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Abstract. Tracking in 3D scenes is gaining momentum because of its
numerous applications in robotics, autonomous driving, and scene un-
derstanding. Currently, 3D tracking is limited to specific model-based
approaches involving point clouds, which impedes 3D trackers from ap-
plying in natural 3D scenes. RGBD sensors provide a more reason-
able and acceptable solution for 3D object tracking due to their readily
available synchronised color and depth information. Thus, in this pa-
per, we investigate a novel problem: is it possible to track a generic
(class-agnostic) 3D object in RGBD videos and predict 3D bounding
boxes of the object of interest? To inspire research on this topic, we
newly construct a standard benchmark for generic 3D object track-
ing, ‘Track-it-in-3D’, which contains 300 RGBD video sequences with
dense 3D annotations and corresponding evaluation protocols. Further-
more, we propose an effective tracking baseline to estimate 3D bound-
ing boxes for arbitrary objects in RGBD videos, by fusing appearance
and spatial information effectively. Resources are available on https:
//github.com/yjybuaa/Track-it-in-3D.
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1 Introduction

Object tracking is to distinguish an arbitrary object from a video, given only
the object location in the first frame. 3D object tracking, which can estimate
not only the location but also the 3D size of objects, has a broader spectrum
of practical applications involving augmented reality [27], autonomous driving
[20], scene understanding [32] and robotic manipulation [7J21].

However, current state-of-the-art 3D trackers are mostly point cloud-based
and highly rely on geometric information to estimate the shape of objects. In
fact, LIDAR sensors are quite expensive, and the sparsity and disorder of the
point cloud impose great challenges on identifying target objects from back-
grounds. Whilst, compared with point clouds, the ignored color cues are more
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Fig. 1. Examples of RGBD videos in our benchmark dataset. Each video is annotated
with the object’s per-frame 3D bounding box. Video sequences are captured towards
3D tracking challenges, e.g., (1) similar objects and occlusion; (2) small-sized object;
(3) deformation; (4) symmetric object and partial occlusion; (5) dark scene and camera
motion; (6) outdoor scenario.

informative for computing appearance features which are widely used to distin-
guish the target object from backgrounds. In addition, similar to LiDAR, depth
information captured by low-cost sensors such as Kinect can also provide geo-
metric information to estimate the shape of targets for most natural tracking
scenarios. Moreover, it is easy to get the synchronised color channels from such
cameras. Even for modelling target appearance, the depth information can be
used to resolve tracking failures in cases of, e.g., distractors or rotation [3I12],
due to its insensitivity to the variations in color, illumination, rotation angle,
and scale. Therefore, a RGB+D fusion framework is a more reasonable and
acceptable solution for 3D object tracking. On the one hand, appearance infor-
mation in RGB channels and geometry information from the depth channel are
two complementary data sources. On the other hand, the 3D coordinate of the
object, with the spatial information given by depth information in 3D scenes, is
more practical on real-world applications.

In addition, current state-of-the-art 3D tracking methods are mostly model-
based: the trackers can track the target due to their discriminative ability to
recognise targets’ categories. For instance, P2B [24] trains the network on hu-
man and vehicle data to handle the challenges dedicated in human and vehicle
categories respectively. However, object tracking is in essence a class-agnostic
task that should track anything regardless of the object category. Moreover, in
autonomous driving applications, the target objects are mostly rigid and placed
on the ground so that 3D BBox is set as 4DoF (Degree-of-Freedom) or 7DoF for
convenience. As a result, the precise 3D description of arbitrary objects is still
unavailable which is desirable for generic 3D object tracking.
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To this end, in this paper, we propose a novel task for 3D object tracking:
given the real 3D BBox description of the target object in the first frame of
RGBD videos, we aim to estimate the 3D BBox of it in the subsequent frames.
To ensure the generic characteristic of object tracking, we collect a diverse RGBD
video dataset for this task. The proposed Track-it-in-3D contains 300 video se-
quences with per-frame 3D annotations. The targets and scenarios are designed
with a diverse range to avoid the semantic classification of specific targets. Specif-
ically, the 3D BBox is freely rotating to fit the object’s shape and orientation,
which breaks the limitation of application scenarios. We provide some represen-
tative examples in Fig. [I} In addition, providing the input of RGB and depth
data jointly provides new inspirations on how to leverage multi-modal informa-
tion. Therefore, we propose a strong baseline, which for the first time realises
tracking by 3D cross-correlation through dedicated RGBD fusion.

