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1 Implementation details
1.1 Training and augmentation

Training. As training data we use annotated training keyframes from the
nuScenes [1] dataset. We represent labeled boxes as nodes in the graph. Edges
in the graph are labeled positive if they connect nodes with the same track ID
(across any number of frames) and negative otherwise. During model training, all
input clips are processed individually and each edge is considered an independent
sample that contributes to the total focal loss [4].

Data augmentation. To mimic noisy, real-world detectors, we rely on data
augmentation. We add random bounding box detections at each frame before
the graph construction to imitate false positive detections. For each frame, the
number of added boxes is a fraction of the number of real boxes (between 0.7 and
0.9 for each class) plus a fixed number (between 1 and 3) to augment completely
empty frames. Pose coordinates (position and orientation) of augmented boxes
are sampled from uniform distributions whose parameters are the minimum and
maximum values of corresponding coordinates to labeled boxes.

We also augment input graphs at each training iteration. To mimic occlusions
and miss-classifications, we randomly drop nodes (between 40%-60%) at each
frame as well as some complete frames from our graphs. To emulate imprecise
detections, we further perturb each initial edge feature, representing differences
in object poses, with noise vectors sampled from class-specific Gaussian distribu-
tions with zero mean. For each class, the standard deviation for distributions of
distance noise (meters) is between 0.05 and 0.35, for polar angle noise (radians)
between 0.1 and 0.25, and for orientation noise (radians) between 0.05 and 0.25.
For further augmentation, we fully remove approximately 20% of all edges in the
graph. These augmentations ensure that our model is robust to imperfect/noisy
inputs that we obtain from real-world 3D object detectors.

Inference. In multi-object tracking, track IDs need to be distinct at each frame,
i.e., only one object detection can be assigned to each identity (track ID). In
our problem setting, this means that every node in the graph can have at most
one positive edge connecting it to each past and future frame. We do not impose
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Table 1: Neural network architecture of PolarMOT. Each cell describes the out-
put dimensionality of each layer in the fully-connected MLPs of our model

Edge Node | Edge Edge Node | Final edge
initial initial | model | pres, past, fut model | classifier
Input 4 48 80 80 96 16
1st layer output 16 64 64 64 128 64
2nd layer output 16 128 16 32 64 32
3rd layer output 32 32 16
4th layer output 1

this constraint on PolarMOT during the training (i.e., we train our model as an
unconstrained binary classifier). However, we do ensure this constraint during
inference via a simple post-processing procedure.

In particular, given edge classification scores from our model, edges with a
score higher than a certain threshold (between 0.5 and 0.8 for each class) are
positive, others are negative. Then, positive edge labels are greedily assigned
starting from the highest score. As soon as a positive edge is assigned between
nodes of and oj* at frames k and m, all other edges between node o and frame
m (and between node of* and frame k) are ignored from further assignment.
This greedy procedure ensures that positive edges with the highest confidence
are assigned first and each node has at most one positive edge to each frame.

1.2 Network structure

In this section, we detail the architecture of our network, explained in Sec. 4.2
in the main paper. In Tab. 1, we outline our network architecture composed
entirely of multi-layer perceptrons (MLPs) with fully-connected layers. For each
MLP, we list the dimensionality of all of its layers: input, intermediary and out-
put. Here, “Edge initial” and “Node initial” columns correspond to MLP cqge_init
and MLP,,54¢_init (Eq. 4 and 5 in the paper), which produce initial learned em-
beddings from the initial relative features. The “Edge model” column describes
MLP.44e (Eg. 1 in the paper) that processes edge features at each message
passing step. The columns “Edge pres., past&fut.” describe the identical com-
position of MLP,,.s and MLP ;. /MLP f,:, which process intra-frame edges and
two temporal directions of inter-frame edges (Eq. 2 in the paper). The “Node
model” column outlines MLP,,,4. that aggregates all edge embeddings and pro-
duces node features at each step (Eq. 3 in the paper). Finally, the last column
denotes the structure of the MLP used to classify edges based on the latest edge
embeddings. We use leaky ReLU [5] between all layers of the network.

In our experiments, we always perform L = 4 message passing steps. For
offline inference, we process clips of 11 frames and for online tracking, we keep
only the 3 latest detections for each track history.
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Table 2: Ablation on parametrization of geometric relations among objects on
the nuScenes validation set. Trained on the full training set
IDs | Recall + AMOTA ¢t class-specific AMOTA 1

Localized Normalized

polar by time |total average average car ped bicycle bus motor trailer truck
v v 213  75.14 71.14 85.83 81.70 54.10 87.36 72.32 48.67 68.03
v X 182 72.85 70.27 86.12 81.70 51.73 87.79 69.29 47.20 68.07
X v 225  70.90 69.75 85.89 81.72 48.92 87.54 69.25 47.60 67.31

Table 3: Ablation on the impact of contextual aggregation in node updates on
the nuScenes validation set

IDs | Recall T AMOTA ¢t
total average average

Node aggregation
connections

class-specific AMOTA 1
car ped bicycle bus motor trailer truck

85.83 81.70 54.10 87.36 72.32 48.67 68.03
81.48 77.46 48.76 61.09 30.23 29.22 62.56
0 72.56 40.75 19.80 0 0 30.04

213 75.14 71.14
968  60.29 55.83
765  26.75 23.30

Past/Present/Future
Spatial/Temporal
All together

2 Experimental evaluation

2.1 [Edge parametrization ablation on the full training set

In the main paper, we ablated the impact of our proposed feature representation
(time-normalized localized polar coordinates) by comparing models trained on
the official nuScenes mini split. The main advantage of our representation is the
inductive bias, which helps the model better understand long trajectories, turns
and non-holonomic motion in general. The benefits of this inductive bias are
best demonstrated when the amount of training data is low, which is why we
used the mini split in our ablation.

