have validated it on pulmonary and thoracic disease
classification on chest radiographs.

2 Related work

Eye-gaze tracking in Radiology. Eye-tracking studies have been conducted
in radiology to draw insights into the visual diagnosis process [40,15]. Experts’
visual search patterns have been studied in various diseases [33,89,39,50,92,55]
to understand their relationship with the diagnostic performance of radiolo-
gists [82,14,2]. Clinical error in diagnostic interpretation has often been at-
tributed to reader fatigue and strain, which has been extensively validated via
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Fig. 2. Global-Focal Student-Teacher network implemented using shifting win-
dow blocks cascaded in series with TWL connections and layered SEMA.

eye-tracking studies [73,83,17,80]. Variations in cognition and perceptual pat-
terns while viewing images can cause the same image being interpreted differ-
ently by different experts. This has led to a few studies displaying eye-positions
from experts as a visual aid to improve diagnostic performance of novice read-
ers [43,37]. The dependence of diagnostic decisions on visual search patterns
presents a unique opportunity to integrate this rich auxiliary domain informa-
tion in computer-aided diagnosis systems.

Visual attention–driven learning. In the context of image interpretation,
visual attention refers to the cognitive operations that direct an observer’s at-
tention to specific regions in an image. We represent visual attention as saliency
maps constructed by tracking users’ eye movements. Eye-gaze [35] has been
used in several computer vision[53,30] studies for head-pose estimation, human-
computer interaction, driver vigilance monitoring, etc. Human eyes tend to fo-
cus on visual features, such as corners [46], luminance [72], visual onsets[75,76],
dynamic events [24,25], color, intensity, and orientation[27,60,26]. Image percep-
tion, in general, is hence tightly coupled with visual attention of the observer.
Several methods, involving gaze analysis, have been proposed for tasks such
as object detection [90,91,58], image segmentation [52,66], object referring [79],
action recognition [49,81,41,22], and action localization [69]. Other specialized
methods use visual attention for goal-oriented localization [44] and egocentric
activity recognition [51]. A recent work incorporated sonographer knowledge in
the form of gaze tracking data on ultrasounds to enhance anatomy classification
tasks [61]. In another study [71], Convolutional Neural Networks (CNN) trained
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on eye tracking data were shown to be equivalent to the ones trained on manually
annotated masks for the task of tumor segmentation.

Despite evidence of the importance of expert gaze patterns in improving
image interpretation, their role in machine-learning driven disease classification
in radiology, is still under explored. The interpretation of radiology images is
a complex task, requiring specialized viewing patterns unlike the more general
visual attention in other tasks. For example, determining whether a lesion is
cancerous or not involves the following hierarchical steps: a) detecting the pres-
ence of a lesion, b) recognizing whether it is pathologic, c) determining the type,
and finally, d) providing a diagnosis. These sequential analysis patterns, to some
extent, are captured by the visual search patterns which are not leveraged by
machine learning models. To bridge this gap, our proposed work uses the visual
attention knowledge from radiologists to train a transformer-based model for
improving disease classification on chest radiographs.

Disease classification on chest radiographs. Reliable classification of
cardiothoracic and pulmonary diseases on chest radiographs is a crucial task in
Radiology, owing to the high morbidity and mortality resulting from such abnor-
malities. Several methods have been proposed to address this, of which the most
prominent baselines, ChexNet [65], and CheXNext [64], use a Densenet-121 [21]
backbone. Attention-based models such as A3Net [84], and DuaLAnet[74], have
also been proposed for this diagnostic task. CheXGCN [6] and SSGE[7] are
Graph Convolutional Network (GCN)–based methods; the latter proposes a
student-teacher based SSL method. More recently, attempts have been made
to develop methods for diagnosis and prognosis of COVID-19 from chest radio-
graphs. Most of these methods [23,85,87,47,3] use backbones of deep convolution
neural network for COVID-19 prediction. Although, CNN-based methods have
achieved tremendous success through generic feature extraction strategies, these
architectures often fail to comprehensively encode spatial features from a bio-
logical viewpoint[36].

