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Fig. 1. Visualization of tracking results of P3AFormer on KITTI-val.

1 Extended related work

This section mentions some related work not included in the main text due to
spatial constraints.

1.1 Pixel-wise tracking

Bibby et al. [1] uses pixel-wise posterior to model object relationships across
frames, and their work is not a deep learning method. After that, an unpublished
work from Song et al. [I4] proposes to adopt pixel-wise information in single-
object tracking, which relies on segmentation annotations. A recent benchmark
STEP [15l7] requires segment and track every pixel, which is different from
standard MOT settings.

* The work was done when Zelin Zhao took internship at SmartMore.
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1.2 Understanding vision transformers

Several recent findings of vision transformers inspire the design of the P3AFormer.
First, local inductive biases can improve the training of vision transformer [I3/[10],
which supports the mask attention [5]. Second, the training of vision transformers
can be unstable due to negative Hessian eigenvalues [I3]. Heavy data augmenta-
tions [I3U6] can mitigate this effect. Moreover, pixel-wise techniques may further
smooth the loss landscapes [13], which motivates our training scheme.

2 Methodology details

We provide more details of the methodology parts in this section.

2.1 Pixel-wise similarity function

During pixel-wise propagation, we adopt a pixel-wise similarity function pro-
posed by [2I]. Given two feature maps Pl(t) and Pl(t_l)_>(t), the pixel-wise sim-

ilarity of each location p is computed as:

P (p) P p)

t==>(p) =
w p) = exp —
P [P0 w)

(1)

Algorithm 1: Pixel-wise association at timestep t.

1 Input: tracks, center heatmaps confidence scores, bounding boxes;

2 Output: updated tracks;

3 Predict new locations of tracks via Kalman Filter;

4 Match the tracks with the predicted heatmaps via the Hungarian
algorithm;

5 for all unmatched objects do

6 initialize a new track for it if its confidence is larger than the

threshold 7;
7 end
8 Remove a track if it’s dead for ny frames;

2.2 Pixel-wise Association Algorithm

Here we sketch the pixel-wise association in Algorithm [Il This algorithm depicts
the same procedure as Fig.3. of the main text.

3 Experimental details

3.1 Training process.

The input image is of shape 1440 x 800 for MOT17/MOT20 and 1280 x 384
for KITTI. Following [8I19], we use data augmentation, such as Mosaic [2] and
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Mixup [I8/11]. We use AdamW [I2] with an initial learning rate of 6 x 1075.
We adopt the poly learning rate schedule [4] with weight decay 1 x 10~%. The
full training procedure lasts for 200 epochs. The P3AFormer models are all
trained with eight Tesla V100 GPUs. The specific configurations of the losses
are provided in the supplementary. The run-time analysis of different models is
provided in the supplementary.

3.2 Loss configurations

The weight for the cross-entropy loss is 0.1, the focal loss is 0.5, and we use 1.0
for the size loss.

3.3 Ablation studies

We specify the details of the ablated models in this subsection.

Vanilla Model When we remove all the pixel-wise techniques from P3AFormer,
the model is reduced to a vanilla deformable DETR [20] and the association
strategy is purely based on the detected bounding boxes.

Pro. We add feature propagation to the vanilla model, which means the model
consumes two frames as input via the backbones and uses the pixel-wise feature
propagation to align the pixel-level feature embeddings. The pixel-level embed-
dings are sent to the DETR decoder [3] to get the final predictions. The rest
parts are the same as the vanilla model.

Pre. We leverage our proposed pixel decoder and the object decoder to get the
object centers and sizes. Those predictions are directly sent to the tracker, and
the tracking is purely based on the bounding boxes.

Pre.+Ass. We output the center heatmaps via the Pre. Model and track objects
via the pixel-wise association algorithm.

Pro.4+Pre. We adopt multi-frame input in the Pre. model and track objects
based on bounding boxes.

Pro.+Pre.+Ass. This is the full P3AFormer model.

3.4 Generalization experiments

We give more details of the generalization experiments. Our implementation
is based on their official released code. The vanilla Tractor model predicts the
temporal realignment of bounding boxes and uses a re-id network to enhance
the association of the objects.
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Table 1. Running time of different models on the MOT17 dataset.

Model ‘ Time (ms)
TransCenter [16] 112.4
MOTR [I7] 132.3

P3AFormer (ours) 108.2
Table 2. Validating the effectiveness of the matching threshold 7,, on MOT17-val.

Nm | MOTA 1 IDF1 1

0.75 76.3 75.1
0.65 78.4 76.0
0.55 76.6 75.7

Table 3. Validating the effectiveness of the track initialization threshold 7s on
MOT17-val.

ns | MOTA 1 IDF1 1

0.90 77.8 72.9
0.80 78.4 76.0
0.70 74.2 73.6

Table 4. Validating the effectiveness of the kill-dead threshold nj; on MOT17-val.

niy | MOTA 1 IDF1 ¢

40 75.1 72.6
30 78.4 76.0
20 73.4 76.4

+Pro. We adopt the pixel-wise feature propagation to align the feature maps of
consecutive frames extracted by the backbone before sending them into heads.

+Pro.+Pre. We change the shape of heads to output pixel-wise center heatmaps
and sizes. The rest parts are the same as Tractor.

+Pro.4+Pre.+Ass. We use our proposed pixel-wise association algorithm to
associate the pixel-wise predictions from the modified Tracktor model. Note that
the reID and motion models are not used in this setting.

3.5 Run-time analysis of tracking models

We evaluate the running time of different models: TransCenter [16], MOTR [I7]
and ours. The results are presented in Table [I| The running time is averaged
for each frame. We observe that our pixel-wise techniques do not increase the
overall running time (because our pixel-wise association techniques can be im-
plemented efficiently via matrix operations). Although the transformer-based
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approaches are generally slower than the highly optimized detectors [I9], we
believe transformers can become more efficient [9] in the future.

3.6 Ablation studies on hyperparameters

We change various hyperparameters in pixel-wise association and the results are
presented in Table [2| Table [3] and Table [4] We find that the P3AFormer can
work well under a variety of hyper-parameters.

3.7 Visualizations

We provide more visualizations on the KITTI dataset in Figure[l] We found that
P3AFormer can track small objects of different classes on the KITTI dataset.
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