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Abstract. Tracking pixels in videos is typically studied as an optical
flow estimation problem, where every pixel is described with a displace-
ment vector that locates it in the next frame. Even though wider tempo-
ral context is freely available, prior efforts to take this into account have
yielded only small gains over 2-frame methods. In this paper, we revisit
Sand and Teller’s “particle video” approach, and study pixel tracking as
a long-range motion estimation problem, where every pixel is described
with a trajectory that locates it in multiple future frames. We re-build
this classic approach using components that drive the current state-of-
the-art in flow and object tracking, such as dense cost maps, iterative
optimization, and learned appearance updates. We train our models us-
ing long-range amodal point trajectories mined from existing optical flow
data that we synthetically augment with multi-frame occlusions. We test
our approach in trajectory estimation benchmarks and in keypoint label
propagation tasks, and compare favorably against state-of-the-art optical
flow and feature tracking methods.

1 Introduction

In 2006, Sand and Teller [25] wrote that there are two dominant approaches
to motion estimation in video: feature matching and optical flow. This is still
true today. In their paper, they proposed a new motion representation called
a “particle video”, which they presented as a middle-ground between feature
tracking and optical flow. The main idea is to represent a video with a set of
particles that move across multiple frames, and leverage long-range temporal
priors while tracking the particles.

Methods for feature tracking and optical flow estimation have greatly ad-
vanced since that time, but there has been relatively little work on estimating
long-range trajectories at the pixel level. Feature correspondence methods [39,4]
currently work by matching the features of each new frame to the features of
one or more source frames [17], without taking into account temporal context.
Optical flow methods today produce such exceedingly-accurate estimates within
pairs of frames [32] that the motion vectors can often be chained across time
without much accumulation of error, but as soon as the target is occluded, it is
no longer represented in the flow field, and tracking fails.

https://particle-video-revisited.github.io
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Fig. 1. Persistent Independent Particles. Our method takes an RGB video as
input, and estimates trajectories for any number of target pixels. Left: targets and
their trajectories, shown separately. Right: trajectories overlaid on the pixels.

Particle videos have the potential to capture two key elements missing from
feature-matching and optical flow: (1) persistence through occlusions, and (2)
multi-frame temporal context. If we attend to a pixel that corresponds to a point
on the world surface, we should expect that point to exist across time, even if
appearance and position and visibility all vary somewhat unpredictably. Tempo-
ral context is of course widely known to be relevant for flow-based methods, but
prior efforts to take multi-frame context into account have yielded only small
gains. Flow-based methods mainly use consecutive pairs of frames, and occasion-
ally leverage time with a simple constant-velocity prior, which weakly conditions
the current flow estimate on previous frames’ flow [32,23].

We propose Persistent Independent Particles (PIPs), a new particle video
method, which takes a T -frame RGB video as input, along with the (x, y) coor-
dinate of a target to track, and produces a T × 2 matrix as output, representing
the positions of the target across the given frames. The model can be queried
for any number of particles, at any positions within the first frame’s pixel grid.
A defining feature of our approach, which differentiates it from both the original
particle video algorithm and modern flow algorithms, is that it makes an ex-
treme trade-off between spatial awareness and temporal awareness. Our model
estimates the trajectory of every target independently. Computation is shared
between particles within a video, which makes inference fast, but each particle
produces its own trajectory, without inspecting the trajectories of its neighbors.
This extreme choice allows us to devote the majority of parameters into a mod-
ule that simultaneously learns (1) temporal priors, and (2) an iterative inference
mechanism that searches for the target pixel’s location in all input frames. The
value of the temporal prior is that it allows the model to fail its correspondence
task at multiple intermediate frames. As long as the pixel is “found” at some
sparse timesteps within the considered temporal span, the model can use its
prior to estimate plausible positions for the remaining timesteps. This is helpful
because appearance-based correspondence is impossible in some frames, due to
occlusions, moving out-of-bounds, or difficult lighting.
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We train our model entirely in synthetic data, which we call FlyingThings++,
based on the FlyingThings [20] optical flow dataset. Our dataset includes multi-
frame amodal trajectories, with challenging synthetic occlusions caused by mov-
ing objects. In our experiments on both synthetic and real video data, we
demonstrate that our particle trajectories are more robust to occlusions than
flow trajectories—they can pick up an entity upon re-appearance—and also pro-
vide smoother and finer-grained correspondences than current feature-matching
methods, thanks to its temporal prior. We also propose a method to link the
model’s moderate-length trajectories into arbitrarily-long trajectories, relying
on a simultaneously-estimated visibility cue. Figure 1 displays sample outputs
of our model on RGB videos from the DAVIS benchmark [22]. Our code and data
are publicly available at https://particle-video-revisited.github.io.