To address this limitation, transformer-based approaches, such as vision
transformers [12], have been proposed. The self-attention mechanism in trans-
formers integrates global information by encoding the relative locations of the
patches. Few recent works have proposed vision transformers for COVID-19 pre-
diction task [54,59]. However, the efficacy of shifting window based [45] trans-
former architectures has not been evaluated in this domain. These recent meth-
ods compute self-attention among patches within local windows. As an example,
Swin-UNet [4] implements swin transformer blocks for medical image segmenta-
tion. These blocks are well suited to characterize intra-image disease heterogene-
ity, a very crucial factor affecting diagnosis and patient prognosis. This motivates
our choice of using shifting window blocks in the proposed global-focal network.

3 Proposed methodology

Figure 2 presents an overview of the end-to-end framework of the proposed Ra-
dioTransformer global-focal student-teacher network. This comprises two par-
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Fig. 3. Overall global-focal network. There are two global networks, and four focal
networks connected in parallel inside a Student or Teacher network. The components
of the global and focal network are similar, where LN: Layer Normalization, Att.:
Attention, MLP: Multi-layer Perceptron. The output of Focal 2 is connected with
Global 1 with a TWL connection with SEMA applied to it.

allel architectures, a student and a teacher model. Both student and teacher
networks have global and focal network components. Four focal blocks in each
model are cascaded with two global blocks in parallel. The global and focal
blocks are connected via a two-way lateral (TWL) connection [10,13,42] with
smoothed exponential moving average (SEMA). SEMA regulates the attention
features shared between the global and focal blocks to bridge the attention gap
caused by different learning scales across these networks.

The teacher model is trained with human visual attention obtained from vi-
sual search patterns of radiologists. The student model learns from the teacher
network using VAL and a classification loss. There are two TWL connections
between the teacher and student models coupled with layered SEMA. The pro-
posed architecture is explained in the following subsections.

3.1 Global-focal architecture

Global-focal networks can be described as a single-stream architecture where
the two components operate in parallel. The global network consists of two and
the focal network consists of four shifting-window transformer blocks (Figure 3).
This draws its analogy from the pathways that involve the Parvo, Magno, and
Konio ganglion cells [88,56]. The focal network is inspired by the functioning of
slow responding Parvo cells (in the ‘what’ pathway), and the global network is
inspired by the fast Magno cells (in the ‘where’ pathway).

Global-focal network. The teacher and student networks are variants of global-
focal architecture. The primary idea of the global-focal architecture is to pseudo-
replicate learning of attention in a detailed shifting window fashion as shown in
Supplementary Figure 1. The focal and global layers are represented as fi and
gj , respectively, where i ∈ {0, 1, 2, 3} and j ∈ {0, 1}.

Focal network. The focal network is implemented to learn high contrast
and focal information from shifting the windows incrementally on four blocks
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that are cascaded in a series. The first block of the focal network has multi-layer
perceptron head, hmlp

f0
= 64, attention head, hatt

f0
= 2, and shift size, sf0 = 0. The

second, third and fourth blocks operate with incremental shifting window size
sfi = {1, 2, 3}, hatt

fi
= {4, 4, 8} and hmlp

fi
= {128, 128, 256}, where i ∈ {1, 2, 3}.

Global network. The global network consists of two shifting-window blocks
cascaded in series. The motivation for implementing global network is to learn
low contrast global information from two incremental shift sizes. The first block
in the global network has a shift size sg0 = 0 and the second block has a shift size
sg1 = 1. The multi-layer perceptron head of the global network is incremental
and can be represented as hmlp

gj = {128, 256}. The attention head of the global

network is incremental and can be represented as hatt
gj = {4, 8}, where j ∈ {0, 1}.