Our contributions are three-fold:

— We propose generic 3D object tracking in RGBD videos for the first time,
which aims to realise class-agnostic 3D tracking in complex scenarios.

— We generate the benchmark Track-it-in-8D, which is, to the best of our
knowledge, the first benchmark for generic 3D object tracking. With dense
3D BBox annotations and corresponding evaluation protocols provided, it
contains 300 RGBD videos covering multiple tracking challenges.

— We introduce a strong baseline, Tracklt3D, for generic 3D object track-
ing, which handles 3D tracking difficulties by RGBD fusion and 3D cross-
correlation. Extensive evaluations are given for in-depth analysis.

2 Related Work

3D single object tracking. In 3D tracking, the task is defined as getting a
3D BBox in a video sequence given the object template of the first frame. In
general, 3D single object tracking is still constrained by tracking on raw point
clouds. SC3D [I1] extends the 2D to 3D Siamese tracker on point clouds for the
first time, in which exhaustive search is used to generate candidates. P2B [24]
is proposed to solve the drawbacks of SC3D by importing VoteNet to construct
the point-based correlation. Also, the 3D region proposal network (RPN) is
utilised to obtain the object proposals. However, the ambiguities among part-
aware features weaken the tracking performance severely. After that, BAT [33]
is proposed to directly infer the BBox by box-aware feature enhancement, which
is the first to use box information. Recent works make multiple attempts with
the image prior[34], multi-level features[29], or transformers [8] to handle these
problems, but the performances remain low with only point cloud provided. On
the other hand, current RGBD tracking follows 2D BBox settings [14UT5J16],
while there were works devoted to predicting the 2D BBox in 3D view. In 2016,
Bibi et al. developed 3D-T [3] which used 3D BBox with particle filter for RGBD
tracking. In 2018, OTR [I2] generated 3D BBox to model appearance changes
during out-of-plane rotation. But they only generated incomplete 3D BBoxes in
a rough level and served for 2D predictions.
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Related datasets and benchmarks. There are four publicly available RGBD
video datasets for tracking: Princeton Tracking Benchmark (PTB) [26], Spatio-
Temporal Consistency dataset (STC) [30], Color and Depth Tracking Benchmark
(CDTB) [19] and DepthTrack [31]. We observe that they strictly follow the 2D
mode with both input and output as axis-aligned BBoxes. Whereas in 3D track-
ing, LiIDAR is the most popular sensor due to distant view and insensitivity to
ambient light variations. The commonly used benchmarks on the 3D tracking
task are KITTI [10] and NuScenes [4]. KITTI contains 21 outdoor scenes and
8 types of targets. NuScenes is more challenging, containing 1000 driving scenes
across 23 object classes with annotated 3D BBoxes. With respect to their vol-
ume, the data diversity remains poor with focusing on driving scenarios and
restraining methods to track objects in point clouds.

3 Proposed Benchmark: Track-it-in-3D

3.1 Problem Formulation

In current 3D tracking [24133], the 3D BBox is represented as (z,y, z,w, h,1,0) €
R”, in which (z,y, z) represents the target center and (w,h,[) represents the
target size. There is only one parameter 6 indicating rotation because the roll and
pitch deviations are usually aligned to the road in autonomous driving scenarios.
Notice that any BBox is amodal (covering the entire object even if only part of
it is visible). The current 3D tracking task is to compare the point clouds of the
given template BBox (P;) with that of the search area candidates (P;) and get
the prediction of BBox. Therefore, the tracking process is formulated as:

Track : (P, Ps) — (z,y,2,0).