2 Related Work

2.1 Optical Flow

Many classic methods track points independently [18,35], and such point tracks
see wide use in structure-from-motion [2,15,21] and simultaneous localization and
mapping systems [31]. While earlier optical flow methods use optimization tech-
niques to estimate motion fields between two consecutive frames [3,29], recent
methods learn such displacement fields supervised from synthetic datasets [6,10].
Many recent works use iterative refinements for flow estimation by leveraging
coarse-to-fine pyramids [28]. Instead of coarse-to-fine refinements, RAFT [32]
mimics an iterative optimization algorithm, and estimates flow through itera-
tive updates of a high resolution flow field based on 4D correlation volumes
constructed for all pairs of pixels from per-pixel features. Inspired by RAFT, we
also perform iterative updates of the position estimations using correlations as
an input, but unlike RAFT we additionally update features.

Ren et al. [23] propose a fusion approach for multi-frame optical flow estima-
tion. The optical flow estimates of previous frames are used to obtain multiple
candidate flow estimations for the current timestep, which are then fused into a
final prediction by a learnable module. In contrast, our method explicitly reasons
about multiframe context, and iteratively updates its estimates across all frames
considered. Note that without using multiple frames, it is impossible to recover
an entity after occlusion. Janai et al. [12] is closer to our method, since it uses
3 frames as multiframe context, and explicitly reasons about occlusions. That
work uses a constant velocity prior [24] to estimate motion during occlusion. In
contrast, we devote a large part of the model capacity to learning an accurate
temporal prior, and iteratively updates its estimates across all frames consid-
ered, in search of the object’s re-emergence from occlusion. Note that without
using multiple frames, it is impossible to recover an entity after occlusion. Ad-
ditionally, our model is the only work that aims to recover amodal trajectories
that do not terminate at occlusions but rather can recover and re-connect with
a visual entity upon its re-appearance.

https://particle-video-revisited.github.io
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2.2 Feature Matching

Wang and Jabri et al. [39,11] leverage cycle consistency of time for feature match-
ing. This allows unsupervised learning of features by optimizing a cycle consis-
tency loss on the feature space across multiple time steps in unlabelled videos.
Lai et al. [16,17] and Yang et al. [43] learn feature correspondence through op-
timizing a proxy reconstruction objective, where the goal is to reconstruct a
target frame (color or flow) by linearly combining pixels from one or more ref-
erence frames. Instead of using proxy tasks, supervised approaches [13,8,40,38]
directly train models using ground truth correspondences across images. Fea-
tures are usually extracted per-image and a transformer-based processor locates
correspondences between images. In our work, we reason about point correspon-
dences over a long temporal horizon, incorporating motion context, instead of
using pairs of frames like these works.

2.3 Tracking with Temporal Priors

Our work argues for using wide temporal context to track points, but this is
not new for visual tracking in general. For decades, research on object-centric
trackers has dealt with occlusions [46] and appearance changes [19], and non-
linear pixel-space temporal priors [26], similar to our work. Here, we merely aim
to bring the power of these object-tracking techniques down to the point level.

3 Persistent Independent Particles (PIPs)

3.1 Setup and Overview

Our work revisits the classic Particle Video [25] problem with a new algorithm,
which we call Persistent Independent Particles (PIPs).1 We take as input an RGB
video with T frames, and the (x1, y1) coordinate of a pixel on the first frame,
indicating the target to track. As output, we produce per-timestep coordinates
(xt, yt) tracking the target across time, and per-timestep visibility/occlusion
estimates vt ∈ [0, 1]. The model can be queried for N target points in parallel,
and some computation will be shared between them, but the model does not
share information between the targets’ trajectories.