TWL connections. TWL connections between global and focal architec-
tures are introduced to address the inherent semantic attention averaging be-
tween the two. The TWL connections are established between layers {f1, g0}
and {f3, g1}. These constitute weighted addition of the outputs from the afore-
mentioned layers coupled with SEMA on the weighted addition outputs. This
can be represented as,

zgfp = λgf
p1
.gp(x) + λgf

p2
.fp(x) (1)

where, λgf
p1

and λgf
p2

are the hyper-parameters for weighted addition of the out-
puts from the global-focal networks represented as gf . z(gp(.)) is the output
from the global network and z(fp(.)) is the output from the focal network,

p ∈ {in, out} where in is the intermediate, and out is the final output. {zfin, z
g
in} :

{z(fin(.)), z(gin(.))} are the outputs from the intermediate layers of the focal

and global networks, respectively. {zfout, z
g
out} : {z(fout(.)), z(gout(.))} are the

final outputs from the focal and global networks, respectively. This is shown in
Figure 3. The smoothed moving average sv is given by,

svp(z
gf
p ) = δ̂gfp .sv′

p
(zgfp ) + (1− δ̂gfp ).vp(z

gf
p ) (2)

where svp is the smoothed-value of the current variable v in the current iteration
for different p, and sv′ is the smoothed-value of the variable from the previous
iteration for a different p. δ̂gfp is the smoothing decay hyperparameter of the

global-focal TWL connection. This is represented as δ̂gfp = 1 − 1
N , where N is

the number of samples in the current iteration.

Student-teacher network. A student-teacher network is proposed in this
work. The teacher network learns visual attention patterns only from radiol-
ogist’s eye gaze maps, while the student learns more specific disease attributes
directly from the medical images by leveraging attention information provided
by the teacher. Generally, the visual attention maps from radiologists can be
noisy and may exhibit variability. Incorporating this variability in addition to
distinct disease patterns is not feasible in single-stream architectures. Hence, we
need a student-teacher learning framework so that the student can learn this
soft information from the teacher. Also, the student-teacher network reduces the
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complexity of training a single network with the visual attention maps and fur-
ther fine-tuning for downstream tasks. Here, the model is compressed with just
the teacher trained with the visual attention maps.

Teacher network. The teacher network is a cascaded global-focal learning
network with two global and four local blocks connected in parallel, represented
as:

ztin = λl0
t1 .g

t
0(x

t) + λl0
t2 .f

t
1(f

t
0(x

t)) (3)

ztout = λl1
t1 .g

t
1(z

t
in) + λl1

t2 .f
t
3(f

t
2(z

t
in)) (4)

where xt is the input to the teacher network, which is subject to hard aug-
mentation techniques with stateless high-value intervals of brightness, contrast,
hue, and saturation. ztin is the intermediate output of the teacher network with
{λl0

t1 , λ
l0
t2}, and {λl1

t1 , λ
l1
t2} as the hyperparameters for weighted addition of the

intermediate and final outputs from global and focal blocks, respectively.
Student network. The input to the student network is softly augmented

with stateless relatively low-value intervals of brightness, contrast, hue, and sat-
uration as compared to the teacher network. The student predicts probability
values of the disease classes along with an attention region. This attention region
is subjected to VAL, described in Section 3.2, with the output of the attention
region from the teacher network. The student network can be represented as

zsin = λl0
s1 .g

s
0(x

s) + λl0
s2 .f

s
1 (f

s
0 (x

s)) (5)

zsout = λl1
s1 .g

s
1(z

s
in) + λl1

s2 .f
s
3 (f

s
2 (z

s
in)) (6)

where xs is the input to the student network. zsin is the intermediate output
of the student network with {λl0

s1 , λ
l0
s2}, and {λl1

s1 , λ
l1
s2} as the hyperparameters

for weighted addition of the intermediate and final outputs from the global and
focal blocks of the student network, respectively.

TWL connections. TWL connections between student and teacher archi-
tectures are introduced between layers {fin, gin} and {fout, gout}. The weighted
addition of the outputs from the aforementioned layers are coupled with SEMA.
This is represented as:

zstin = λs
in1

.zsin + λt
in2

.ztin (7)

sv(z
st
in) = δ̂stin.sv′(zstin) + (1− δ̂stin).v(z

st
in) (8)

where zstin is the output from the intermediate TWL connection of student-
teacher network and sv is the SEMA from this layer.

zstout = λs
out1 .z

s
out + λt

out2 .z
t
out (9)

sv(z
st
out) = δ̂stout.sv′(zstout) + (1− δ̂stout).v(z

st
out) (10)
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4.a.1 4.a.2 4.b.1 4.b.2

