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Abstract. Multi-object tracking (MOT) aims at estimating bounding boxes and
identities of objects in videos. Most methods obtain identities by associating de-
tection boxes whose scores are higher than a threshold. The objects with low
detection scores, e.g. occluded objects, are simply thrown away, which brings
non-negligible true object missing and fragmented trajectories. To solve this
problem, we present a simple, effective and generic association method, track-
ing by associating almost every detection box instead of only the high score
ones. For the low score detection boxes, we utilize their similarities with track-
lets to recover true objects and filter out the background detections. When ap-
plied to 9 different state-of-the-art trackers, our method achieves consistent im-
provement on IDF1 score ranging from 1 to 10 points. To put forwards the
state-of-the-art performance of MOT, we design a simple and strong tracker,
named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and
63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single
V100 GPU. ByteTrack also achieves state-of-the-art performance on MOT20,
HiEve and BDD100K tracking benchmarks. The source code, pre-trained models
with deploy versions and tutorials of applying to other trackers are released at
https://github.com/ifzhang/ByteTrack.
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1 Introduction

Was vernünftig ist, das ist wirklich; und was wirklich ist, das ist vernünftig.
—— G. W. F. Hegel

Tracking-by-detection is the most effective paradigm for multi-object tracking
(MOT) in current. Due to the complex scenarios in videos, detectors are prone to make
imperfect predictions. State-of-the-art MOT methods [2,18,46,1,71,6,69,13,3,84,58]
need to deal with true positive / false positive trade-off in detection boxes to elimi-
nate low confidence detection boxes [4,41]. However, is it the right way to eliminate all
low confidence detection boxes? Our answer is NO: as Hegel said “What is reasonable
is real; that which is real is reasonable.” Low confidence detection boxes sometimes
indicate the existence of objects, e.g. the occluded objects. Filtering out these objects
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Fig. 1. Examples of our method which asso-
ciates almost every detection box. (a) shows
all the detection boxes with their scores.
(b) shows the tracklets obtained by previous
methods which associates detection boxes
whose scores are higher than a threshold, i.e.
0.5. The same box color represents the same
identity. (c) shows the tracklets obtained by
our method. The dashed boxes represent the
predicted box of the previous tracklets using
Kalman filter. The two low score detection
boxes are correctly matched to the previous
tracklets based on the large IoU. aaaa

causes irreversible errors for MOT and brings non-negligible missing detection and
fragmented trajectories.

Figure 1 (a) and (b) show this problem. In frame t1, we initialize three different
tracklets as their scores are all higher than 0.5. However, in frame t2 and frame t3 when
occlusion happens, red tracklet’s corresponding detection score becomes lower i.e. 0.8
to 0.4 and then 0.4 to 0.1. These detection boxes are eliminated by the thresholding
mechanism and the red tracklet disappears accordingly. Nevertheless, if we take every
detection box into consideration, more false positives will be introduced immediately,
e.g. , the most right box in frame t3 of Figure 1 (a). To the best of our knowledge, very
few methods [31,61] in MOT are able to handle this detection dilemma.

In this paper, we identify that the similarity with tracklets provides a strong cue
to distinguish the objects and background in low score detection boxes. As shown in
Figure 1 (c), two low score detection boxes are matched to the tracklets by the motion
model’s predicted boxes, and thus the objects are correctly recovered. At the same time,
the background box is removed since it has no matched tracklet.

For making full use of detection boxes from high scores to low ones in the matching
process, we present a simple and effective association method BYTE, named for each
detection box is a basic unit of the tracklet, as byte in computer program, and our track-
ing method values every detailed detection box. We first match the high score detection
boxes to the tracklets based on motion similarity or appearance similarity. Similar to [6],
we adopt Kalman filter [30] to predict the location of the tracklets in the new frame. The
similarity can be computed by the IoU or Re-ID feature distance of the predicted box
and the detection box. Figure 1 (b) is exactly the results after the first matching. Then,
we perform the second matching between the unmatched tracklets, i.e. the tracklet in
red box, and the low score detection boxes using the same motion similarity. Figure 1
(c) shows the results after the second matching. The occluded person with low detection
scores is matched correctly to the previous tracklet and the background (in the right part
of the image) is removed.