At training time, we query the model with points for which we have ground-
truth trajectories and visibility labels. We supervise the model’s (xt, yt) outputs
with a regression objective, and supervise vt with a classification objective. At
test time, the model can be queried for the trajectories of any number of points.

We use the words “point” and “particle” interchangeably to mean the things
we are tracking, and use the word “pixel” more broadly to indicate any discrete
cell on the image grid. Note that although the tracking targets are specified
with single pixel coordinates, tracking successfully requires (at least) taking into
account the local spatial context around the specified pixel.

1 The countable dots on playing cards, dice, or dominoes are also called “pips”.
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Fig. 2. Persistent Independent Particles (PIPs) architecture. Given an RGB
video as input, along with a location in the first frame indicating what to track, our
model initializes a multi-frame trajectory, then computes features and correlation maps,
and iteratively updates the trajectory and its corresponding sequence of features, with
a deep MLP-Mixer model. From the computed features, the model also estimates a
visibility score for each timestep of the trajectory.

Our overall approach has four stages, somewhat similar to the RAFT optical
flow method [32]: extracting visual features (Section 3.2), initializing a list of
positions and features for each target (Section 3.3), locally measuring appearance
similarity (Section 3.4), and repeatedly updating the positions and features for
each target (Section 3.5). Figure 2 shows an overview of the method.

3.2 Extracting Features

We begin by extracting features from every frame of the input video. In this step,
each frame is processed independently with a 2D convolutional network (i.e., no
temporal convolutions). The network produces features at 1/8 resolution.

3.3 Initializing Each Target

After computing feature maps for the video frames, we compute a feature vector
for the target, by bilinearly sampling inside the first feature map at the first
(given) coordinate, obtaining a feature vector f1, with C channels. We use this
sampled feature to initialize a trajectory of features, by simply tiling the feature
across time, yielding a matrix F0 sized T × C. This initialization implies an
appearance constancy prior.

We initialize the target’s trajectory of positions in a similar way. We simply
copy the initial position across time, yielding a matrix X0, shaped T × 2. This
initialization implies a zero-velocity prior, which essentially assumes nothing
about the target’s motion.

During inference, we will update the trajectory of features, tracking appear-
ance changes, and update the trajectory of positions, tracking motion. We use
the superscript k to indicate the update iteration count, as in Xk,Fk.
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3.4 Measuring Local Appearance Similarity

We would like to measure how well our trajectory of positions, and associated
trajectory of features, matches with the pre-computed feature maps. We compute
visual similarity maps by correlating each feature ft in Fk with the feature
map of the corresponding timestep, and then obtain “local” scores by bilinearly
sampling a crop centered at the corresponding position (xt, yt). This step returns
patches of un-normalized similarity scores, where large positive values indicate
high similarity between the target’s feature and the convolutional features at
this location. The sequence of score patches is shaped T ×P ·P , where P is the
size of the patch extracted from each correlation map. Similar to RAFT [32], we
find it is beneficial to create a spatial pyramid of these score patches, to obtain
similarity measurements at multiple scales. We denote our set of multi-scale score
crops Ck, shaped T × P · P ·L, where L is the number of levels in the pyramid.

3.5 Iterative Updates

The main inference step for our model involves updating the sequence of posi-
tions, and updating the sequence of features. To perform this update, we take
into account all of the information we have computed thus far: the feature matrix
Fk, the correlation matrix Ck, and displacements computed from the position
matrix Xk. To compute displacements from Xk, we subtract the given position
(x1, y1) from each element of the matrix. Using displacements instead of absolute
positions makes all input trajectories appear to start at (0, 0), which makes our
model translation-invariant. To make the displacements easier to process by the
model, we employ sinusoidal position encodings [37], motivated by the success
of these encodings in vision transformers [5].