In most cases, because the target size is fixed, the final output only gives a
prediction of the target center (z,y, z) and rotation angle 6.

Differing from the existing 3D tracking in point clouds, we explore a more
flexible and generic 3D tracking mode. We formulate the new task as:

Track: By — (z,y,z,w,h,l a,pB,7),

in which B is the template 3D BBox given in the first frame, (z,y, z) indicates
the target position, (w, h,1) indicates the target scale, and («, 3, v) indicates the
target rotation angle. Specifically, this tracking problem predicts a rotated 3D
BBox to best match the initial target.

3.2 Dataset Construction

Video collection. We collect the videos with Microsoft Kinect V2 and Intel
RealSense SR300 for different depth ranges. We aim to provide a diverse set of
groundtruthed synchronised color and depth sequences for generic 3D tracking,
in which diversity is of priority. To this end, we carefully inspect each sequence



Towards Generic 3D Tracking in RGBD Videos: Benchmark and Baseline 5

trash bin

person bike

cattousel

dinasour Number of Frames
toy tank T
plant

machine nitrion.
hand
plastic ball
ST
electric drill
guitar
globe others
bucket 13%

outdoor

gas bottle PCS

wooden block
OR

box

robotics turtlebox

backpack
%
drawer

fire extinguisher R

medical box
laptop

displayer DF

chair

desk magic cube
28%

7

book M
basketball -~ dancer ¢

tissue box

basketball player

A pen O BC
badminton player \

oga ball
V& balloon oo Lol hox Number of Sequences

kettlebell minion  toy car

Fig. 2. Distribution of the object, scenarios and challenges in all test frames. Left: The
inner pie-chart shows the distribution of the scenarios; The outside ring graph shows
our target objects. Right: Brown histogram shows the attribute distribution on frame
level; Green histogram shows the attribute distribution on sequence level.

among all candidate data for the availability and challenge for generic 3D track-
ing. Examples of some representative sequences are shown in Fig. [I] Finally,
Track-it-in-3D comprises a total of 300 sequences with the data split as such:
250 sequences (32,343 frames) for training, and 50 sequences (6,224 frames) for
testing. All the videos are captured at 30 fps. We do not provide a further parti-
tion to leave users with the freedom of the training/validation split. We provide
the distribution of scenarios and objects in our test set in Fig. 2l We keep our
test set compact but diverse for a fair and effective evaluation.

Attribute definition. Based on characteristics of the aforementioned problem,
we annotate all the frames with 9 attributes to analyse how different kinds of
challenges influence the tracking performance: Background Clutter (BC), Cam-
era Motion (CM), Deformation (DF), In-plane Rotation (IR), Illumination Vari-
ation (IV), Out-of-plane Rotation (OR), Similar Targets (ST), Target Loss (TL)
and Point Cloud Sparsity (PCS). Among them, background clutter, similar tar-
gets, and illumination variation are close related to depth favorable scenarios.
In addition, point cloud sparsity, in-plane rotation and out-of-plane rotation are
specifically challenging to 3D scenes. Unlike existing attributes in 3D tracking
datasets, we are the first 3D dataset to provide detailed visual attributes accord-
ing to both objects and scenarios. Distribution of attributes is given in Fig.
For detailed description of the attributes, please refer to the supplementary.

