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Abstract. This document supplements our paper CMT: Context-Matching-
Guided Transformer for 3D Tracking in Point Clouds by providing the
results of some additional experiments, as well as the details of some
alternative context matching strategies.

1 Complexity Evaluation

The inference speed measured by FPS and the total number of trainable model
parameters are listed in Table 1. All the results are produced with one NVIDIA
GTX 1080Ti GPU.

Table 1. Comparison on the computational complexity.

P2B [6] BAT [11] CMT (Ours)

FPS 51 45 32
Params (M) 1.2 1.5 2.5

2 Additional Experiments

We explore some variants of the target-specific transformer, the context match-
ing, and the orientation encoder (OE) in the proposed CMT tracker. All the
experiments are conducted on the truck class of nuScenes[2].
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2.1 Vector versus Scalar Attention

In [9], different transformations to construct the attention weights are explored,
including the commonly-used scalar dot-product and the vector subtraction we
adopt in CMT. It is claimed in [10] that vector attention is more suitable for
point clouds, since it supports adaptive modulation of individual feature chan-
nels, rather than a shared scalar weight. To validate the effectiveness of the
vector transformer for matching-guided feature fusion in our model, we compare
these two kinds of attention mechanisms. Specifically, for scalar dot-product
transformer, the attentional target-specific feature F̂a is expressed as:

A = Softmax(QTK) , (1)

F̂a = MLP(Norm(AT (V + PE) + Fs)) , (2)

where Q, K, and V are the Query, Key and Value embeddings, respectively; Fs is
the input search feature; PE denotes the trainable relative positional encoding,
which is consistent with that in vector transformer.

For comparison, we also provide the performance of our CMT pipeline with-
out the transformer, which simply uses MLPs to fuse features. As shown in
Table 2, although being a little bit slower, the vector subtraction attention ex-
hibits significant advantage over the scalar dot-product, thanks to the improved
fitting ability brought by larger-scale learnable parameters.

Table 2. Comparison between different types of attention mechanism in
transformer for target-aware feature fusion. Bold denotes the best performance.

Attention Type for Transformer Success Precision FPS

without Transformer 47.8 48.3 42
Scalar Dot-Product 49.1 50.3 36

Vector Subtraction (CMT) 52.5 52.5 32

2.2 Transformer versus OE for Spatial Awareness

The target-specific transformer in the proposed CMT tracker focuses on template-
search (target-specific) feature fusion using cross-attention. As for further spatial-
aware fusion among different points, both the self-attention operation (trans-
former encoder) and the orientation encoder (OE) introduced in CMT are com-
petent. To this end, we replace the OE with another transformer encoder for
spatial awareness, which also adopts vector attention. Furthermore, following the
general encoder-decoder structure of a transformer, we try an alternative order
of feature fusion, which exchanges the positions of target-specific and spatial-
aware feature fusion modules. The spatial-aware fusion before the target-specific
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transformer is performed on template and search feature, respectively, with a
shared network (OE or self-attention).

As listed in Table 3, OE shows notable superiority over the self-attention op-
eration, which implies that neighbors from all eight octants are more helpful than
homogeneous globally nearby points from only a few directions for spatial aware-
ness. Meanwhile, the computational overhead of OE is much lower, resulting in
a real-time level inference speed. Moreover, exchanging the order of template-
search fusion and spatial-aware feature fusion leads to significant performance
degradation. A possible explanation is that, the target-specific information is
mixed up by spatial-aware fusion, which confuses the following transformer.

Table 3. Comparison between OE and transformer for spatial-aware feature
fusion. The two method names between the dash are for template-search fusion and
spatial-aware fusion, respectively. An alternative feature fusion order is presented for
both two choices. S-Attn denotes the self-attention operation, and X-Attn denotes the
cross-attention operation. Bold denotes the best performance.

Feature Fusion Method Success Precision FPS

S-Attn - X-Attn 49.7 50.2 21
X-Attn - S-Attn 51.5 51.1 24
OE - X-Attn 50.6 50.9 31

X-Attn - OE (CMT) 52.5 52.5 32

Table 4. Comparison between different contextual descriptors. Bold denotes
the best performance.