We concatenate this broad set of inputs on the channel dimension, yielding
a new matrix shaped T × D, and process them with a 12-block MLP-Mixer
[34], which is a parameter-efficient all-MLP architecture with design similarities
to a transformer. As output, this module produces updates for the sequence of
positions and sequence of features, ∆X and ∆F, which we apply with addition:
Fk+1 = Fk +∆F, and Xk+1 = Xk +∆X. After each update, we compute new
correlation pyramids at the updated coordinates, using the updated features.

The update module is iterated K times. After the last update, the positions
XK are treated as the final trajectory, and the features FK are sent to a linear
layer and sigmoid, to estimate per-timestep visibility scores VK .

3.6 Supervision

We supervise the model using the L1 distance between the ground-truth trajec-
tory and the estimated trajectory (across iterative updates), with exponentially
increasing weights, similar to RAFT [32]:

Lmain =

K∑
k

γK−k||Xk −X∗||1, (1)
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where K is the number of iterative updates, and we set γ = 0.8. Note that
this loss is applied even when the target is occluded, or out-of-bounds, which
is possible since we are using synthetically-generated ground truth. This is the
main loss of the model, and the model can technically train using only this,
although it will not learn visibility estimation and convergence will be slow.

On the model’s visibility estimates, we apply a cross entropy loss:

Lce = V∗ logV + (1−V∗) log(1−V). (2)

We find it accelerates convergence to directly supervise the score maps to
peak in the correct location (i.e., the location of the true correspondence):

Lscore = − log(exp(ci)/
∑
j

exp(cj))1{V∗ ̸= 0}, (3)

where cj represents the match score at pixel j, and i is pixel index with the true
correspondence, and 1{V∗ ̸= 0} selects indices where the target is visible.

3.7 Test-Time Trajectory Linking

At test time, it is often desirable to generate correspondences over longer times-
pans than the training sequence length T . To generate these longer trajectories,
we may repeat inference starting from any timestep along the estimated trajec-
tory, treating (xt, yt) as the new (x1, y1), and thereby “continuing” the trajectory
up to (xt+T , yt+T ). However, doing this naively (e.g., always continuing from the
last timestep), can quickly cause tracking to drift. In particular, it is crucial to
avoid continuing the trajectory from a timestep where the target is occluded.
Otherwise, the model will switch to tracking the occluder. To avoid these iden-
tity switches, we make use of our visibility estimates, and seek a late timestep
whose visibility score is high. This allows the model to skip past frames where
the target was momentarily occluded, as long as the temporal span of the oc-
clusion is less than the temporal span of the model (T ). We initialize a visibility
threshold conservatively at 0.99, and decrease it in increments of 0.01 until a
valid selection is found. To lock the model into tracking the “original” target,
we simply re-use the original F0 across all re-initializations.

4 Implementation Details

CNN. Our CNN uses the “BasicEncoder” architecture from the official
RAFT codebase [33]. This architecture has a 7 × 7 convolution with stride 2,
then 6 residual blocks with kernel size 3×3, then a final convolution with kernel
size 1× 1. The CNN has an output dimension of C = 256.

Local correlation pyramids. We use four levels in our correlation pyra-
mids, with radius 3, yielding four 7× 7 correlation patches per timestep.

MLP-Mixer. The input to the MLP-Mixer is a sequence of displacements,
features, and correlation pyramids. The per-timestep inputs are flattened, then
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treated as a sequence of vectors (i.e., “tokens”) for the MLP-Mixer. We use the
MLP-Mixer architecture exactly as described in the original paper; at the end
of the model there is a mean over the sequence dimension, followed by a linear
layer that maps to a channel size of T · (C + 2).

Updates. We reshape the MLP-Mixer’s outputs into a sequence of feature
updates and a sequence of coordinate updates, and apply them with addition.
We train and test with 6 updates.

Visibility. We use a linear layer to map the last update iteration’s pixel-level
feature sequence into visibility logits.

Training. We train with a batch size of 4, distributed across four GPUs. At
training time, we use a resolution of 368 × 512. For each element of the batch,
(after applying data augmentation,) we randomly sample 128 trajectories which
begin in-bounds and un-occluded. We train for 100,000 steps, with a learning
rate of 3e-4 with a 1-cycle schedule [27], using the AdamW optimizer. Training
takes approximately 2 days on four GeForce RTX 2080s.