As the integrating topic of object detection and association, a desirable solution to
MOT is never a detector and the following association; besides, well-designed of their
junction area is also important. The innovation of BYTE lies in the junction area of
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Fig. 2. MOTA-IDF1-FPS compar-
isons of different trackers on the
test set of MOT17. The horizon-
tal axis is FPS (running speed), the
vertical axis is MOTA, and the ra-
dius of circle is IDF1. Our Byte-
Track achieves 80.3 MOTA, 77.3
IDF1 on MOT17 test set with 30
FPS running speed, outperforming
all previous trackers. Details are
given in Table 4. aaaa aaaa

detection and association, where low score detection boxes are bridges to boost both of
them. Benefiting from this integration innovation, when BYTE is applied to 9 different
state-of-the-art trackers, including the Re-ID-based ones [68,84,34,48], motion-based
ones [87,70], chain-based one [49] and attention-based ones [58,79], notable improve-
ments are achieved on almost all the metrics including MOTA, IDF1 score and ID
switches. For example, we increase the MOTA of CenterTrack [87] from 66.1 to 67.4,
IDF1 from 64.2 to 74.0 and decrease the IDs from 528 to 144 on the half validation set
of MOT17.

Towards pushing forwards the state-of-the-art performance of MOT, we propose
a simple and strong tracker, named ByteTrack. We adopt a recent high-performance
detector YOLOX [25] to obtain the detection boxes and associate them with our pro-
posed BYTE. On the MOT challenges, ByteTrack ranks 1st on both MOT17 [45] and
MOT20 [17], achieving 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA with 30 FPS running
speed on V100 GPU on MOT17 and 77.8 MOTA, 75.2 IDF1 and 61.3 HOTA on much
more crowded MOT20. ByteTrack also achieves state-of-the-art performance on HiEve
[38] and BDD100K [78] tracking benchmarks. We hope the efficiency and simplicity
of ByteTrack could make it attractive in real applications such as social computing.

2 Related Work

2.1 Object Detection in MOT

Object detection is one of the most active topics in computer vision and it is the basis of
multi-object tracking. The MOT17 dataset [45] provides detection results obtained by
popular detectors such as DPM [23], Faster R-CNN [51] and SDP [76]. A large number
of methods [72,15,3,13,90,9,29] focus on improving the tracking performance based on
these given detection results.

Tracking by detection. With the rapid development of object detection
[51,27,50,36,11,24,59,57,21,22,63], more and more methods begin to utilize more
powerful detectors to obtain higher tracking performance. The one-stage object detec-
tor RetinaNet [36] begin to be adopted by several methods such as [40,49]. CenterNet
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[88] is the most popular detector adopted by most methods [87,84,70,86,66,61,64] for
its simplicity and efficiency. The YOLO series detectors [50,8,63] are also adopted by
a large number of methods [68,34,35,16,74] for its excellent balance of accuracy and
speed. Most of these methods directly use the detection boxes on a single image for
tracking.

However, the number of missing detections and very low scoring detections begin to
increase when occlusion or motion blur happens in the video sequence, as is pointed out
by video object detection methods [60,42]. Therefore, the information of the previous
frames are usually leveraged to enhance the video detection performance.

Detection by tracking. Tracking can also adopted to help obtain more accurate de-
tection boxes. Some methods [53,90,15,14,16,13] utilize single object tracking (SOT)
[5] or Kalman filter [30] to predict the location of the tracklets in the following frame
and fuse the predicted boxes with the detection boxes to enhance the detection results.
Other methods [85,35] leverage tracked boxes in the previous frames to enhance fea-
ture representation of the following frame. Recently, Transformer-based [62,19,65,39]
detectors [12,91] are adopted by several methods [58,43,79,10] for its strong ability to
propagate boxes between frames. Our method also utilize the similarity with tracklets
to strength the reliability of detection boxes.

After obtaining the detection boxes by various detectors, most MOT methods
[68,84,48,40,34,70,58] only keep the high score detection boxes by a threshold, i.e. 0.5,
and use those boxes as the input of data association. This is because the low score detec-
tion boxes contain many backgrounds which harm the tracking performance. However,
we observe that many occluded objects can be correctly detected but have low scores.
To reduce missing detections and keep the persistence of trajectories, we keep all the
detection boxes and associate across every of them.

2.2 Data Association

Data association is the core of multi-object tracking, which first computes the similarity
between tracklets and detection boxes and leverage different strategies to match them
according to the similarity.

Similarity metrics. Location, motion and appearance are useful cues for association.
SORT [6] combines location and motion cues in a very simple way. It first adopts
Kalman filter [30] to predict the location of the tracklets in the new frame and then
computes the IoU between the detection boxes and the predicted boxes as the similar-
ity. Some recent methods [87,58,70,56] design networks to learn object motions and
achieve more robust results in cases of large camera motion or low frame rate. Location
and motion similarity are accurate in the short-range matching. Appearance similarity
are helpful in the long-range matching. An object can be re-identified using appear-
ance similarity after being occluded for a long period of time. Appearance similarity
can be measured by the cosine similarity of the Re-ID features. DeepSORT [69] adopts
a stand-alone Re-ID model to extract appearance features from the detection boxes.
Recently, joint detection and Re-ID models [68,84,34,40,83,48,89] becomes more and
more popular because of their simplicity and efficiency.