Fig. 4. Visual Attention Loss, LV AL. 4.a.* illustrates the computation of LMSE ,
where the red dot is the center point of the attention region, and the yellow dots are
the height, and width. 4.b.* shows LGIoU , where the attention region overlap is shown
with dashed boxes. {4.a.1, 4.b.1} are the predicted attention regions, and {4.a.2, 4.b.2}
are the human visual attention regions.

where zstout is the output from the final layer of student-teacher network and
{sv(zstin), sv(zstout)} are the {SEMA1, SEMA4}, as shown in Figure 2. Also,
{SEMA2, SEMA3} are the SEMAs for the intermediate layers of the student
global-focal, and teacher global-focal network. The augmentation strategies are
explained in the Supplementary section.

3.2 Visual attention loss

The visual attention regions are obtained from the teacher network and the
predicted attention regions are obtained from the student network. We propose
a novel visual attention loss (VAL) function to train the student network. VAL
includes a GIoU and a MSE loss, as shown in Figure 4. We use a hyperparameter
λli ∈ R+ to induce weights in the losses with i ∈ {1, 2}.

LGIoU = 1−
{
|(Apred ∩ Ahva)|
|(Apred ∪ Ahva)|

− |C \ (Apred ∪ Ahva)|
|C|

}
(11)

where Ahva is the visual attention region predicted from the teacher network
and Apred is the attention region predicted from the student network. C is the
smallest convex hull ofAhva andApred. The regression loss between the predicted
keypoints and keypoints from visual attention is represented as

LMSE =
1

n

n∑
k=1

∥(Kcx,cy,h,w)k − (K̂cx,cy,h,w)k∥22 (12)

where {cx, cy} are the center points and {h,w} are height, and width of the

attention region. K(.) is the keypoint of Apred. K̂(.) is the keypoint of Ahva. n is
the number of samples in a particular batch. The final loss is calculated as:

LV AL = λl1 .LGIoU + λl2 .LMSE (13)

where LV AL is the proposed VAL and {λl1 , λl2} are the hyperparameters used
for weighted addition of the two losses.
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Fig. 5. Human Visual Attention. 5.a.*.* series represents Pneumonia and 5.b.*.*
series represents normal examples from [32]. Chest X-Rays from patient are shown in
the first row as 5.*.*.1, the raw eye-gaze points from radiologists is shown in the second
row as 5.*.*.2, human visual attention maps are shown in the third row as 5.*.*.3, and
the corresponding bounding boxes are shown in the fourth row as 5.*.*.4

.

3.3 Human visual attention

Pre-processing. In this subsection, we discuss the methodology for extract-
ing visual search patterns from eye-tracking data and generating visual atten-
tion maps of radiologists. The eye-tracking data [32] consists primarily of a)
raw eye-gaze information (as shown in Figure 5.*.*.2), and b) fixations infor-
mation, captured from radiologists while they are analyzing chest radiographs
in a single-screen setting. The eye-gaze points are reflective of the diagnostic
search patterns. The cumulative attention regions, represented as heatmaps (Fig-
ure 5.*.*.3), are human attention regions reflective of diagnostically important
areas. A multi-dimensional Gaussian filter with standard deviation, σ = 64,
is used to generate these attention heatmaps. Contours from these attention
heatmaps are selected with a thresholding value of λ = 140 and, subsequently,
bounding boxes are generated from the contour with the largest area, as shown
in Figure 5.*.*.4.

Human visual attention training (HVAT). Next, the teacher network is
trained with the eye-tracking data from [32]. The teacher network has a classifica-
tion head to provide an output probability value and a detection head to output
key points. The probability value is a 1×n vector, where n represents the number
of different types of disease labels. The key-points output is {xc, yc, h, w}, where
(xc, yc) are the x and y coordinates of the center, and (h,w) are the height and
width respectively. Also, Categorical Crossentropy loss is used for classification,



RadioTransformer 11

Table 1. Train-Validation-Test splits used across all experiments

Name Cell RSNA SIIM Rad NIH VBD MIDRC SBU

Train 4200 21158 4433 14815 77871 47539 - -
Valid 1032 3022 633 2116 17304 6791 - -
Test 624 6045 1266 4233 25596 13582 1241 14220

and weighted addition of Generalized Intersection-with-Union (GIoU) loss[67]
and Mean Squared Error (MSE) loss for detection.