Elements of Contextual Descriptor Success Precision

3D Coordinates 49.6 50.5
Seed Feature 50.1 50.6

Polar Vector (CMT) 52.5 52.5

2.3 Effectiveness of Local Contextual Descriptor

In the proposed CMT tracker, we introduce the spatial contextual encoder to
produce some horizontally rotation-invariant local contextual descriptors directly
from the point clouds. The motivation behind such descriptors mainly lies in the
following aspects: 1) 3D SOT is mainly targeted at driving scenarios, where keep-
ing track of a vehicle with possible horizontal rotations is a practical problem. 2)
In most 3D trackers, the feature extractor is jointly optimized with subsequent
modules from scratch. Thus it is hard to learn a rotation-invariant feature for
modern trackers with a long pipeline supervised only by the final prediction of
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boxes. Data augmentation (randomly rotate some samples) used by other 3D
tasks is not directly applicable to SOT due to the consistency of a tracking se-
quence. 3) The idea of context matching also calls for such rotation-invariant
descriptors.

To show the necessity of the proposed local contextual descriptor, we replace
the polar vectors in the descriptor with 3D coordinates or the seed feature of
points. The results listed in Table 4 show that context matching with some
rotation-variant descriptors leads to significant performance degradation.

2.4 Multi-Level OE-Conv

In the orientation encoder (OE) of our CMT tracker, multiple orientation-encoding
convolution (OE-Conv) blocks are simply stacked for a more extensive spatial
awareness. However, in PointSIFT [4], the input feature is processed through a
series of OE-Conv blocks, where multi-level features are obtained and integrated
as illustrated in Fig. 1.
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Fig. 1. Illustration of the multi-level version of OE. Stacked 8-neighborhood
(S8N) search is adopted at the first place to select neighbors for each point.

We compare the performance of these two designs in Table 5. It can be
observed that, in our work, no significant performance improvement is achieved
by integrating multi-level features, which implies that the highest-level feature
possesses sufficient spatial information for the target proposal.

Table 5. Comparison between different structures of OE convolution. Bold
denotes the best performance.

OE-Conv Structure Success Precision FPS

Multi-Level 52.1 52.4 31
Highest-level (CMT) 52.5 52.5 32

2.5 Context Matching Strategies

We compare three other context matching strategies apart from the shifted-
window matching adopted in our CMT tracker: linear assignment (LA) with
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Hungarian algorithm [5], the inexact proximal point method for optimal trans-
port (IPOT) [8] and the shifted-minimum matching. The details of all these
strategies are further interpreted in Section 3. We compare their performance
with the same number of neighboring points (k1 = kc = 16).

As shown in Table 6, LA and IPOT show similar performance, which makes
sense since optimal transport here can be viewed as a continuous and approx-
imate version of linear assignment. Note that the inference speed of LA is un-
acceptably slow, and IPOT is almost three times faster. With additional prior
knowledge of partially sequential injective correspondences, the simple shifted-
minimum matching shows notable improvement. Shifted-window matching used
in the proposed CMT tracker exhibits the best performance and runs with 32
FPS when inferring.

Table 6. Comparison between different context matching strategies. Bold
denotes the best performance.

Context Matching Strategy Success Precision FPS

LA 51.4 50.9 11.3
IPOT 51.3 51.0 30.2

Shifted-Minimum 52.0 51.7 34.5
Shifted-Window (CMT) 52.5 52.5 32

2.6 Robustness to Sparsity

One of the major challenges faced by point-cloud-based trackers is that the object
points collected by LiDAR sensors are mostly sparse and incomplete. Therefore,
the robustness against sparsity is an indispensable property for 3D trackers. To
this end, we evaluate the average success rate on the sequences in KITTI-Car
split by the number of points in the first frame’s car. Fig. 2 shows that CMT
holds a significant advance over BAT [11], especially for sparse point clouds.
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Fig. 2. Performance comparison on sequences with different sparsity.
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3 Details of Alternative Context Matching Strategies

In the context matching stage of our CMT tracker, a novel shifted-window
matching strategy is designed, which exhibits better performance than other
alternative strategies. In this section, we first revisit the context matching prob-
lem, then three feasible matching strategies mentioned in our experiments are
introduced in detail.