ByteTrack: Multi-Object Tracking by Associating Every Detection Box 5

Matching strategy. After similarity computation, matching strategy assigns identities
to the objects. This can be done by Hungarian Algorithm [32] or greedy assignment
[87]. SORT [6] matches the detection boxes to the tracklets by once matching. Deep-
SORT [69] proposes a cascaded matching strategy which first matches the detection
boxes to the most recent tracklets and then to the lost ones. MOTDT [13] first uti-
lizes appearance similarity to match and then utilize the IoU similarity to match the
unmatched tracklets. QDTrack [48] turns the appearance similarity into probability by
a bi-directional softmax operation and adopts a nearest neighbor search to accomplish
matching. Attention mechanism [62] can directly propagate boxes between frames and
perform association implicitly. Recent methods such as [43,79] propose track queries to
find the location of the tracked objects in the following frames. The matching is implic-
itly performed in the attention interaction process without using Hungarian Algorithm.

All these methods focus on how to design better association methods. However,
we argue that the way detection boxes are utilized determines the upper bound of data
association and we focus on how to make full use of detection boxes from high scores
to low ones in the matching process.

3 BYTE

We propose a simple, effective and generic data association method, BYTE. Different
from previous methods [68,84,34,48] which only keep the high score detection boxes,
we keep almost every detection box and separate them into high score ones and low
score ones. We first associate the high score detection boxes to the tracklets. Some
tracklets get unmatched because they do not match to an appropriate high score detec-
tion box, which usually happens when occlusion, motion blur or size changing occurs.
We then associate the low score detection boxes and these unmatched tracklets to re-
cover the objects in low score detection boxes and filter out background, simultaneously.
The pseudo-code of BYTE is shown in Algorithm 1.

The input of BYTE is a video sequence V, along with an object detector Det. We
also set a detection score threshold τ . The output of BYTE is the tracks T of the video
and each track contains the bounding box and identity of the object in each frame.

For each frame in the video, we predict the detection boxes and scores using the
detector Det. We separate all the detection boxes into two parts Dhigh and Dlow ac-
cording to the detection score threshold τ . For the detection boxes whose scores are
higher than τ , we put them into the high score detection boxes Dhigh. For the detection
boxes whose scores are lower than τ , we put them into the low score detection boxes
Dlow (line 3 to 13 in Algorithm 1).

After separating the low score detection boxes and the high score detection boxes,
we adopt Kalman filter to predict the new locations in the current frame of each track
in T (line 14 to 16 in Algorithm 1).

The first association is performed between the high score detection boxes Dhigh and
all the tracks T (including the lost tracks Tlost). Similarity#1 can be computed by
either by the IoU or the Re-ID feature distances between the detection boxes Dhigh and
the predicted box of tracks T . Then, we adopt Hungarian Algorithm [32] to finish the
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Algorithm 1: Pseudo-code of BYTE.
Input: A video sequence V; object detector Det; detection score threshold τ
Output: Tracks T of the video

1 Initialization: T ← ∅
2 for frame fk in V do

/* Figure 2(a) */
/* predict detection boxes & scores */

3 Dk ← Det(fk)
4 Dhigh ← ∅
5 Dlow ← ∅
6 for d in Dk do
7 if d.score > τ then
8 Dhigh ← Dhigh ∪ {d}
9 end

10 else
11 Dlow ← Dlow ∪ {d}
12 end
13 end

/* predict new locations of tracks */
14 for t in T do
15 t← KalmanFilter(t)
16 end

/* Figure 2(b) */
/* first association */

17 Associate T and Dhigh using Similarity#1
18 Dremain ← remaining object boxes from Dhigh

19 Tremain ← remaining tracks from T

/* Figure 2(c) */
/* second association */

20 Associate Tremain and Dlow using similarity#2
21 Tre−remain ← remaining tracks from Tremain

/* delete unmatched tracks */
22 T ← T \ Tre−remain

/* initialize new tracks */
23 for d in Dremain do
24 T ← T ∪ {d}
25 end
26 end
27 Return: T

Track rebirth [69,87] is not shown in the algorithm for simplicity. In green is the key of our
method.

matching based on the similarity. We keep the unmatched detections in Dremain and
the unmatched tracks in Tremain (line 17 to 19 in Algorithm 1).
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BYTE is highly flexible and can be compatible to other different association meth-
ods. For example, when BYTE is combined with FairMOT [84], Re-ID feature is added
into * first association * in Algorithm 1, others are the same. In the ex-
periments, we apply BYTE to 9 different state-of-the-art trackers and achieve notable
improvements on almost all the metrics.