4 Datasets and environment

Datasets. The proposed architecture is evaluated on eight different datasets
consisting of two pneumonia classification, four COVID-19 classification (TCIA-
SBU [68,11], and MIDRC [78,77,11] only for testing) , and two thoracic disease
classification cohorts. Further dataset details are provided in the Supplementary
section. The datasets along with the train-validation-test splits are shown in
Table 1.

Environment. All experiments were performed on the Google Cloud Plat-
form in a compute node with 2 vCPUs, 16 GB RAM, and 20 GB disk memory.
The baselines and proposed architectures were trained on a cloud TPU of either
type v2-8 or v3-8 with version 2.8.0. All implementations are in TensorFlow [1]
and Keras [8] v2.8.0.

5 Experiments and results

Implementation. During HVAT, the teacher network is trained on eye-gaze
data from [31,16] which contains radiologist eye-gaze points on 1083 chest x-
rays from the MIMIC-CXR dataset [29,28,16] (details in subsection 3.3). All
the images are resized to 256 × 256 pixels. The output of the teacher network
is a 1 × 3 vector of probability values and a 1 × 4 vector of keypoints. All the
baseline models are trained with images uniformly resized to 256 × 256 pixels.
They are trained with Adam optimizer with a batch size of 64 for 50 epochs.
The initial learning rate (LR) is set to 1 × 10-2. The LR is scheduled with an
exponential LR scheduler with decay steps = 105 and decay rate = 0.2. There
is an early stopping criteria with patience = 20 with the task to minimize the
validation loss. The proposed RadioTransformer architecture follows the same
training standards.

5.1 Quantitative results

We report the F1 Score and Area-Under-Curve (AUC) for all experiments. De-
tailed results are shown in the Supplementary section. We compare our method
with architectures such as different variations of ResNet [19], ResNetv2 [20],
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Table 2. Quantitative Comparison. F1(↑) and AUC(↑) are reported for the base-
lines and RadioTransformer(RadT)

Classification→ Pneumonia COVID-19 14-Thoracic COVID-19 (Test)

Dataset→ Cell[34] RSNA[70] SIIM[38] Rad[9,63] NIH[86] VBD[57] MIDRC[77,78] SBU[68,11]

Architectures↓ F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

R50[19] 59.78 81.70 93.75 98.91 43.01 98.85 94.03 99.27 11.91 74.04 21.76 95.86 23.04 96.32 15.11 65.16
R101[19] 71.93 83.64 94.84 99.21 39.22 96.98 85.36 97.62 11.20 73.30 32.77 96.24 22.31 93.87 24.22 99.20
R152[19] 74.30 87.49 91.97 98.57 43.04 98.18 70.21 87.90 10.67 71.37 32.42 96.58 19.22 83.09 24.58 99.61
R50v2[20] 78.96 87.32 96.60 99.44 47.99 99.79 92.82 99.06 11.42 73.11 34.11 96.32 23.93 98.72 18.71 78.27
R101v2[20] 52.11 71.23 96.39 99.33 45.83 99.26 97.46 99.82 11.99 73.46 32.18 96.55 04.86 42.13 19.43 82.47
R152v2[20] 53.44 71.97 95.30 99.01 47.10 99.71 97.76 99.82 11.93 73.23 32.69 96.54 23.07 95.89 23.03 96.25

D121[21] 70.05 81.97 96.25 99.34 47.59 99.82 95.72 99.51 13.81 78.83 28.71 96.01 24.88 99.82 20.67 88.35
D169[21] 59.18 76.56 88.86 95.60 46.40 99.68 94.33 99.52 15.21 79.90 32.90 96.46 24.97 99.84 20.13 85.95
D201[21] 71.93 82.98 95.43 99.04 48.17 99.83 97.81 99.85 14.84 81.38 34.66 96.41 24.99 99.99 21.08 89.53