Data annotation. For annotation, we manually annotate each target object
in the video sequences with per-frame rotated 3D BBox on our modified version
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Fig. 3. Steps of our data annotation strategy. BBoz Initialisation: We complete the
size of the initial BBox from multi-view partial BBoxes. Per-frame Annotation: Similar
to the tracking pipeline, annotators align the last-frame BBox with the current-frame
object and record the label. Validation: We re-project the 3D BBox to image and
generate 2D BBox. By computing the IoU between the re-projected 2D BBox with
annotated 2D BBox, the accuracy of 3D annotation can be verified.

of SUSTechPoints tool [17]. We follow this principle for data annotation: given
an initial target description (3D BBox) in a video, if the target appears in the
subsequent frames, we will edit the 3D BBox to tightly covering the whole tar-
get; otherwise, we will maintain the BBox state from the adjacent frame, and
annotate the current frame with a “target loss” label. To guarantee annotation
accuracy, we adopt a three-stage annotation strategy: 1) BBoz initialisation: we
firstly go through the whole sequences to best describe the target size (w,h,!)
and give an initial 3D BBox. For example, we may not get precise length [, in
the first frame, but we can get precise width w,, and height h, with an estimated
length [. of the target. Then we will go through the whole video to find the
frame best showing the precise length [, of the target, duplicate the 3D box to
the first frame, and finally fine-tune the 3D box to get a precise length [, for the
target. 2) Per-frame annotation: an annotator edits the initial BBox in the sub-
sequent frames to make the BBox best fit the target; the annotator can change
the BBox’s location and angle, and size if necessary (for cases like deformable
objects) in this stage; 3) Validation: the authors finally check the annotation
frame by frame to verify the annotation accuracy. The annotation workflow is
shown in Fig. |3} which ensures high-quality annotation BBoxes in 3D scenes.
Under such strategy, we can obtain the intact target BBox of the target in the
specific frame, while it is tightest to fit the object with containing the real tar-
get size information in 3D space. We also evaluate our annotation accuracy with
projection and sampling, please refer to the supplementary material.

3.3 Evaluation Protocols

To judge the quality of 3D tracking, measures are designed to reflect the 3D BBox
tracking performance. Therefore, we follow the One Pass Evaluation (OPE) and
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the standard evaluation protocols to calculate the object center bias and 3D ToU
accuracy. In the following, we present our evaluation protocols.

Precision plot. One widely used evaluation metric for object tracking is the
center bias, which is used to measure the Euclidean distance between the centers
of predicted BBox and groundtruth BBox. We present the precision plots of the
trackers averaged over all sequences with the threshold from 0m to 0.5m. We
obtain the area-under-curve (AUC) of a tracker’s precision plot as its “Precision”.

Success plot. As we propose the rotated 3D BBox description in the 3D
tracking scenes, 3D Intersection-over-Union (IoU) is essential to measure the
tracking accuracy. According to [9], we provide the IoU measure for general 3D-
oriented boxes based on the Sutherland-Hodgman Polygon clipping algorithm.
We firstly clip each face as the convex polygon between the predicted box and
the groundtruth box. Then, the IoU is computed from the volume of the inter-
section and the volume of the union of two boxes by swapping the two boxes.
AUC in success plot of IoU between groundtruth and predicted BBox is defined
as “Success”. For details, we refer readers to [9/I].

3.4 Comparison with related tasks

As shown in Fig. [l we compare our 3D object tracking in RGBD videos with
related tasks [TO/25I3T128]. Compared to current 3D object tracking in point
clouds [10], we provide corresponding synchronised color information besides
point clouds. Furthermore, instead of tracking with (z,y, z,6), which only de-
scribes the location of the target center and one-dimensional rotation, we require
a more flexible bounding box to better fit the object. Similarly, 3D object detec-
tion [25] is to classify objects in image level, which also places all objects on the
plane and cannot give a precise description for genric objects e.g., suspended or
sloping objects. Compared to RGBD tracking, [31] which remains on tracking
the object within 2D settings, our proposed task requires a more detailed de-
scription of the object in the spatial domain. In addition, 6D pose tracking [28]
focuses on describing the pose of specific objects, which is heavily model-based.
Different from existing tasks, 3D single object tracking (SOT) in RGBD videos
is more challenging, in which the objects, scenarios, and annotations are more
diverse and flexible. A detailed comparison of the proposed Track-it-in-3d with
representative datasets from related tasks is summarised in Table [I} Although
the proposed dataset is not prominent on volume compared to existing datasets,
it can represent characteristics of the 3D tracking more effectively: 1) It achieves
a high diversity for class-agnostic 3D tracking with covering indoor and outdoor
scenarios, class-agnostic target objects and freely rotated 3D target annotation.
2) Tt provides a more effective way to track objects in 3D scenes with providing
synchronised RGB and depth information.
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Table 1. Comparison with related datasets. I=Indoor, O=Outdoor. We are the first
dataset that provides 3D annotations for dynamic objects to realise generic 3D single
object tracking in natural scenes.