The second association is performed between the low score detection boxes Dlow

and the remaining tracks Tremain after the first association. We keep the unmatched
tracks in Tre−remain and just delete all the unmatched low score detection boxes, since
we view them as background. (line 20 to 21 in Algorithm 1). We find it important to use
IoU alone as the Similarity#2 in the second association because the low score de-
tection boxes usually contains severe occlusion or motion blur and appearance features
are not reliable. Thus, when apply BYTE to other Re-ID based trackers [68,84,48], we
do not adopt appearance similarity in the second association.

After the association, the unmatched tracks will be deleted from the tracklets. We do
not list the procedure of track rebirth [69,13,87] in Algorithm 1 for simplicity. Actually,
it is necessary for the long-range association to preserve the identity of the tracks. For
the unmatched tracks Tre−remain after the second association, we put them into Tlost.
For each track in Tlost, only when it exists for more than a certain number of frames, i.e.
30, we delete it from the tracks T . Otherwise, we remain the lost tracks Tlost in T (line
22 in Algorithm 1).Finally, we initialize new tracks from the unmatched high score
detection boxes Dremain after the first association. (line 23 to 27 in Algorithm 1).The
output of each individual frame is the bounding boxes and identities of the tracks T in
the current frame. Note that we do not output the boxes and identities of Tlost.

To put forwards the state-of-the-art performance of MOT, we design a simple and
strong tracker, named ByteTrack, by equipping the high-performance detector YOLOX
[25] with our association method BYTE.

4 Experiments

4.1 Setting

Datasets. We evaluate BYTE and ByteTrack on MOT17 [45] and MOT20 [17] datasets
under the “private detection” protocol. Both datasets contain training sets and test sets,
without validation sets. For ablation studies, we use the first half of each video in the
training set of MOT17 for training and the last half for validation following [87]. We
train on the combination of CrowdHuman dataset [55] and MOT17 half training set
following [87,58,79,70]. We add Cityperson [81] and ETHZ [20] for training following
[68,84,34] when testing on the test set of MOT17. We also test ByteTrack on HiEve [38]
and BDD100K [78] datasets. HiEve is a large scale human-centric dataset focusing on
crowded and complex events. BDD100K is the largest driving video dataset and the
dataset splits of the MOT task are 1400 videos for training, 200 videos for validation
and 400 videos for testing. It needs to track objects of 8 classes and contains cases of
large camera motion.

Metrics. We use the CLEAR metrics [4], including MOTA, FP, FN, IDs, etc., IDF1
[52] and HOTA [41] to evaluate different aspects of the tracking performance. MOTA
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is computed based on FP, FN and IDs. Considering the amount of FP and FN are larger
than IDs, MOTA focuses more on the detection performance. IDF1 evaluates the iden-
tity preservation ability and focus more on the association performance. HOTA is a very
recently proposed metric which explicitly balances the effect of performing accurate de-
tection, association and localization. For BDD100K dataset, there are some multi-class
metrics such as mMOTA and mIDF1. mMOTA / mIDF1 is computed by averaging the
MOTA / IDF1 of all the classes.

Implementation details. For BYTE, the default detection score threshold τ is 0.6, un-
less otherwise specified. For the benchmark evaluation of MOT17, MOT20 and HiEve,
we only use IoU as the similarity metrics. In the linear assignment step, if the IoU
between the detection box and the tracklet box is smaller than 0.2, the matching will
be rejected. For the lost tracklets, we keep it for 30 frames in case it appears again.
For BDD100K, we use UniTrack [67] as the Re-ID model. In ablation study, we use
FastReID [28] to extract Re-ID features for MOT17.

For ByteTrack, the detector is YOLOX [25] with YOLOX-X as the backbone and
COCO-pretrained model [37] as the initialized weights. For MOT17, the training sched-
ule is 80 epochs on the combination of MOT17, CrowdHuman, Cityperson and ETHZ.
For MOT20 and HiEve, we only add CrowdHuman as additional training data. For
BDD100K, we do not use additional training data and only train 50 epochs. The input
image size is 1440 ×800 and the shortest side ranges from 576 to 1024 during multi-
scale training. The data augmentation includes Mosaic [8] and Mixup [80]. The model
is trained on 8 NVIDIA Tesla V100 GPU with batch size of 48. The optimizer is SGD
with weight decay of 5× 10−4 and momentum of 0.9. The initial learning rate is 10−3

with 1 epoch warm-up and cosine annealing schedule. The total training time is about
12 hours. Following [25], FPS is measured with FP16-precision [44] and batch size of
1 on a single GPU.