ViT-B16[12] 73.85 83.40 76.35 86.06 36.22 95.74 88.25 98.42 05.50 82.06 34.80 95.69 08.47 42.15 11.49 50.22
ViT-B32[12] 70.02 76.41 79.11 90.74 30.42 92.12 86.73 98.09 06.51 83.77 30.57 94.58 17.50 76.52 18.26 77.75
ViT-L16[12] 69.59 83.31 85.41 94.53 34.16 95.75 90.11 98.70 08.16 81.60 33.99 95.40 11.17 47.79 15.54 62.72
ViT-L32[12] 76.38 87.07 69.32 88.86 28.45 92.54 88.40 98.35 06.35 84.96 33.24 95.36 10.21 47.35 03.92 30.82
CCT[18] 62.10 71.18 80.60 92.04 32.63 95.33 92.52 99.11 08.08 85.37 30.25 95.12 23.98 98.53 19.43 83.21
Swin0[45] 66.04 83.74 96.27 99.57 47.63 99.66 97.53 99.92 07.90 74.62 34.30 95.08 13.74 63.07 17.77 75.47
Swin1[45] 73.74 86.91 96.65 99.58 47.30 99.56 94.94 99.64 08.30 74.18 34.27 95.13 15.47 69.00 17.64 73.68

RadT 77.40 88.80 98.75 99.85 48.74 99.65 99.39 99.98 04.21 85.43 37.32 96.84 18.17 79.60 22.18 94.76

DenseNet [21], Vision Transformer [12], Compact Convolution Transformers [18],
and two variations of Swin Transformers [45]. Note that we show our comparison
results primarily on the most prominent backbones (DenseNet-121 [21], vision
transformer [12], etc.) used by the baselines [65,64,54] and not on individual
implementations. As shown in Table 2, our proposed architecture, mentioned as
RadT, outperforms other methods on all six datasets. Note that the F1 scores
are computed without any standard averaging such as macro, micro or weighted.
This is why, F1 scores on 14-class classification datasets, such as, NIH, and Vin-
BigData are comparatively lower than the reported scores on RSNA, Radiog-
raphy, etc. However, in these datasets where lower F1 scores are reported, the
AUC of the proposed framework still outperforms the baselines.

Table 3. Ablation Study. Accuracy(↑), AUC(↑), F1(↑), Precision(↑), and Recall(↑)
are shown for different ablations on three datasets

Dataset→ RSNA[70] Radiography[63,9] VinBigData[57]

Ablations↓ Ac. AUC F1 Pr. Re. Ac. AUC F1 Pr. Re. Ac. AUC F1 Pr. Re.

Focal 85.01 92.69 80.96 85.01 85.01 91.05 98.92 90.82 91.38 90.60 63.18 95.62 28.34 94.84 48.19
Global 86.45 93.99 83.26 86.45 86.45 89.91 98.65 88.90 90.38 89.44 62.46 95.46 25.79 95.53 47.54

Focal+HVAT 87.00 94.12 84.15 87.00 87.00 92.33 99.08 91.46 92.82 91.55 65.43 96.35 33.18 90.24 51.81
Global+HVAT 90.46 96.29 88.60 90.46 90.46 91.26 98.76 90.41 91.52 91.00 65.02 96.32 32.56 92.27 50.17

Focal+HVAT+VAL 89.68 95.88 87.62 89.68 89.68 93.04 99.22 92.66 93.35 92.66 65.32 96.31 33.49 92.30 50.44
Global+HVAT+VAL 89.76 96.00 87.51 89.76 89.76 91.05 98.76 90.32 91.47 90.60 64.97 96.16 31.85 91.73 50.41

GF+HVAT+VAL(RadT) 98.94 99.85 98.75 98.94 98.94 99.43 99.98 99.39 99.48 99.41 66.54 96.84 37.32 82.35 57.90

Ablation experiments. Here, we discuss the categorical inference on all
the individual components of our proposed network. In Table 3, the ablation
experiment results for different components are summarized for three differ-
ent datasets. The global network outperforms the focal network for the binary
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Fig. 6. Qualitative Comparison. Comparison of the class activation maps from
RadioTransformer are shown on two datasets. {6.a.*.* , 6.b.*.*} are from {normal,
pneumonia} classes of the RSNA dataset, and {6.c.*.*, 6.d.*.*} are from {normal,
COVID-19} of the Radiography dataset. {6.*.*.1, 6.*.*.2} are the class activation maps
generated from {RadT w/o (HVAT+HVAL), RadT}.

