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Abstract. How to effectively match the target template features with
the search area is the core problem in point-cloud-based 3D single ob-
ject tracking. However, in the literature, most of the methods focus on
devising sophisticated matching modules at point-level, while overlook-
ing the rich spatial context information of points. To this end, we pro-
pose Context-Matching-Guided Transformer (CMT), a Siamese track-
ing paradigm for 3D single object tracking. In this work, we first lever-
age the local distribution of points to construct a horizontally rotation-
invariant contextual descriptor for both the template and the search area.
Then, a novel matching strategy based on shifted windows is designed
for such descriptors to effectively measure the template-search contextual
similarity. Furthermore, we introduce a target-specific transformer and a
spatial-aware orientation encoder to exploit the target-aware information
in the most contextually relevant template points, thereby enhancing the
search feature for a better target proposal. We conduct extensive exper-
iments to verify the merits of our proposed CMT and report a series of
new state-of-the-art records on three widely-adopted datasets.
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1 Introduction

As an essential task for autonomous driving vehicles and intelligent robotics, 3D
single object tracking (SOT) has attracted substantial attention in the past few
years. Different from 2D SOT that is developed on images, 3D SOT is generally
performed with point clouds data. Although the recent development of deep neu-
ral networks [19,37,13] has led to the surge of 2D SOT algorithms [10,2,27,26,39],
it is still non-trivial to apply these 2D methods in 3D space, especially when it
comes to the sparse 3D point clouds. In general, the point-cloud-based 3D SOT
methods [17,33,15,46] follow the Siamese tracking paradigm [1], which has ex-
hibited great success in RGB images. Notably, the pioneering work P2B [33] pro-
poses the first end-to-end 3D object tracker based on template-search comparison
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and voting-based region proposal generation. The following work BAT [46] intro-
duces BoxCloud feature representation and a box-aware feature fusion module
to make the tracker robust to the sparse and incomplete point clouds.

Despite the significant advance, the state-of-the-art 3D trackers still suffer
from non-trivial defects. Specifically, in BAT [46], the BoxCloud feature is not
only exploited to facilitate the template-search comparison, but also leveraged
in target proposal feature aggregation. However, in the box-aware feature fu-
sion module of BAT, all the features belonging to different template points are
simply concatenated and processed with multi-layer perceptrons (MLPs) and
max-pooling, which struggles to capture useful target information from multi-
ple template points. Moreover, the pairwise distance calculation relying only on
BoxCloud may lead to mismatch for targets that are less distinctive in shape
and size, since BoxCloud features merely focus on the relative position of the
individual point inside a bounding box, but lack the awareness of spatial context.

Another issue lies in PointNet++ [32], as it is exploited as the backbone net-
work for most of the existing point cloud trackers. Instead of adopting explicit
T-Nets to realize geometric transformation invariance as in PointNet [31], Point-
Net++ achieves invariance through data augmentation. However, in 3D SOT,
such geometric transformation invariance is hard to learn from data, which de-
grades the quality of the extracted feature when the target rotates during track-
ing. Subsequent modules based on the backbone feature, such as the template-
search comparison, are inevitably affected.
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Fig. 1. Our method (CMT) significantly
outperforms representative point cloud
trackers [17,33,46] on multiple benchmarks.

To address the above issues, we
propose a novel Context-Matching-
Guided Transformer (CMT) for ro-
bust 3D SOT. Specifically, a descrip-
tor invariant to horizontal rotations
is developed for each point to de-
scribe its spatial context. Meanwhile,
to effectively measure the similarity of
such descriptors between points in the
template and search area, we design
a context matching strategy based on
shifted windows. The proposed fine-
grained context matching is combined
with the efficient BoxCloud compari-
son [46] to form successive coarse-to-
fine matching stages. The most rele-
vant template points are thereby selected to be fused with each search point
accordingly. Instead of simply using MLPs for template-search feature fusion, we
develop a target-specific transformer to make the best of the target-aware infor-
mation. Furthermore, we introduce a spatial-aware orientation encoder after the
transformer to integrate information from eight spatial orientations. Finally, a re-
gion proposal network (RPN) used in [33,46] is exploited to generate the 3D tar-
get proposal. We evaluate our method on three prevalent 3D SOT benchmarks,
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including KITTI [16], nuScenes [5] and Waymo Open Dataset (WOD) [35]. As
shown in Fig. 1, our method sets a series of state-of-the-art records.