4.2 Ablation Studies on BYTE

Similarity analysis. We choose different types of similarity for the first association and
the second association of BYTE. The results are shown in Table 1. We can see that either
IoU or Re-ID can be a good choice for Similarity#1 on MOT17. IoU achieves bet-
ter MOTA and IDs while Re-ID achieves higher IDF1. On BDD100K, Re-ID achieves
much better results than IoU in the first association. This is because BDD100K contains
large camera motion and the annotations are in low frame rate, which causes failure of
motion cues. It is important to utilize IoU as Similarity#2 in the second associ-
ation on both datasets because the low score detection boxes usually contains severe
occlusion or motion blur and thus Re-ID features are not reliable. From Table 1 we can
find that using IoU as Similarity#2 increases about 1.0 MOTA compared to Re-ID,
which indicates that Re-ID features of the low score detection boxes are not reliable.

Comparisons with other association methods. We compare BYTE with other popular
association methods including SORT [6], DeepSORT [69] and MOTDT [13] on the
validation set of MOT17 and BDD100K. The results are shown in Table 2.

SORT can be seen as our baseline method because both methods only adopt Kalman
filter to predict the object motion. We can find that BYTE improves the MOTA metric
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MOT17 BDD100K
Similarity#1 Similarity#2 MOTA↑ IDF1↑ IDs↓ mMOTA↑ mIDF1↑ IDs↓

IoU Re-ID 75.8 77.5 231 39.2 48.3 29172
IoU IoU 76.6 79.3 159 39.4 48.9 27902
Re-ID Re-ID 75.2 78.7 276 45.0 53.4 10425
Re-ID IoU 76.3 80.5 216 45.5 54.8 9140

Table 1. Comparison of different type of similarity metrics used in the first association and the
second association of BYTE on the MOT17 and BDD100K validation set.

MOT17 BDD100K
Method w/ Re-ID MOTA↑ IDF1↑ IDs↓ mMOTA↑ mIDF1↑ IDs↓ FPS

SORT 74.6 76.9 291 30.9 41.3 10067 30.1
DeepSORT ✓ 75.4 77.2 239 24.5 38.2 10720 13.5
MOTDT ✓ 75.8 77.6 273 26.7 39.8 14520 11.1
BYTE (ours) 76.6 79.3 159 39.4 48.9 27902 29.6
BYTE (ours) ✓ 76.3 80.5 216 45.5 54.8 9140 11.8

Table 2. Comparison of different data association methods on the MOT17 and BDD100K vali-
dation set. The best results are shown in bold.

of SORT from 74.6 to 76.6, IDF1 from 76.9 to 79.3 and decreases IDs from 291 to 159.
This highlights the importance of the low score detection boxes and proves the ability
of BYTE to recover object boxes from low score one.

DeepSORT utilizes additional Re-ID models to enhance the long-range association.
We surprisingly find BYTE also has additional gains compared with DeepSORT. This
suggests a simple Kalman filter can perform long-range association and achieve better
IDF1 and IDs when the detection boxes are accurate enough. We note that in severe oc-
clusion cases, Re-ID features are vulnerable and may lead to identity switches, instead,
motion model behaves more reliably.

MOTDT integrates motion-guided box propagation results along with detection re-
sults to associate unreliable detection results with tracklets. Although sharing the sim-
ilar motivation, MOTDT is behind BYTE by a large margin. We explain that MOTDT
uses propagated boxes as tracklet boxes, which may lead to locating drifts in tracking.
Instead, BYTE uses low-score detection boxes to re-associate those unmatched track-
lets, therefore, tracklet boxes are more accurate.

Table 2 also shows the results on BDD100K dataset. BYTE also outperforms other
association methods by a large margin. Kalman filter fails in autonomous driving scenes
and it is the main reason for the low performance of SORT, DeepSORT and MOTDT.
Thus, we do not use Kalman filter on BDD100K. Additional off-the-shelf Re-ID models
greatly improve the performance of BYTE on BDD100K.

Robustness to detection score threshold. The detection score threshold τhigh is a
sensitive hyper-parameter and needs to be carefully tuned in the task of multi-object
tracking. We change it from 0.2 to 0.8 and compare the MOTA and IDF1 score of
BYTE and SORT. The results are shown in Figure 3. From the results we can see that
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Fig. 3. Comparison of the performances of BYTE and SORT under different detection score
thresholds. The results are from the validation set of MOT17.

Fig. 4. Comparison of the number of TPs and FPs in all low score detection boxes and the low
score tracked boxes obtained by BYTE. The results are from the validation set of MOT17.

BYTE is more robust to the detection score threshold than SORT. This is because the
second association in BYTE recovers the objects whose scores are lower than τhigh,
and thus considers almost every detection box regardless of the change of τhigh.

Analysis on low score detection boxes. To prove the effectiveness of BYTE, we collect
the number of TPs and FPs in the low score boxes obtained by BYTE. We use the half
training set of MOT17 and CrowdHuman for training and evaluate on the half validation
set of MOT17. First, we keep all the low score detection boxes whose scores range
from τlow to τhigh and classify the TPs and FPs using ground truth annotations. Then,
we select the tracking results obtained by BYTE from low score detection boxes. The
results of each sequence are shown in Figure 4. We can see that BYTE obtains notably
more TPs than FPs from the low score detection boxes even though some sequences (i.e.
MOT17-02) have much more FPs in all the detection boxes. The obtained TPs notably
increases MOTA from 74.6 to 76.6 as is shown in Table 2.