Hyperparameters. We use T = 8 (timesteps considered simultaneously
by the model), and K = 6 (update iterations). The model can in general be
trained for any T , but we found that the model was more difficult to train at
T = 32, likely because the complexity of trajectories grows rapidly with their
length under our model, as there is no weight sharing across time. On the other
hand, the temporal sensitivity allows our model to learn more complex temporal
priors. We found that K > 6 performs similar to K = 6. Although we train the
model at a spatial stride of 8, this may be changed at test time; we find that a
stride of 4 works best on our (high-resolution) test datasets.

Complexity. Speed: When the number of targets is small enough to fit on a
GPU (e.g., 256 targets for a 12G GPU), our model is faster than RAFT (200ms
vs. 2000ms at 480 × 1024). RAFT is comparatively slow because (1) it is too
memory-heavy to compute all frames’ flows in parallel, so we must run it T − 1
times, and (2) it attempts to track all pixels instead of a given set of targets.
When the number of targets is too large to fit on a GPU (in parallel), our model
processes them in batches, and in this case PIPs may be slower than RAFT.
Memory: Our model’s memory scales primarily with T ·N , where N is the num-
ber of particles being tracked, due to the iterated MLP-Mixer which consumes
a T -length sequence of features per particle.

5 Experiments

We train our model in a modified version of FlyingThings [20], which we name
FlyingThings++ (discussed more below). We evaluate our model on tracking ob-
jects in FlyingThings++, tracking vehicles and pedestrians in KITTI [7], track-
ing heads in a crowd in CroHD [30], and finally, propagating keypoints in animal
videos in BADJA [1]. We visualize trajectory estimates in DAVIS videos in Fig-
ure 1, to illustrate the method’s generality, and visualize the estimates against
ground truth in Figures 3 and 4. In the supplementary we include video visual-
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izations of our results. All of our experiments evaluate the same PIP model—we
do not customize any parameters for the individual test domains.

5.1 Training Data: FlyingThings++

To train our model, we created a synthetic dataset called FlyingThings++, based
on FlyingThings [20]. The original FlyingThings is typically used in combination
with other flow datasets to train optical flow models. We chose FlyingThings
because (1) its visuals and motions are extremely complex, which gives hope of
generalizing to other data, and (2) it provides 10-frame videos with ground-truth
forward and backward optical flow, and instance masks, from which we can mine
accurate multi-frame trajectories.

To create multi-frame trajectories, we chain the flows forward, and then dis-
card chains which (i) fail a forward-backward consistency check, (ii) leave the
image bounds, or (iii) shift from one instance ID to another. This leaves a sparse
set of 8-frame trajectories, which cover approximately 30% of the pixels of the
first frame. These checks ensure that the trajectories are accurate, but leave
us with a library of trajectories where the target is visible on every timestep.
Therefore, it is necessary to add new occlusions on top of the video. We do this
on-the-fly during batching: for each FlyingThings video in the batch, we ran-
domly sample an object from an alternate FlyingThings video, paste it directly
on top of the current video, overwriting the pixels within its mask on each frame.
We then update the ground-truth to reflect the occluded area on each frame, as
well as update the trajectory list to include the trajectories of the added object.

Combining all videos with at least 256 valid 8-frame trajectories, we obtain a
total of 13085 training videos, and 2542 test videos. To expand the breadth of the
training set, we augment the data on-the-fly with random color and brightness
changes, random scale changes, crops which randomly shift across time, random
Gaussian blur, and random horizontal and vertical flips.

5.2 Baselines

In our experiments we consider the following baselines.
Recurrent All-Pairs Field Transforms (RAFT) [32] represents the

state-of-the-art in optical flow estimation, where a high resolution flow field
is refined through iterative updates, based on lookups from a 4D cost volume
constructed between all pairs of pixels. Similar to our method, RAFT has been
trained on FlyingThings (including occlusions and out-of-bounds motions), but
only has a 2-frame temporal span. To generate multi-frame trajectories with
RAFT at test time, we compute flow with all consecutive pairs of frames, and
then compute flow chains at the pixels queried on the first frame. To continue
chains that travel out of bounds, we clamp the coordinates to the image bounds
and sample at the edge of the flow map.