For completeness, in Tab. 2, we provide the same ablation when the full
training set is used. Unsurprisingly, with enough data (e.g. car, pedestrian and
bus classes), different feature representations perform similarly because there are
enough samples to learn motion bias directly from data. On the other hand, for
rarely-observed classes, such as bicycles, motorcycles and trailers, using a better
feature representation is clearly beneficial, e.g. bicycle AMOTA rises from 48.92
to 54.10. This aligns with our main ablation results, where our parametrization
outperforms standard representation in low data regimes.

2.2 Contextual node aggregation

During message passing, our node aggregation step processes messages from
past, present and future separately to maintain contextual awareness. To ablate
the importance of this technique, we evaluate 3 versions of our trained model
with different aggregation logic and show the results in Tab. 3.

When both temporal messages (past and future) are aggregated together, the
model loses its time-awareness and its tracking performance significantly declines
—15.31 avg. AMOTA (from 71.14 down to 55.83). Moreover, if spatial messages
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Table 4: CenterPoint (CP) [6] and our method when trained and evaluating only

on one city
Train city Tracking [ IDs | Recall  AMOTA 71 class-specific AMOTA 1
— eval city model total average average car ped bicycle bus motor trailer truck
Singapore Ours 145 77.82 75.79 85.42 77.17 51.41 85.76 T74.23 0 80.73
— Singapore CP 351 72.97 70.22 82.66 71.97 39.71 85.17 62.36 0 79.44
Boston Ours 48 70.94 70.17 85.80 85.16 58.57 83.45 60.89 52.75 64.58
— Boston CP 246 67.78 65.96 83.54 81.37 50.00 82.47 51.63 48.61 64.10

Table 5: Extended results of state-of-the-art methods for 3D multi-object track-
ing on the NuScenes test set benchmark. Legend: L — lidar, P — ego poses, B —
3D boxes

Input MT 1t ML | Fragl TID | LGD |
Method name modality total total total average average
Ours 3D (B) 5701 1686 332 0.444 0.657
OGR3MOT [7] 3D (B+ P) 5278 2094 371 0.575 0.782
CenterPoint [6] 3D (L + P) 5399 1818 553 0.415 0.720
IPRL-TRI [2] 3D (B + P) 4294 2184 776 0.960 1.376
AlphaTrack[7] 3D + 2D + P 5560 1744 480 0.409 0.755
EagerMOT [3] 3D + 2D + P 5303 1842 601 0.448 0.801

are also aggregated in the same single group, the model is completely unaware of
scene context and geometric scene composition, so its avg. AMOTA falls further
by —32.53 (a total decline of 47.84 from our default contextual aggregation).

2.3 Cross-city generalization oracle results

In the main paper, we demonstrated the ability of our model to generalize across
different cities by training it in Boston and evaluating in Singapore (and vice
versa). To provide a better baseline and show how well the model would normally
perform in each of the cities, we present Tab. 4 where models are trained and
evaluated on the same single city, i.e. only Boston or only Singapore.

Since PolarMOT demonstrates better performance than CenterPoint [6] on
the full nuScenes [1] validation set (see Tab. 2 in the main paper), it is unsur-
prising that its results on individual cities are also better.

2.4 Extended evaluation results

In this section, we present extended versions of the experimental evaluations
detailed in the main paper. These tables include additional tracking metrics
reported by the nuScenes benchmark [1], which we provide for completeness:

— MT (mostly tracked): percentage of tracks tracked correctly for at least 80%
of their life span

— ML (mostly lost) percentage of tracks tracked correctly for at most 20% of
their life span
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Table 6: Extended results for online vs. offline tracking on the nuScenes val set [1]
Input ‘MT T ML 1 Frag || TID | LGD |

Method name

modality | total total total |average average
0.379 0.672
Ours onl. 3D 4262 1545 285 0.636  0.901

CenterPoint onl. 3D 4405 1508 445

Ours offl. 3D 4524 1452 332
0.516 0.956

Table 7: Extended results for CenterPoint (CP) [6] and our method when trained
on training data from one city, and evaluated on the validation data from another

MT t+ ML | Frag || TID | LGD |
total total total |average average

Tracking
model

Train city
— eval city

Boston Ours 1595 765 139 0.461 0.773
— Singapore CP 1464 861 224 0.584 1.037
Singapore Ours 2274 1177 147 0.850 1.171
— Boston CP 2282 1147 253 0.715 1.209

— Frag. (fragmentations): the number of times a trajectory is interrupted dur-
ing tracking.

— TID (track initialization in seconds): time until the first detection of the
track is successfully tracked.

— LGD (longest gap duration in seconds): time an object instance has been
incorrectly tracked.

In Tab. 5 we show extended results on the nuScenes test set benchmark (Tab.
9 in the main paper).

Tab. 6 extends Tab. 2 in the main paper and details offline and online model
evaluations on the nuScenes validation set.

Tab. 7 extends Tab. 7 in the main paper where PolarMOT and CenterPoint
[6] are trained on one city and evaluated on the other. For evaluations of our
method, we use detections produced by the corresponding CP model to make
sure each pair of trackers uses the same set of detections.

These extended evaluations along with our code, models and ex-
perimental data will be published at polarmot.github.io .
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