Applications on other trackers. We apply BYTE on 9 different state-of-the-arts track-
ers, including JDE [68], CSTrack [34], FairMOT [84], TraDes [70], QDTrack [48], Cen-
terTrack [87], Chained-Tracker [49], TransTrack [58] and MOTR [79]. Among these
trackers, JDE, CSTrack, FairMOT, TraDes adopt a combination of motion and Re-ID
similarity. QDTrack adopts Re-ID similarity alone. CenterTrack and TraDes predict the
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Method Similarity w/ BYTE MOTA↑ IDF1↑ IDs↓

JDE [68] Motion(K) + Re-ID 60.0 63.6 473
Motion(K) + Re-ID ✓ 60.3 (+0.3) 64.1 (+0.5) 418

Motion(K) ✓ 60.6 (+0.6) 66.0 (+2.4) 360

CSTrack [34] Motion(K) + Re-ID 68.0 72.3 325
Motion(K) + Re-ID ✓ 69.2 (+1.2) 73.9 (+1.6) 285

Motion(K) ✓ 69.3 (+1.3) 71.7 (-0.6) 279

FairMOT [84] Motion(K) + Re-ID 69.1 72.8 299
Motion(K) + Re-ID ✓ 70.4 (+1.3) 74.2 (+1.4) 232

Motion(K) ✓ 70.3 (+1.2) 73.2 (+0.4) 236

TraDes [70] Motion + Re-ID 68.2 71.7 285
Motion + Re-ID ✓ 68.6 (+0.4) 71.1 (-0.6) 259

Motion(K) ✓ 67.9 (-0.3) 72.0 (+0.3) 178

QDTrack [48] Re-ID 67.3 67.8 377
Motion(K) + Re-ID ✓ 67.7 (+0.4) 72.0 (+4.2) 281

Motion(K) ✓ 67.9 (+0.6) 70.9 (+3.1) 258

CenterTrack [87] Motion 66.1 64.2 528
Motion ✓ 66.3 (+0.2) 64.8 (+0.6) 334

Motion(K) ✓ 67.4 (+1.3) 74.0 (+9.8) 144

CTracker [49] Chain 63.1 60.9 755
Motion(K) ✓ 65.0 (+1.9) 66.7 (+5.8) 346

TransTrack [58] Attention 67.1 68.3 254
Attention ✓ 68.6 (+1.5) 69.0 (+0.7) 232

Motion(K) ✓ 68.3 (+1.2) 72.4 (+4.1) 181

MOTR [79] Attention 64.7 67.2 346
Attention ✓ 64.3 (-0.4) 69.3 (+2.1) 263

Motion(K) ✓ 65.7 (+1.0) 68.4 (+1.2) 260

Table 3. Results of applying BYTE to 9 different state-of-the-art trackers on the MOT17 valida-
tion set. “K” is short for Kalman filter. In green are the improvements of at least +1.0 point.

motion similarity by the learned networks. Chained-Tracker adopts the chain structure
and outputs the results of two consecutive frames simultaneously and associate in the
same frame by IoU. TransTrack and MOTR adopt the attention mechanism to propa-
gate boxes among frames. Their results are shown in the first line of each tracker in
Table 3.To evaluate the effectiveness of BYTE, we design two different modes to apply
BYTE to these trackers.

– The first mode is to insert BYTE into the original association methods of different
trackers, as is shown in the second line of the results of each tracker in Table 3. Take
FairMOT[84] for example, after the original association is done, we select all the
unmatched tracklets and associate them with the low score detection boxes follow-
ing the * second association * in Algorithm 1. Note that for the low score
objects, the Re-ID features are not reliable so we only adopt the IoU between the de-
tection boxes and the tracklet boxes after motion prediction as the similarity. We do
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Tracker MOTA↑ IDF1↑ HOTA↑ FP↓ FN↓ IDs↓ FPS↑