Our main contributions can be summarized as follows:
• We introduce a horizontally rotation-invariant descriptor for contextual de-
scription, and design a shifted-window matching strategy to effectively mea-
sure the spatial contextual similarity between points.

• We propose a context-matching-guided transformer for 3D object tracking,
and present an elegant view of how to integrate point contextual cues and
target-aware information into the feature of the search area.

• We conduct extensive experiments to validate the merits of our method, and
show promising improvements on several prevalent benchmarks.

2 Related Works

2.1 2D Siamese Tracking

Recent years have witnessed the great development of 2D SOT approaches.
Within these approaches, the Siamese tracking paradigm has demonstrated its
advantages over the traditional discriminative correlation filter [4,20,12,21,11].
Specifically, a Siamese tracker is composed of two branches (i.e., the template
and the search area) with a shared feature extraction network to project RGB
frames into an implicit feature space. The tracking task is then formulated as
a feature matching problem. Following the pioneering work SiamFC [1], many
Siamese trackers [27,47,26,39,42,8,18] have proved their competitiveness. In re-
cent state-of-the-art RGB trackers [2,38,7,43], the Siamese network is still em-
ployed as a basic paradigm.

2.2 3D Single Object Tracking

Early 3D SOT methods [30,3,24,28,25] mainly focus on the RGB-D tracking
scenario. As a pioneer in point cloud tracking, SC3D [17] generates candidates
for template-search comparison by the Kalman filtering and introduces a shape
completion network to retain geometric information in point features. However,
SC3D is time-consuming and not end-to-end trainable. P2B [33] is proposed
as the first end-to-end point cloud tracker based on pair-wise feature compar-
ison and voting-based region proposal. It enhances search feature with target
information in template and adapts SiamRPN [27] to 3D cases, thereby achiev-
ing significant performance improvement. 3D-SiamRPN [15] is another tracker
inspired by SiamRPN and exhibits good generalization ability. MLVSNet [40]
performs Hough voting on multi-level features to retain more useful informa-
tion. BAT [46] presents a box-aware feature named BoxCloud that is robust to
sparseness and incompleteness of point clouds. Benefiting from BoxCloud com-
parison and feature fusion, BAT exhibits state-of-the-art performance in point
cloud SOT. V2B [22] builds a Siamese voxel-to-BEV tracker that regresses tar-
get center from the dense bird’s eye view (BEV) feature map in an anchor-free
manner. Nevertheless, none of these methods pays attention to the fine-grained
template-search matching other than the calculation of some feature distance.



4 Z. Guo, Y. Mao et al.

Pipeline

Template 
Points

Search 
Points

Template 
Box

PointNet 
++

PointNet 
++

B
ox-A

w
are 

M
atching

C
ontext

M
atchingTemplate 

Indices

k1

Target-S
pecific

Transform
er

O
rientation 
E

ncoder

R
P

N

Enhanced
Search Feature

sN D×

Box 
Prediction

Positional 
Encoding

Positional 
Encoding

Template 
Indices

k2

Feature FusionFeature Extraction

M
LPMLP

tL

tN D×

tF

sN D×

sF

sO
sL

tO

sB

tB

Two-Stage Matching

Context-Matching-Guided Transformer

ˆ
tF

ˆ
sF

M
LP

Spatial 
Contextual 

Encoder

Spatial 
Contextual 

Encoder

Fig. 2. Pipeline of the proposed CMT tracker. Multiple features are fed into the
context-matching-guided transformer for template-search matching and context-aware
feature fusion. Finally, a 3D RPN is exploited to generate the target proposal.

2.3 Transformer for Point Cloud Analysis

Since the proposal of transformer [37], such networks using attention mechanism
for global awareness have achieved great success in both natural language pro-
cessing and computer vision [13,6,29]. Recently, many methods [7,38,43] in 2D
SOT also shed light on the transformer and show excellent performance. In the
3D domain, Point Transformer [45] is proposed with the vector attention mecha-
nism, improving the performance in point cloud classification and segmentation
tasks. Only a few works apply transformer in point cloud SOT. PTT [34] utilizes
transformer in voting and proposal generation stage of P2B [33], but does not
improve the quality of template-search feature augmentation. LTTR [9] employs
transformer framework for feature fusion, but the reported performance is not
satisfying due to the design of scalar attention. To this end, we propose a target-
specific transformer guided by context matching for feature enhancement, which
achieves significant performance improvement in point cloud SOT.