DINO [4] is a vision transformer (ViT-S [5] with patch size 8) trained on
ImageNet with a self-supervision objective based on a knowledge distillation
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setup that builds invariance to image augmentations. To use this model for multi-
frame correspondence, we use the original work’s code for instance tracking,
which uses nearest neighbor between the initial frame and the current frame, as
well as nearest-neighbor between consecutive frames, and a strategy to restrict
matches to a local neighborhood around previous matches. We report results
with and without this “windowing” strategy.

Contrastive Random Walk (CRW) [11] treats the video as a space-time
graph, with edges containing transition probabilities of a random walk, and
computes long-range correspondences by walking across the graph. The model
learns correspondences between pixels from different frames by optimizing an
objective that encourages correspondences to be cycle-consistent across time
(i.e., forward-backward consistency), including across frame skips. This method
tracks in a similar way to DINO.

Memory-Augmented Self-supervised Tracker (MAST) [17] learns cor-
respondences between features by reconstructing the target frame with linear
combinations of reference frames. At test time the correspondences are predicted
autoregressively. The model is trained on OxUvA [36] and YouTube-VOS [42]

Video Frame-level Similarity (VFS) [41] learns an encoder that produces
frame-level embeddings which are similar within a video, and dissimilar across
videos. This model is trained on Kinetics-400 [14].

ImageNet ResNet [9] is a ResNet50 supervised for classification with Im-
ageNet labels, and evaluated the same way as DINO.

5.3 Trajectory Estimation in FlyingThings++

Using 8-frame videos from the FlyingThings++ test set as input, we estimate
trajectories for all pixels for which we have ground-truth, and evaluate the av-
erage distance between each estimated trajectory and its corresponding ground
truth, averaging over all 8 timesteps. We are especially interested in measur-
ing how our model’s performance compares with the baselines when the target
gets occluded or flies out of frame. We use a crop size of 384× 512, which puts
many trajectories flying out of image bounds. For this evaluation, since occlu-
sions are extremely common, we count a trajectory as “visible” if at least half
of its timesteps are visible, and count it as “occluded” otherwise.

We compare our model against DINO [4], representing the state-of-the-art
for feature matching, and RAFT [32], representing the state-of-the-art for flow.
Table 1 shows the results across the different evaluations on the test set. DINO
struggles overall, likely because of the rapid motions, and performs worse on
occluded pixels than on visible ones. This makes sense because during occlu-
sions DINO cannot make any matches. RAFT obtains reasonable accuracy for
visible pixels (considering the speed of the motion in this data), but its errors
drastically increase for the heavily-occluded trajectories. We have also re-trained
RAFT in this data and its performance did not improve, likely because these are
multi-timestep occlusions, which chaining-based methods cannot accommodate.
Inspecting the results manually, we see that RAFT’s trajectories often drift off
the targets and follow the occluders, which makes sense because during occluded
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Table 1. Trajectory error
in FlyingThings++. PIP
trajectories are more ro-
bust to occlusions.

Method Vis. Occ.

DINO [4] 40.68 77.76
RAFT [32] 24.32 46.73
PIPs (ours) 15.54 36.67

Table 2. Trajectory error
in KITTI. PIP and RAFT
trajectories are similar;
DINO lags behind both.

Method Vis. Occ.

DINO [4] 13.33 13.45
RAFT [32] 4.03 6.79
PIPs (ours) 4.40 5.56

Table 3. Trajectory error
in CroHD. PIP trajecto-
ries achieve better accu-
racy overall.

Method Vis. Occ.

DINO [4] 22.50 26.06
RAFT [32] 7.91 13.04
PIPs (ours) 5.16 7.56

timesteps the flow field does not contain the targets. Our model, in contrast, is
able to locate the targets after they re-emerge from occlusions, and inpaint the
missing portions of the trajectories, leading to better performance overall.