Tube TK [47] 63.0 58.6 48.0 27060 177483 4137 3.0
MOTR [79] 65.1 66.4 - 45486 149307 2049 -
CTracker [49] 66.6 57.4 49.0 22284 160491 5529 6.8
CenterTrack [87] 67.8 64.7 52.2 18498 160332 3039 17.5
QuasiDense [48] 68.7 66.3 53.9 26589 146643 3378 20.3
TraDes [70] 69.1 63.9 52.7 20892 150060 3555 17.5
MAT [26] 69.5 63.1 53.8 30660 138741 2844 9.0
SOTMOT [86] 71.0 71.9 - 39537 118983 5184 16.0
TransCenter [73] 73.2 62.2 54.5 23112 123738 4614 1.0
GSDT [66] 73.2 66.5 55.2 26397 120666 3891 4.9
Semi-TCL [33] 73.3 73.2 59.8 22944 124980 2790 -
FairMOT [84] 73.7 72.3 59.3 27507 117477 3303 25.9
RelationTrack [77] 73.8 74.7 61.0 27999 118623 1374 8.5
PermaTrackPr [61] 73.8 68.9 55.5 28998 115104 3699 11.9
CSTrack [34] 74.9 72.6 59.3 23847 114303 3567 15.8
TransTrack [58] 75.2 63.5 54.1 50157 86442 3603 10.0
FUFET [54] 76.2 68.0 57.9 32796 98475 3237 6.8
SiamMOT [35] 76.3 72.3 - - - - 12.8
CorrTracker [64] 76.5 73.6 60.7 29808 99510 3369 15.6
TransMOT [16] 76.7 75.1 61.7 36231 93150 2346 9.6
ReMOT [75] 77.0 72.0 59.7 33204 93612 2853 1.8
ByteTrack (ours) 80.3 77.3 63.1 25491 83721 2196 29.6

Table 4. Comparison of the state-of-the-art methods under the “private detector” protocol on
MOT17 test set. The best results are shown in bold. MOT17 contains rich scenes and half of the
sequences are captured with camera motion. ByteTrack ranks 1st among all the trackers on the
leaderboard of MOT17 and outperforms the second one ReMOT by a large margin on almost all
the metrics. It also has the highest running speed among all trackers.

not apply the first mode of BYTE to Chained-Tracker because we find it is difficult
to implement in the chain structure.

– The second mode is to directly use the detection boxes of these trackers and associate
using the whole procedure in Algorithm 1, as is shown in the third line of the results
of each tracker in Table 3.

We can see that in both modes, BYTE can bring stable improvements over almost all
the metrics including MOTA, IDF1 and IDs. For example, BYTE increases CenterTrack
by 1.3 MOTA and 9.8 IDF1, Chained-Tracker by 1.9 MOTA and 5.8 IDF1, TransTrack
by 1.2 MOTA and 4.1 IDF1. The results in Table 3 indicate that BYTE has strong
generalization ability and can be easily applied to existing trackers.

4.3 Benchmark Evaluation

We compare ByteTrack with the state-of-the-art trackers on the test set of MOT17,
MOT20 and HiEve under the private detection protocol in Table 4, Table 5 and Table 6,
respectively. All the results are directly obtained from the official MOT Challenge eval-
uation server and the Human in Events server.

https://motchallenge.net
http://humaninevents.org

https://motchallenge.net
http://humaninevents.org


ByteTrack: Multi-Object Tracking by Associating Every Detection Box 13

Tracker MOTA↑ IDF1↑ HOTA↑ FP↓ FN↓ IDs↓ FPS↑

MLT [82] 48.9 54.6 43.2 45660 216803 2187 3.7
FairMOT [84] 61.8 67.3 54.6 103440 88901 5243 13.2
TransCenter [73] 61.9 50.4 - 45895 146347 4653 1.0
TransTrack [58] 65.0 59.4 48.5 27197 150197 3608 7.2
CorrTracker [64] 65.2 69.1 - 79429 95855 5183 8.5
Semi-TCL [33] 65.2 70.1 55.3 61209 114709 4139 -
CSTrack [34] 66.6 68.6 54.0 25404 144358 3196 4.5
GSDT [66] 67.1 67.5 53.6 31913 135409 3131 0.9
SiamMOT [35] 67.1 69.1 - - - - 4.3
RelationTrack [77] 67.2 70.5 56.5 61134 104597 4243 2.7
SOTMOT [86] 68.6 71.4 - 57064 101154 4209 8.5
ByteTrack (ours) 77.8 75.2 61.3 26249 87594 1223 17.5

Table 5. Comparison of the state-of-the-art methods under the “private detector” protocol on
MOT20 test set. The best results are shown in bold. The scenes in MOT20 are much more
crowded than those in MOT17. ByteTrack ranks 1st among all the trackers on the leaderboard of
MOT20 and outperforms the second one SOTMOT by a large margin on all the metrics. It also
has the highest running speed among all trackers.