3 Method

Given the initial template point cloud Pt of a target, our CMT tracker localizes
it with an input search point cloud Ps for each frame and outputs a 3D bounding
box. As depicted in Fig. 2, the proposed method includes three main steps: fea-
ture extraction, two-stage template-search matching, and context-aware feature
fusion. We will elaborate them in the following sections.

3.1 Feature Extraction

For efficient subsequent processing, four types of features are obtained for tem-
plate and search point clouds, respectively: 1) seed feature denoted by Ft =
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{
f i
t ∈ RD

}Nt

i=1
and Fs =

{
f i
s ∈ RD

}Ns

i=1
(Nt and Ns are the numbers of extracted

seed points); 2) BoxCloud feature denoted by Bt =
{
bit ∈ R9

}Nt

i=1
and Bs ={

bis ∈ R9
}Ns

i=1
; 3) local contextual descriptor denoted by Lt =

{
lit ∈ Rkc×3

}Nt

i=1

and Ls =
{
lis ∈ Rkc×3

}Ns

i=1
; 4) orientational contextual feature denoted by

Õt =
{
õit ∈ R3

}Nt

i=1
and Õs =

{
õis ∈ R3

}Ns

i=1
. Among them, Ft and Fs are ex-

tracted by a shared PointNet++ [32]. B depicts the distances from a point to
the corners and center of the target bounding box [46]. Specifically, Bt is calcu-
lated directly from the template bounding box, while Bs is predicted by an MLP
under the supervision of the ground-truth bounding box. The latter two features
are produced by the spatial contextual encoder to describe the local context.
Spatial Contextual Encoder (SCE). In tracking, the rotations of targets are
usually inevitable. However, many features directly learned from the input points
are orientation-sensitive. Networks like PointNet++ [32] achieve geometric trans-
forming invariance through data augmentation, which is difficult to recreate in
3D tracking. BoxCloud proposed in [46] is an interpretable feature invariant to
rotations, since it measures the distance between a point and the 3D bounding
box. Nevertheless, BoxCloud only focuses on individual points, ignoring the rich
contextual information carried by the distribution of nearby points. To this end,
we propose a spatial contextual encoder (SCE) to produce point-wise features
with the following attributes: 1) invariant to horizontal rotations commonly en-
countered in 3D SOT; 2) able to effectively describe the spatial context of a
point; 3) highly interpretable and easily inferred from point coordinates.

As illustrated in Fig. 3 (a), the input point coordinates are first fed into
two polar transform blocks to construct the local contextual descriptor L ={
li ∈ Rkc×3

}N

i=1
and the octant contextual descriptor O =

{
oi ∈ R8×3

}N

i=1
. Both

l and o are a set of polar vectors representing the spatial context. The only
difference between them is the way of selecting neighboring points. Local polar
transform block searches for kc nearest neighbors, while octant polar transform
block looks for the nearest neighbor in each of eight octants, which is more
informative than a set of homogeneous points in only a few directions.

For a point i, after selecting its k (k = kc for local and k = 8 for oc-
tant) neighbors based on Euclidean distance, the 3D polar vectors expressed by{
ρij = (rij , α

i
j , β

i
j)
}k

j=1
are obtained using the following formulas [14]:

rij =

√
xi
j
2
+ yij

2
+ zij

2
, (1)

αi
j = arctan

yij
xi
j

− arctan
ȳi

x̄i
, (2)

βi
j = arctan

zij√
xi
j
2
+ yij

2
− arctan

z̄i√
x̄i

2
+ ȳi

2
, (3)

where (xi
j , y

i
j , z

i
j) is the relative coordinate of neighbor j in the Cartesian coordi-

nate system with point i as the origin, and (x̄i, ȳi, z̄i) denotes the mean values of
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Fig. 3. (a) Architecture of spatial contextual encoder (SCE). Octant contex-
tual descriptor O and local contextual descriptor L are extracted using different ways
of selecting neighboring points. O is then further integrated by orientation-encoding
convolution to produce the orientational contextual feature Õ. (b) Illustration of
orientation encoder (OE). A three-stage convolution along each of three axes is
performed successively on the features of neighbors from all eight octants.

neighboring relative coordinate, which is termed as center-of-mass point. Bene-
fiting from the introduction of mass center, the polar vectors remain unchanged
when point clouds rotate around z-axis in a 3D Cartesian coordinate system.
Center-of-mass point can also effectively reduce the randomness caused by the
downsampling before and reflect the general picture of the spatial context [14].