Dataset Type Task Modality |Sequence|Frame|Label|Class|Scenario|Dynamic
DepthTrack[31] | Video[RGBD Tracking| RGB+D 200 294K | 2D 46 I1,O v
SUN-RGBD|25] |[Image| 3D Detection |RGB+D - 10K 3D 63 I X

Objectron[I] |Video| 3D Detection RGB 14,819 4M 3D 9 L,O X
NOCS|28] Image| Pose Tracking | RGB+D - 300K | 3D 6 I,O X
KITTI[IO0] Video| 3D Tracking PC 21 15K | 3D 8 O v

NuScenes[4] |Video| 3D Tracking PC 1,000 40K | 3D | 23 (@) v

Track-it-in-3D [Video| 3D Tracking |RGB+D 300 36K | 3D | 144 1,0 v

Fig. 4. Samples from related tasks and corresponding datasets, which basically show
the object/scenario/annotation styles. a) KITTI [10], b) SUN-RGBD [25], ¢) Depth-
Track [31], d) NOCS [28].

4 Proposed Baseline: TrackIt3D

Sole RGB based and point cloud based trackers already exist, and they perform
well in specific cases respectively. Here, we propose a generic 3D tracker, namely
Tracklt3D, which fuses the RGB and depth information in a seamless way. In
this section, we first describe the overall network architecture, including the main
components, then illustrate our implementation details.

4.1 Network Architecture

The input of our network is two frames from an RGBD video, defined as a target
template frame and a search area frame respectively. The goal is simplified to
localise the template target in the search area per frame. Our network consists of
three main modules as shown in Fig. [5| We first design a Siamese RGBD Fusion
Network to fuse the surface information (RGB Info.) and the spatial information
(XYZ Info.) together. Next, the 3D Cross-Correlation Network is proposed to
merge the template information into the search area. Finally, the fused feature
is fed into the VoteNet module [22] to yield 3D BBox and confidence scores via
the proposed BBox Loss and IoU Loss.

Siamese RGBD fusion network. The key idea of our fusion network is to
enable surface information and spatial information to complement each other. To
better exploit the spatial information of the depth map, we convert the depth im-
age to a point cloud. Given the RGBD template t and search area s, our network
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Fig. 5. Overview of our baseline TrackIt3D. The target gas bottle is moving with the
robotic arm, tied by a transparent rope. The inputs are pixels and points of the template
and search area, with the number of N1 and N2 respectively. The Siamese RGBD
Fusion Network fuses the surface information (RGB Info.) and the spatial information
(XYZ Info.). The Cross-Correlation Network learns the similarity between the template
and the search area features. We use the BBox Loss and IoU Loss to enforce the VoteNet
module [22] to yield the 3D BBox and corresponding confidence scores.

first associates each point to its corresponding image pixel based on projection
onto the image plane using the known camera intrinsic parameters. The ob-
tained pairs P of template and search arca are then downsampled to Pt € RN1%6
and P* € R™2%6 separately. Every pair P is represented as (z,y, z, R, G, B), in
which (x,y, z) indicates the target spatial information and (R, G, B) indicates
the surface information. We adopt an encoder-decoder structure with skip con-
nections constructed by sparse 3D CNN [6], to extract the pixel-wise feature
map ff, € RN*256 and f2, € RN2%2% from the sparse surface pixels. We also
implement a variant of the PointNet++ [23] architecture, with adding a decoder
with skip connections to generate dense point-wise feature maps ff, . € RN1>512
and f5, . € RN2*512 The output feature maps of sparse 3D CNN and Point-
net++ are then concatenated and fed to a MLP network to generate the fused
feature maps ff € RN1X512 and fs ¢ RN2x512,