5.4 Trajectory Estimation in KITTI

We evaluate on an 8-frame point trajectory dataset that we created from the
“tracking” subset of the KITTI [7] urban scenes benchmark. The data is at 10
FPS, and we use this framerate as-is. We use videos from sequences 0000-0009,
which include mostly vehicles, as well as 0017 and 0019, which include mostly
pedestrians. To create 8-frame trajectories, we sample a 3D box annotation that
has at least 8 valid timesteps, compute the mean LiDAR point within the box
on the first timestep, transform it in 3D to its corresponding location on every
other step, and project this location into pixel coordinates. We approximate
visibility/occlusion labels in this data by checking if another object crosses in
front of the target. We resize the frames to 320× 512.

Table 2 shows the results. RAFT performs slightly better than PIPs for tar-
gets that stay visible, but PIPs performs slightly better for targets that undergo
occlusions. DINO’s error is much higher. In this data, the motions are relatively
slow, and we find that DINO’s trajectories are only coarsely tracking the targets,
likely because of the low-resolution features in that model. Qualitative results
for our model are shown in Figure 3-middle.

5.5 Trajectory estimation in CroHD

We evaluate on the Crowd of Heads Dataset (CroHD) [30], which consists of
high-resolution (1080 × 1920) videos of crowds, with annotations tracking the
heads of people in the crowd. We evaluate on 8-frame sequences extracted from
the dataset. We subsample the frames in the original dataset so that the FPS is
reduced by a factor of 3. We use a resolution of 768× 1280 for PIPs and RAFT,
and 512 × 768 for DINO (since otherwise it exceeds our 24G GPU memory).
We filter out targets whose motion is below a threshold distance, and split the
evaluation between targets that stay visible and those that undergo occlusions
(according to the visibility annotations in the data). The results are shown in
Table 3, and Figure 3-right. In this data, PIP trajectories outperform RAFT
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Fig. 3. Qualitative results in FlyingThings++ (left), KITTI (middle), and
CroHD (right). We visualize a video with the mean of its RGB. We trace the PIP
trajectories in pink-to-yellow, and show ground truth in blue-to-green. FlyingThings++
is chaotic, but training on this data allows our model to generalize.

and DINO by a wide margin, in both visibility conditions. In this data, DINO
likely struggles because the targets are all so similar to one another.

5.6 Keypoint Propagation in BADJA

BADJA [1] is a dataset of animal videos with keypoint annotations. These videos
overlap with the DAVIS dataset [22], but include keypoint annotations. Keypoint
annotations exist on approximately 1/5 frames, and the standard evaluation is
Percentage of Correct Keypoint-Transfer (PCK-T), where keypoints are pro-
vided on a reference image, and the goal is to propagate these annotations to
other frames. A keypoint transfer is considered correct if it is within a distance
of 0.2

√
A from the true pixel coordinate, where A is the area of the ground-truth

segmentation mask on the frame. We note that some existing methods test on
a simplified version of this keypoint propagation task, where the ground-truth
segmentation is available on every frame of the video [44,45]. Here, we focus
on the harder setting, where the ground-truth mask is unknown. We also note
that feature-matching methods often constrain their correspondences to a local
spatial window around the previous frame’s match [4]. We therefore report addi-
tional baseline results using the qualifier “Windowed”, but we focus PIPs on the
un-constrained version of the problem, where keypoints need to be propagated
from frame 1 to every other frame, with no other knowledge about motion or
position. We test at a resolution of 320 × 512. We have observed that higher
accuracy is possible (for many methods) at higher resolution, but this puts some
models beyond the memory capacity of our GPUs.

Table 4 shows the results of the BADJA evaluation. On four of the seven
videos, our model produces the best keypoint tracking accuracy, as well as the
best on average by a margin of 9 points. DINO [4] obtains the best accuracy in
the remaining videos, though its widest margin over our model is just 3 points.
Interestingly, windowing helps DINO (and other baselines) in some videos but
not in others, perhaps because of the types of motions in DAVIS. We note
that DAVIS has an object-centric bias (i.e., the target usually stays near the
center of the frame), which translation-sensitive methods like DINO can exploit,
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Table 4. PCK-T in BADJA. In this evaluation, keypoints are initialized in the first
frame of the video, and are propagated to the end of the video; PCK-T measures the
accuracy of this propagation. In each column, we bold the best result, and underline the
second-best. Above the middle bar, we give methods a spatial window (marked “Win.”)
to constrain how they propagate labels, which is a common strategy in existing work.
Our method wins in most videos, but DINO performs well also.