Due to the non-differentiable selecting operation in template-search compar-
ison, we use the directly calculated l = (ρ1, ρ2, · · · , ρkc) ∈ Rkc×3 to be a criteria
in the context matching module, which is further discussed in Section 3.2. More-
over, in order to make use of such informative rotation-invariant feature in target
proposal, we further process o ∈ R8×3 with orientation-encoding convolution [23]
to integrate information from all eight directions (Fig. 3 (b)), which is detailed
interpreted in Section 3.3. After that, the output õ ∈ R3 is fed into MLPs along
with the seed feature f ∈ RD to produce f̂ ∈ RD.

3.2 Two-Stage Template-Search Matching

Template-search matching is a fundamental operation in Siamese trackers. In-
stead of comparing the distance between seed features, we introduce a more
promising method composed of two stages: box-aware and context matching.
Box-Aware Matching. Considering the success of BoxCloud comparison in
BAT [46], we first adopt a box-aware matching based on pairwise L2 distance
between the BoxCloud Bt and Bs. Thereby k1 nearest template points are se-
lected for each search point. Box-aware matching is effective for extremely sparse
point clouds, where meaningful neighboring points can hardly be found. How-
ever, template-search matching relying only on BoxCloud may lead to mismatch
for targets that are less distinctive in shape and size (e.g., cyclists), since Box-
Cloud features focus on the relative position of the individual point inside a
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Fig. 4. (a) An exemplified 2D illustration of good template-search matching.
In both template and search area, there exist 5 neighbors sorted by their distances to
the center seed. Due to target moving or noise, the nearest point in template disappears
in search area (dashed point), and a new point (No. 4) appears in exchange. In this case,
the reasonable matching (black solid lines) has misalignment with some points ignored.
(b) Illustration of shifted-window context matching. Rows and columns of Dt

refer to template and search neighbors, respectively. At every stage, the masked output
Dt+1 serves as the input of the next stage, until all the windows are used. For kc = 8
here, the sizes of two windows are set to 3 and 2. After two stages of convolutions,
two matching pairs are found: template (3, 4, 5) and search (4, 5, 6), template (6, 7) and
search (7, 8). Finally, the seed-wise contextual distance is calculated as d̂ = d1min+d2min .

bounding box, yet ignoring the spatial context. Therefore, in our work, the box-
aware matching acts as a robust and efficient base for the following fine-grained
context matching. In this way, two stages of matching benefit from each other.
Shifted-Window Context Matching. Among the k1 template points se-
lected for each search point by the coarse box-aware matching, we adopt the
context matching to further select k2 template points in a fine-grained manner
using the local contextual descriptors lt and ls ∈ Rkc×3. Therefore, it becomes
a problem how to exploit these two sets of polar vectors to describe the simi-
larity or distance between two points’ local contexts. Points selection is not a
differentiable operation, and there is no supervision available here. Therefore,
no learnable parameters can be introduced, which means the comparison is di-
rectly performed between 2×kc polar vectors. However, we cannot calculate the
summation of distances directly between vectors in lt and ls, since the sequential
bijection between the neighbors sorted by distance is unreasonable, as is illus-
trated by the pink dashed lines in Fig. 4 (a). In this case, we first define the
distance between any two polar vectors ρm and ρn as

dmn ≜
√
r2m + r2n − 2rmrn (cosβm cosβn cos (αm − αn) + sinβm sinβn) , (4)

which is derived from the Euclidean distance in spherical coordinate system.
For a template point and a search point, by calculating the distance between

each template-search neighbor pair using Eq. (4), we obtain dmn, ∀m,n ∈ [1, kc],
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and the distance matrix is constructed as D = (dmn)kc×kc
. We then aim at

designing a matching algorithm mapping D to a scalar d̂ that describes the
distance between two distributions of neighbors. Considering the intrinsic defect
of bijective matching that some of the matched pairs are meaningless due to
target moving or noise, we propose the shifted-window matching strategy based
on the assumption that partially sequential injective correspondences exist in
similar spatial contexts, with noise points inserted between them (Fig. 4 (a)).