3D cross-correlation network. Learning to track arbitrary objects can be
addressed by similarity matching [2]. Following this, our 3D cross-correlation
network learns to conduct a reliable similarity between the template features
and the search area features. Different from unordered point sets [24], our points
are in order because of pixel and point alignment, so that we can do similarity
matching directly over 3D feature maps. As shown in Fig. |5 after obtaining
the fused feature maps of the template and search area, we can compute the
similarity map Sim € RN1XN2 hetween f* and f* using the cosine distance. The
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column 4 in Sim means the similarity score of each feature in f* to the i feature
in f°. We then find the top score of ¢ column, which represents the most similar
template feature to the it search feature. After getting all top score indices, we
search the template feature by the index in f?* and then concatenate it with the
corresponding feature in f*, yielding a feature map of size Ny x (5124+512). Then
we feed it into an MLP network to obtain the final feature map f € RN1*512,
The point-wise feature map f and the corresponding 3D position of each point
are fed to the VoteNet module to obtain the final 3D BBox.

Loss function. We train our network with the following loss function:
Etotal = )\llcreg + /\QLbbox + /\3£IOU- (1)

Following [22], a shared voting module is used to predict the coordinate
offset between points and target center. The predicted 3D offset is supervised
by Vote loss L;cs, which enforces the network to produce potential centers
of the object. BBox loss Lppox is designed to pull the K proposal BBoxes
closer to the groundtruth BBox. Our 3D groundtruth BBox is defined by B =
[56, ¥, Z,w, h, 1, (j], in which quaternion ¢ represents the rotation. The BBox loss
is computed via Huber (smooth-L1) loss:

1 & _
Ebbox:EZHBi_BiHl- (2)

ToU loss L1,y aims to ensure that the confidence score Sy approximates the
IoU between proposals and groundtruth BBox. Following [9], we compute the
IoU between the two 3D BBoxes based on the Sutherland-Hodgman Polygon
clipping algorithm. The loss function is written as follow:

K
1
0 = gz D100 = Sl 3)

4.2 Implementation Details

Architecture. For our network, we downsample the points and pixels for tem-
plate and search area to N7 = 512 and Ny = 1024. The cluster parameter in
the VoteNet module is K = 64. The coefficients for the loss terms are A\; = 1,
/\2 = 0.5 and /\3 =0.5.

Training phase. We train our model using the training set discussed in Sec. [3.2]
which consists of RGBD videos and 3D object bounding box annotations. 1)
Template and Search Area: we randomly sample RGBD image pairs from all the
videos with a maximum gap of 10 frames. In each pair, the first image will serve
as the template and the second will be the search area. The template is generated
by cropping pixels and points inside the first given 3D BBox and we enlarge the
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second BBox by 4 times in each direction and collect pixels and points inside to
generate the search area. 2) 3D Deformation: to handle the shape variation of
the target, we generate the augmented data for each pair by enlarging, shrinking,
or changing some part of the point cloud following [5]. 3) The learning rate is
0.001, the batch size is 50, Adam [I3] is adopted as an optimiser and trained for
a total of 120 epochs. The learning rate decreased by 5 times after 50 epochs.

Inference phase. During the inference, we also use the proposed dataset in
Sec. [3:2] Different from the training phase, we track a target across all RGBD
frames in a video. The given 3D BBox will be used to crop the template area,
and the search area of the current frame is generated by enlarging (by 4 times
in each direction) the predicted 3D BBox in the last frame and collecting the
pixels and points in it.