3.1 Problem Restatement

Given a template point and a search point, 2× kc neighboring polar vectors are
produced by the spatial contextual encoder. By calculating the distance between
each template-search neighbor (polar vector) pair, we obtain dmn, ∀m,n ∈ [1, kc].
Then the distance matrix D is constructed as D = (dmn)kc×kc

. The matching

strategy is aimed at mapping the matrix D to a scalar d̂ that describes the
distance between two distributions of neighbors.

3.2 Linear Assignment

The desired matching strategy can be viewed as a linear assignment problem
(LAP) intending to minimize the global cost given a square cost matrix that
refers to D in our problem. Once the problem is solved, we can obtain a fully in-
terpretable neighbor-wise bipartite matching for two points, while the minimum
global cost plays the role of d̂. However, existing algorithms to solve LAP, e.g.
the Hungarian method [5], are proved to have an unacceptable time overhead in
our work, since a large number of individual LAPs have to be solved during the
training and inference.

3.3 Optimal Transport and the IPOT Algorithm

We revisit the matching problem from a continuous perspective and model it
as an optimal transport (OT) problem, which has approximate solutions with a
much lower computational overhead.

OT provides a way to infer the correspondence between two distributions. In-
tuitively, the minimum cost (OT distance) from one distribution to another can

be regarded as d̂. Unfortunately, the exact OT minimization is in general compu-
tational intractable [1,7]. To overcome such intractability, the Inexact Proximal
point method for Optimal Transport (IPOT) algorithm [8] is adopted to com-
pute the OT matrix T as well as the OT distance. Specifically, IPOT iteratively
solves the following optimization problem using the proximal point method [3]:

T(t+1) = argmin
T∈Π(µ,ν)

{
⟨T,C⟩+ β · B(T,T(t))

}
, (3)

where Π(µ, ν) denotes the set of all joint distributions, C is the cost ma-
trix, and 1/β is understood as the generalized stepsize. The proximity met-
ric term B(T,T(t)) penalizes solutions that are too distant from the latest ap-
proximation. We follow [3] to employ the generalized KL Bregman divergence
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Algorithm 1 IPOT algorithm

Input: cost matrix Cm×n, generalized stepsize 1/β
σ ← 1

m
1m

T(1) ← 1n1m
T

Aij ← exp(−Cij/β)
for t = 1, 2, 3, . . . do

Q← A⊙T(t) // ⊙ denotes Hadamard product
for k = 1, . . .K do // K = 1 in practice

δ ← 1
nQσ

, σ ← 1
mQT δ

end for
T(t+1) ← diag(δ)Qdiag(σ)

end for
Return T

B(T,T(t)) =
∑

i,j Tij log
(
Tij/T

(t)
ij

)
−

∑
i,j Tij +

∑
i,j T

(t)
ij as the proximity

metric. This renders a tractable iterative scheme towards the exact OT solution.
The implementation details for IPOT is described in Algorithm 1.

3.4 Shifted-Minimum

In the assignment or transport solutions, all neighbors are included in the match-
ing to achieve a global minimum cost, despite the fact that some of them are
meaningless due to target moving or noise. Therefore, in order to model the
matching problem with additional prior knowledge, a reasonable assumption
can be established that partially sequential injective correspondences exist in
similar spatial contexts, with noise points inserted between them.

An intuitive solution to partially sequential matching is aligning two neighbor
sequences and shifting one of them until the position with the smallest average
distance is found. As illustrated in Fig. 3, this strategy assumes that noise points
are always at the ends of a sequence, which is a simplified version of our shifted-
window matching. The advantage of shifted-minimum matching strategy is the
high inference speed.

Matching: ShiftMin

Neighbors of
a template point

…
… …

…

Neighbors of
a search point

Shift

Fig. 3. Illustration of the shifted-minimum matching startegy.
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