As illustrated in Fig. 4 (b), given a distance matrixDkc×kc
, a series of identity

matrices (windows) denoted by {Wt} are generated with empirical sizes S = {st}
according to kc. For example, when kc = 16, we set S = {4, 3, 3}, which indicates
that 10 of the neighbors have partially sequential injective matching solution,
while the remaining 6 neighbors are considered as noise. Then we perform a 2D
convolution on D1 = D using W1 as the kernel. The result is a distance map for
different partial matchings, and its minimum element is denoted by d1min. After
that, we mask D1 to construct D2, so that only the top-left and bottom-right
area of the window producing d1min is available for the next convolution using
W2. The masking operation prevents unreasonable crossed matching. For ex-
ample, once template neighbors (3, 4, 5) have already been matched with search
neighbors (4, 5, 6), in no case should template neighbors 1 and 2 be matched
with search neighbors 7 or 8. During convolutions for t = 2, 3, · · · , if no area is
available in Dt after masking, dtmin is set to d1max to show that this is not a good

matching. After finishing convolutions with all Wt, we define that d̂ =
∑

t d
t
min .

Once d̂ is obtained for all template-search pairs, k2 contextually nearest template
points are selected for each search point as the result of this matching stage.

3.3 Matching-Guided Feature Fusion

After the coarse-to-fine matching, we develop a target-specific transformer to
perform feature fusion among the matched template-search pairs to exploit the
target-aware information for a better target proposal. Then a spatial-aware ori-
entation encoder is introduced to further enhance the attentional feature by
integrating spatial information from all directions.

Target-Specific Transformer. As shown in Fig. 5, we adopt the vector at-
tention mechanism [44] to enhance the search feature with attention to relevant
template feature that contains potential target information useful for region pro-

posal. Given the template feature F̂t =
{
f̂ i
t

}Nt

i=1
, the search feature F̂s =

{
f̂ i
s

}Ns

i=1
and k2 relevant template indices for each search point selected by box-aware and

context matching, the relevant template features F̂ ∗
t =

{{
f̂ j
t,i

}k2

j=1

}Ns

i=1
are first

gathered. Then with three different MLPs, the embedding Q (Query) is gener-

ated from F̂s, while K (Key) and V (Value) are generated from F̂ ∗
t .

Generally, the standard transformer uses scalar dot-product attention to
obtain the relationship (attention map) between Q and K expressed as A =
Softmax(QTK). Instead of that, we adopt the subtraction operation with an



Context-Matching-Guided Transformer for 3D Tracking in Point Clouds 9

Search Feature

sN D×

Search Position

Template Position

Relevant
Template Feature

sN kD× × 2
Gather

Query

sN D×

Value

sN kD× × 2

MLP

Relative 
Position

sN k× 12 × 2

Relative
Positional Embedding

sN kD× × 2

Attention Map

sN kD× × 2

Σ

Attentional
Search Feature

sN D×
Norm

&
MLP

MLP

MLP

MLP

MLP
&

Softmax

Gather

Subtraction

Hadamard Product

Σ Summation along k

Addition

Template Feature

tN D×

Template Indices
sN k× 2

Key

sN kD× × 2

Fig. 5. Illustration of the target-specific transformer. k2 relevant template
points are gathered and aggregated with each search point. The positional encod-
ing is learned from 3D coordinates and 9D BoxCloud. Note that the dimensionality of
embedding space is set to be the same as that of the input feature space (D).

extra MLP to improve the fitting ability:

A = Softmax(MLP(Q−K)) . (5)

It is reported in [45] that such vector attention is more suitable for point clouds
than scalar attention, since it supports adaptive modulation of individual feature
channels in V , rather than a shared scalar weight.