Tracker MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓

DeepSORT [69] 27.1 28.6 8.5% 41.5% 5894 42668 2220
MOTDT [13] 26.1 32.9 8.7% 54.6% 6318 43577 1599
IOUtracker [7] 38.6 38.6 28.3% 27.6% 9640 28993 4153
JDE [68] 33.1 36.0 15.1% 24.1% 9526 33327 3747
FairMOT [84] 35.0 46.7 16.3% 44.2% 6523 37750 995
CenterTrack [87] 40.9 45.1 10.8% 32.2% 3208 36414 1568
ByteTrack (Ours) 61.7 63.1 38.3% 21.6% 2822 22852 1031

Table 6. Comparison of the state-of-the-art methods under the “private detector” protocol on
HiEve test set. The best results are shown in bold. HiEve has more complex events than MOT17
and MOT20. ByteTrack ranks 1st among all the trackers on the leaderboard of HiEve and out-
performs the second one CenterTrack by a large margin on all the metrics.

MOT17. ByteTrack ranks 1st among all the trackers on the leaderboard of MOT17. Not
only does it achieve the best accuracy (i.e. 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA), but
also runs with highest running speed (30 FPS). It outperforms the second-performance
tracker [75] by a large margin (i.e. +3.3 MOTA, +5.3 IDF1 and +3.4 HOTA). Also, we
use less training data than many high performance methods such as [84,34,64,54,35]
(29K images vs. 73K images). It is worth noting that we only leverage the simplest
similarity computation method Kalman filter in the association step compared to other
methods [84,34,48,66,79,58] which additionally adopt Re-ID similarity or attention
mechanisms. All these indicate that ByteTrack is a simple and strong tracker.

MOT20. Compared with MOT17, MOT20 has much more crowded scenarios and oc-
clusion cases. The average number of pedestrians in an image is 170 in the test set of
MOT20. ByteTrack also ranks 1st among all the trackers on the leaderboard of MOT20
and outperforms other trackers by a large margin on almost all the metrics. For exam-
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Tracker split mMOTA↑mIDF1↑MOTA↑ IDF1↑ FN↓ FP↓ IDs↓ MT↑ ML↓

Yu et al. [78] val 25.9 44.5 56.9 66.8 122406 52372 8315 8396 3795
QDTrack [48] val 36.6 50.8 63.5 71.5 108614 46621 6262 9481 3034
ByteTrack(Ours) val 45.5 54.8 69.1 70.4 92805 34998 9140 9626 3005

Yu et al. [78] test 26.3 44.7 58.3 68.2 213220 100230 14674 16299 6017
DeepBlueAI* test 31.6 38.7 56.9 56.0 292063 35401 25186 10296 12266
Madamada* test 33.6 43.0 59.8 55.7 209339 76612 42901 16774 5004
QDTrack[48] test 35.5 52.3 64.3 72.3 201041 80054 10790 17353 5167
ByteTrack(Ours) test 40.1 55.8 69.6 71.3 169073 63869 15466 18057 5107

Table 7. Comparison of the state-of-the-art methods on BDD100K test set. The best results are
shown in bold. ByteTrack ranks 1st among all the trackers on the leaderboard of BDD100K and
outperforms the second one QDTrack by a large margin on most metrics. The methods denoted
by * are the ones reported on the leaderboard of BDD100K.

ple, it increases MOTA from 68.6 to 77.8, IDF1 from 71.4 to 75.2 and decreases IDs
by 71% from 4209 to 1223. It is worth noting that ByteTrack achieves extremely low
identity switches, which further indicates that associating every detection boxes is very
effective under occlusion cases.

Human in Events. Compared with MOT17 and MOT20, HiEve contains more complex
events and more diverse camera views. We train ByteTrack on CrowdHuman dataset
and the training set of HiEve. ByteTrack also ranks 1st among all the trackers on the
leaderboard of HiEve and outperforms other state-of-the-art trackers by a large margin.
For example, it increases MOTA from 40.9 to 61.3 and IDF1 from 45.1 to 62.9. The
superior results indicate that ByteTrack is robust to complex scenes.

BDD100K. BDD100K is multiple categories tracking dataset in autonomous driving
scenes. The challenges include low frame rate and large camera motion. We utilize a
simple ResNet-50 ImageNet classification model from UniTrack [67] to compute ap-
pearance similarity. ByteTrack ranks first on the leaderboard of BDD100K. It increases
mMOTA from 36.6 to 45.5 on the validation set and 35.5 to 40.1 on the test set, which
indicates that ByteTrack can also handle the challenges in autonomous driving scenes.

5 Conclusion

We present a simple yet effective data association method BYTE for multi-object track-
ing. BYTE can be easily applied to existing trackers and achieve consistent improve-
ments. We also propose a strong tracker ByteTrack, which achieves 80.3 MOTA, 77.3
IDF1 and 63.1 HOTA on MOT17 test set with 30 FPS. ByteTrack is very robust to
occlusion for its accurate detection performance and the help of associating low score
detection boxes. It also sheds light on how to make the best use of detection results to
enhance multi-object tracking. We hope the high accuracy, fast speed and simplicity of
ByteTrack can make it attractive in real applications.
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