Method bear camel cows dog-a dog horse-h horse-l Avg.

Win. DINO [4] 77.9 69.8 83.7 17.2 46.0 29.1 50.8 53.5
Win. ImageNet ResNet [9] 70.7 65.3 71.7 6.9 27.6 20.5 49.7 44.6
Win. CRW [11] 63.2 75.9 77.0 6.9 32.8 20.5 22.0 42.6
Win. VFS [41] 63.9 74.6 76.2 6.9 35.1 27.2 40.3 46.3
Win. MAST [17] 35.7 39.5 42.0 10.3 8.6 12.6 14.7 23.3
Win. RAFT [32] 64.6 65.6 69.5 3.4 38.5 33.8 28.8 43.5

DINO [4] 75.0 59.2 70.6 10.3 47.1 35.1 56.0 50.5
ImageNet ResNet [9] 65.4 53.4 52.4 0.0 23.0 19.2 27.2 34.4
CRW [11] 66.1 67.2 64.7 6.9 33.9 25.8 27.2 41.7
VFS [41] 64.3 62.7 71.9 10.3 35.6 33.8 33.5 44.6
MAST [17] 51.8 52.0 57.5 3.4 5.7 7.3 34.0 30.2
RAFT [32] 64.6 65.6 69.5 13.8 39.1 37.1 29.3 45.6
PIPs (ours) 76.3 81.6 83.2 34.2 44.0 57.4 59.5 62.3

since their features encode image position embeddings; RAFT and PIPs track
more generally. In Figure 4 we visualize trajectories on targets that undergo
momentary occlusions, illustrating how DINO tracks only coarsely, and how
RAFT loses track after the occlusion, while PIPs stay on target.

5.7 Limitations

Our model has two main limitations. First is our unique extreme tradeoff, of
spatial awareness for temporal awareness. Although this maximizes the power of
the temporal prior in the model, it discards information that could be shared be-
tween trajectories. We are indeed surprised that single-particle tracking performs
as well as it does, considering that spatial smoothness is known to be essential
for accurate optical flow estimation. Extending our architecture to concurrent
estimation of multiple point trajectories is a direct avenue for future work.

Our second main limitation stems from the MLP-Mixer. Due to this architec-
ture choice, our model is not recurrent across time. Although longer trajectories
can be produced by re-initializing our inference at the tail of an initial trajectory,
our model will lose the target if it stays occluded beyond the model’s temporal
window. We have tried models that are convolutional across time, and that use
self-attention across the sequence length, but these did not not perform as well as
the MLP-Mixer on our FlyingThings++ tests. Taking advantage of longer and
potentially varying temporal context would help the model track through longer
periods of ambiguity, and potentially leverage longer-range temporal priors.
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First frame + target DINO trajectory RAFT trajectory PIP trajectory (ours)

Fig. 4. Comparison with baselines in BADJA, on videos with occlusions. For
each method, we trace the estimated trajectory with a pink-to-yellow colormap. The
sparse ground truth is visualized with cyan × marks. In the first video, the target (on
the dog’s tail) leaves the image bounds then returns into view. In the second video,
the target (on the horse’s leg) is momentarily occluded, causing RAFT to lose track
entirely. For a more detailed view, please watch the supplementary video.

6 Conclusion

We propose Persistent Independent Particles (PIPs), a method for multi-frame
point trajectory estimation through occlusions. Our method combines cost vol-
umes and iterative inference with a deep temporal network, which jointly reasons
about location and appearance of visual entities across multiple timesteps. We
argue that optical flow, particle videos, and feature matches cover different ar-
eas in the spectrum of pixel-level correspondence tasks. Particle videos benefit
from temporal context, which matching-based methods lack, and can also sur-
vive multi-frame occlusions, which is missing in flow-based methods. Given how
tremendously useful optical flow and feature matching have been for driving
progress in video understanding, we hope the proposed multi-frame trajectories
will spark interest in architectures and datasets designed for longer-range fine-
grained correspondences.
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