Positional Encoding. Positional encoding plays an important role in trans-
former. For point clouds, 3D coordinates themselves are naturally suitable for
positional encoding. Meanwhile, the success of BoxCloud [46] implies that, the
manually crafted 9D feature indicating a point’s distance to the bounding box
can be another candidate. Therefore, we integrate point coordinates and Box-
Cloud feature to generate a trainable relative positional encoding expressed as

PE = MLP ((Ps, Bs)− (P ∗
t , B

∗
t )) , (6)

where P ∗
t and B∗

t are the coordinates and BoxCloud feature of k2 relevant tem-
plate points for each search point, and (·, ·) denotes the concatenation operation.
We follow [45] to add PE to both (Q − K) and V , since position encoding is
important for both attention generation and feature transformation. Thereby
Eq. (5) can be rewritten as

A = Softmax(MLP(Q−K + PE)) . (7)

A is then used as a channel-wise weight for V . Normalization and another MLP
are applied with a skip connection from the input F̂s, producing the attentional

target-aware feature F̂a =
{
f̂ i
a

}Ns

i=1
:
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F̂a = MLP(Norm(

k2∑
j=1

A⊙ (V + PE) + Fs)) , (8)

where ⊙ means Hadamard product; Norm(·) means Instance Normalization [36].
Spatial-Aware Orientation Encoder (OE). Apart from fusing contextually
nearby ft into fs, we also introduce an orientation encoder (OE) that aggregates
features from spatially nearby seeds. As illustrated in Fig. 3 (b), OE first adopts
stacked 8-neighborhood (S8N) search to find the nearest neighbor in each of
the eight octants partitioned by three axes. If no point exists in some octant
within a searching radius, the center point is duplicated as the nearest neighbor
of itself. Then we perform a three-stage orientation-encoding convolution [23] on

f̂a of all eight neighbors along each of three axes successively. After squeezing,
the output feature vector has the same size as f̂a. In OE, several orientation-
encoding convolution blocks are stacked for a more extensive spatial awareness.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate our tracker, we conduct experiments on three datasets
of point clouds scanned by LiDAR sensors, i.e., KITTI [16], nuScenes [5] and
WOD [35]. The KITTI dataset contains 21 outdoor scenes and 8 types of targets,
and we follow [17] to set up the training, valid and test splits. The nuScenes
dataset contains 1000 driving scenes across 23 target classes, and we train the
models on the train track split of its training set and test on its validation set.
For WOD, we extract tracklets from its detection dataset to produce a SOT
dataset with three target classes (Vehicle, Pedestrian and Cyclist). To alleviate
the issue of extreme class imbalance, we use 10% of the Vehicle and Pedestrian
samples to match the magnitude of Cyclist samples for a fair comparison.
Metrics. We follow [17,33,46] to use one-pass evaluation (OPE) [41], measuring
Success and Precision of trackers. Specifically, given a predicted and a ground-
truth 3D bounding box, Success is defined as the AUC (area under curve) for
the percentage of frames where the IoU (intersection over union) between two
boxes is within a given threshold as the threshold varies from 0 to 1. Precision
is defined as the AUC for the percentage of frames where distance between two
boxes’ centers is within a given threshold as the threshold varies from 0 to 2 m.
Implementation Details. For training, the loss of our tracker is set to L =
Lbc + Lrpn to count both the Huber loss for BoxCloud [46] and the region-
proposal loss [33]. During both training and testing, the search area is formed by
enlarging the previous predicted bounding box, and the template is updated for
each frame by merging the points inside the first (ground-truth) and the previous
predicted box. For template-search matching, we set k1 = 16 for box-aware stage
and kc = 16, k2 = 4 for contextual stage. Our model is trained in an end-to-
end manner with batch size 192 for 60 epochs using Adam optimizer. Other
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Table 1. Performance (Success / Precision) comparison on the KITTI, nuScenes and
WOD benchmarks. Bold denotes the best performance.

KITTI

Category Car Pedestrian Van Cyclist Average
Frames 6424 6088 1248 308 14068

SC3D [17] 41.3 / 57.9 18.2 / 37.8 40.4 / 47.0 41.5 / 70.4 31.2 / 48.5
P2B [33] 56.2 / 72.8 28.7 / 49.6 40.8 / 48.4 32.1 / 44.7 42.4 / 60.0

3D-SiamRPN [15] 58.2 / 76.2 35.2 / 56.2 45.7 / 52.9 36.2 / 49.0 46.7 / 64.9
MLVSNet [40] 56.0 / 74.0 34.1 / 61.1 52.0 / 61.4 34.3 / 44.5 45.7 / 66.6