classification task in the RSNA dataset. This signifies that for simple binary
classification, where global feature representations generally lead to a clear dis-
tinction between labels, the global network performs better. This is, in fact,
true for radiologists’ decision making as well; the results provide a justification
for the designed global-focal approach. For the Radiography and VinBigData
datasets, which are multi-class classification tasks, focal network performs bet-
ter than the global network owing to diagnostic relevance of the more granular
details in the images. It is also evident from the results that when HVAT is
used along with global-focal networks, the scores improve. Interestingly, when
VAL is added, scores are not significantly higher than the previous ablations.
There are primarily two reasons: a) VAL lacks in distilling the visual attention
from the teacher to the student when using only individual global and focal
blocks; the performance improves when VAL distills the visual attention from
combined global-focal blocks of the teacher, and b) attention loss between the
two visual attention regions may not converge well with regression of key-points
and minimizing of GIoU.

5.2 Qualitative results

Figure 6 illustrates the qualitative differences between RadT w/o (HVAT+VAL),
and RadT. RadT w/o (HVAT+VAL) is the basic backbone of our proposed Ra-
dioTransformer architecture, i.e., the global-focal student-teacher network with-
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out HVAT and VAL. The first column, 6.a.*.*, and 6.b.*.*, are normal and pneu-
monia samples from the RSNA dataset. Similarly, 6.c.*.* are normal, and 6.d.*.*
are COVID-19, from the Radiography dataset. The images in 6.*.*.1 and 6.*.*.2
are the class activation maps from RadT w/o (HVAT+VAL) and RadT, re-
spectively. We can observe clear differences in attention region patterns between
these two rows. The attention regions in the first row are relatively discretized
and the inconsistency in overlap with the white regions (infiltrates/fluids) is
quite prominent. However, in the second row, relatively continuous attention re-
gions are observed with consistent overlap with the disease patterns. Similarly,
in 6.c.*.1, attention regions observed are more discrete in nature, unlike 6.c.*.2.
For normal chest radiographs, this potentially signifies that RadT focuses intrin-
sically on regions that may be significant for a radiologist to diagnose and reject
the presence of infiltrates/fluids. On the contrary, RadT w/o (HVAT+VAL) at-
tempts to identify non-overlapping regions with visual attention to reject the
presence of infiltrates/fluids. Also, we observe that the attention regions from
RadT w/o (HVAT+VAL) cover a larger area than those from RadT, implying
that lack of visual attention knowledge leads to low confidence in decision-making
and hence the model needs to search a comparatively larger space to conclusively
accept or reject a claim. In 6.b.2.*, it is observed that for a lung densely filled
with fluid, RadT w/o (HVAT+VAL) focuses on a comparatively sparse and
large region. However, RadT focuses on regions with dense fluid accumulation.
These qualitative findings suggest that RadioTransformer inherently analyzes
the regions with a visuo-cognitive approach similar to that of a radiologist.

6 Conclusion

This paper presents RadioTransformer, a novel visual attention–driven trans-
former framework, motivated by radiologists’ visuo-cognitive approaches. Unlike
existing techniques that rely only on visual information for diagnostic tasks,
RadioTransformer leverages eye-gaze patterns from experts to train a global-
focal student-teacher network. Our framework learns and implements hierarchi-
cal search patterns to improve the diagnostic performance of transformer archi-
tectures. When evaluated on eight datasets, comprising over 260,000 images, the
proposed architecture outperforms SOTA approaches. Our qualitative analysis
shows that by integrating visual attention into the network, RadioTransformer
focuses on diagnostically relevant regions of interest leading to higher confi-
dence in decision making. To the best of our knowledge, no method has been
proposed that integrates gaze data from expert radiologists to improve the diag-
nostic performance of deep learning architectures. This work paves the way for
radiologist-in-the-loop computer-aided diagnosis tools.
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