BAT [46] 65.4 / 78.9 45.7 / 74.5 52.4 / 67.0 33.7 / 45.4 55.0 / 75.2
V2B [22] 70.5 / 81.3 48.3 / 73.5 50.1 / 58.0 40.8 / 49.7 58.4 / 75.2
PTT [34] 67.8 / 81.8 44.9 / 72.0 43.6 / 52.5 37.2 / 47.3 55.1 / 74.2
LTTR [9] 65.0 / 77.1 33.2 / 56.8 35.8 / 45.6 66.2 / 89.9 48.7 / 65.8

CMT (Ours) 70.5 / 81.9 49.1 / 75.5 54.1 / 64.1 55.1 / 82.4 59.4 / 77.6

nuScenes

Category Car Truck Trailer Bus Average
Frames 64159 13587 3352 2953 84051

SC3D [17] 22.3 / 21.9 30.7 / 27.7 35.3 / 28.1 29.4 / 24.1 24.4 / 23.2
P2B [33] 38.8 / 43.2 43.0 / 41.6 49.0 / 40.1 33.0 / 27.4 39.7 / 42.2
BAT [46] 40.7 / 43.3 45.3 / 42.6 52.6 / 44.9 35.4 / 28.0 41.8 / 42.7

V2B*[22] 36.5 / 38.8 40.8 / 36.7 48.2 / 39.9 31.4 / 26.1 37.5 / 38.1
PTT [34] 40.2 / 45.8 46.5 / 46.7 51.7 / 46.5 39.4 / 36.7 41.6 / 45.7

CMT (Ours) 47.0 / 51.7 52.5 / 52.5 62.0 / 58.2 46.3 / 42.9 48.5 / 51.8

Waymo Open Dataset

Category Vehicle Pedestrian Cyclist Average
Frames 142664 58497 13340 214501

SC3D*[17] 37.4 / 46.0 24.4 / 37.7 26.3 / 36.5 33.2 / 43.1

P2B*[33] 46.4 / 53.9 34.8 / 54.4 31.5 / 47.8 42.3 / 53.7

BAT*[46] 50.4 / 57.6 36.2 / 56.3 32.6 / 50.7 45.4 / 56.8

CMT (Ours) 53.5 / 62.1 40.2 / 62.2 34.1 / 53.1 48.7 / 61.6

* Reproduced with the official code provided by the authors.

hyperparameters are consistent with the settings of [46]. All the experiments are
conducted using NVIDIA GTX 1080Ti GPUs.

4.2 Comparison Results

Comparison with State-of-the-Art Methods. We compare our tracker with
existing 3D SOT methods [17,33,15,40,46,22,34,9] on the KITTI dataset. Track-
ing on nuScenes and WOD is more challenging, since much more distractors
exist in a frame. For these two datasets, some methods are not included, since
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Ours

BAT

Ground Truth

Upper: turning/rotation accuracy
Lower: distractors

Time

Search Points

Template Points

(a) (b)

Fig. 6. (a) Advantage cases of our method compared with BAT on KITTI-
Car. The upper tracklet belongs to a scene where the target car is turning a corner,
and the lower tracklet targets another car in the same scene. (b) Visualization of
context matching. The blue and the green points are a template and a search seed,
respectively, surrounded by their kc nearest neighbors with lighter colors.

they are either not competitive enough against our baseline BAT [46], or do not
provide open source code and have only reported their results on KITTI.

Table 1 summarizes the results on all three datasets. Our method shows sig-
nificant advantage over the competitors on most categories on KITTI and all
categories on nuScenes and WOD. For nuScenes, CMT even outperforms BAT
by over 16% in Success and 21% in Precision on average. Notably, some meth-
ods [34,22] work well on the car category of KITTI, but struggle in other cate-
gories. In contrast, with the carefully-designed context-matching-guided trans-
former, CMT well adapts to different scales of samples with promising results.

Visualization and Qualitative Analysis. As shown in Fig. 6 (a), we visualize
CMT and BAT [46] on the car category of KITTI. In the upper case, the target
car is turning a corner. Our CMT tracker captures the rotation accurately, while
BAT makes mistakes in the orientation of bounding box. In the lower case, BAT
fails to keep tracking due to a distractor, but our method works well consistently.
We also visualize a case of template-search matching in Fig. 6 (b). Despite the
difference in point quantity and the existence of noise (in this case, plenty of
ground points are included in the search area), our method can capture the
contextual similarity between template and search area, mark the two seed points
as relevant and aggregate their features for a better target proposal, which is
mainly attributed to our design of context encoding and matching strategy.

4.3 Ablation Study

In order to validate the design of our CMT tracker, we conduct comprehensive
ablative experiments on the truck class of nuScenes, which is much larger than
any category of KITTI and can produce more stable results.
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Table 2. Results of different ablations. In the bottom part, our baseline BAT and
the best results of CMT are presented.

Method Success Precision

Components

BAT + Context Matching 46.8 44.5
BAT + Transformer 48.7 49.2

BAT + Transformer + OE 49.9 50.7

CMT without Õ 51.6 52.0

Inputs of
Transformer

P & B as feature 50.2 50.7
P as PE, B as feature 51.7 51.9
P as PE without B 50.9 51.3
B as PE without P 51.5 51.6

Baseline & Best
BAT 45.3 42.6

CMT (Ours) 52.5 52.5

Effectiveness of Components. To illustrate the effectiveness of the compo-
nents in CMT tracker, four ablative settings are applied: 1) BAT + Context
Matching: we enhance BAT with our two-stage template-search matching mod-
ule; 2) BAT + Transformer: instead of BAFF [46], we use the transformer for
feature fusion; 3) BAT + Transformer + OE: everything in CMT is used except

context matching; 4) CMT without Õ: the orientational contextual feature is
not integrated. As shown in the upper part of Table 2, BAT equipped with our
context matching module defeats the original BAT, which confirms that a bet-
ter template-search matching helps to improve the quality of proposal feature.
Moreover, the result of CMT without Õ implies that the proposed spatial con-
textual encoder can mine useful clues in the orientational context of points, and
the third setting further proves the effectiveness of our orientation encoder.

The Choice of kc and k1. kc decides the number of neighbors that we use to
construct L in the spatial contextual encoder. A larger kc means a more extensive
contextual awareness and additional computational overhead caused by a larger-
scale context matching problem. Moreover, a global context matching is quite
expensive. Therefore, we only compare k1 template points selected by box-aware
matching for each search seed. That means with a larger k1, the context matching
plays a more important role and the overhead is also increased.

According to the experiment results in Fig. 7 (a), when kc is too small, the
constructed local contextual descriptor is not discriminative enough for match-
ing. The performance also declines when kc = 20, probably because more noise
points are included and the designed shifted windows fail to filter all of them
out. Meanwhile, Fig. 7 (b) demonstrates that performance is improved when we
set a larger k1, which further indicates the effectiveness of context matching on
the basis of box-aware matching. In general, the best performance is achieved
with the setting kc = k1 = 16. Besides, k1’s effect to the inference speed is larger
than kc’s. However, considering the performance improvement, the drop of FPS
from 41.7 (k1 = 4) to 32 (k1 = 16) is acceptable since it is still real-time level.
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k1

FPS

(b)
k1

AUC

kc

FPS

(a)

AUC

Fig. 7. (a) Comparison between choices of kc (k1 = 16). Specific window sizes
are designed for each kc. (b) Comparison between choices of k1 (kc = 16). Note
that when k1 = 4, the context matching module is not working since k2 is also 4.

Inputs of Transformer. The feature aggregation submodule in [46] takes the
3D coordinates P and the 9D BoxCloud B as part of the input features, while
in our transformer, P and B are concatenated to learn a trainable positional
encoding (PE). Taking these into consideration, we test different settings for the
inputs of the transformer, including 1) P and B as feature without PE; 2) P as
PE while B as feature; 3) P as PE without using B; 4) B as PE without using
P . As shown in the middle part of Table 2, the absence of PE leads to a slump in
performance, while the introduction of B significantly improves the performance,
especially when B plays the role of PE along with P , which demonstrates that
BoxCloud contains useful information for location discrimination.

5 Conclusions

In this paper, we propose a context-matching-guided transformer (CMT) tracker
for 3D SOT on LiDAR-based point clouds. A horizontally rotation-invariant spa-
tial contextual descriptor, as well as a novel shifted-window matching strategy,
is designed to effectively measure the contextual similarity between the template
and the search area. Then we introduce a transformer to aggregate the target-
aware information from the most contextually relevant template points into the
search area with vector attention mechanism. Furthermore, we develop an orien-
tation encoder to integrate spatial information from all directions. Extensive ex-
periments on KITTI, nuScenes and WOD demonstrate that our tracker achieves
promising improvement compared with previous state-of-the-art methods.
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