5 Experiments

5.1 Benchmark Settings

As our proposed TrackIt3D is the first tracker designed for generic 3D tracking,
we evaluate some representative 3D trackers based on point clouds for compar-
ison. The compared trackers are SC3D[1I], P2B[24], and BAT[33]. For model-
based 3D trackers, we evaluate their default pre-trained models and the models
finetuned on our proposed training set (if the model is trainable). Experiments
are run on a single NVIDIA Tesla V100S GPU 32GB.

5.2 Benchmark Results

Overall results. Table [2| gives the comparison results of 3D trackers. Our
method achieves the highest score compared to the existing ones, in terms of
both Success (31.1%) and Precision (35.0%). With dedicated combination of
color and depth modalities, TrackIt3D is capable to distinguish the object in
the RGB domain and makes good predictions of 3D BBox in the point cloud
domain. It is worth noting that the SC3D, which performs worse on KITTI
compared with P2B and BAT, shows a better performance on our test set even
without finetuning on the proposed training set. The reason is that SC3D aims
to compare the similarity between the template and 3D target proposals, while
P2B and BAT utilise VoteNet to vote an object center, which tends to learn the
center location based on strong category-related priors. We use their car-based
model for testing. Therefore, when facing the class-agnostic tracking sequences,
the sole VoteNet is not enough for center prediction. The P2B and BAT show
remarkable improvements after finetuning on our training set. However, they
still suffer low scores because the threshold of the center error is around 0.5m in
our proposed dataset, while it is 2m in KITTI [I0]. In addition, they can only
regress an axis-aligned BBox while we get a 9DoF BBox which contributes to a
higher IoU score. We show the precision and success plots in Fig. [0}
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Table 2. Quantitative comparison between our method and state-of-the-art methods.
Our method outperforms the compared models by a large margin on our Track-it-in-3d
test set. Speed is also listed and “_ft” means the method is finetuned on our training
dataset. Bold denotes the best performance.

Tracker | SC3DJL1] | P2B24] P2B_ft[24] | BAT[33] BAT ft]33] | Tracklt3D
Success 9.2% 4.2% 9.4% 2.5% 2.5% 31.1%
Precision 6.8% 1.1% 8.4% 0.8% 4.7% 35.0%
Speed(FPS) 0.51 23.78 21.25 28.17 25.08 6.95

i R amizis,

Fig. 6. The Success and Precision plots . . .

Fig.7. Optimal Precision (left) and
of the compared trackers and the pro- g oy he visual
posed TrackIt3D. uccess (right) scores over the visual at-

tributes.

Fig.[8shows several representative samples of results comparing our Tracklt3D
with finetuned P2B. As shown, unlike P2B which only gives an axis-aligned es-
timation of the target object, our Tracklt3D can also distinguish the target
orientation and track the target rotation. Specifically, row a) shows a scene with
similar objects, in which P2B fails in total while our method can accurately track
the target object. Besides, our method is more robust to challenging cases like
object rotation and deformation, as shown in rows b) and c), due to its strong
discriminative ability based on RGBD fusion. Moreover, row d) gives an outdoor
scenario under low illumination, where it is difficult to locate the object, but our
method shows a good estimation. The last row gives a failed case in which the
target is severely occluded by a plant, both Trackit3D and P2B fail due to their
lack of a re-detection mechanism.

Attribute-based results. Per-attribute results are reported in Fig. [7] Al-
though the overall performance is low, we can obtain informative analysis from
the per-attribute result. Our method obviously outperforms the compared mod-
els in all attributes, especially in in-plane rotation and illumination variation.
Clearly, the superior performance of our RGBD fusion over point cloud is evi-
dent. However, Tracklt3D’s success score degrades severely on the point cloud
sparsity and target loss, indicating that it still need improvement on long-term
discriminative ability and target localisation under little spatial information.
Despite that, it is worth noting that the finetuned P2B performs well under in-
camera motion and illumination variation, while SC3D beats the other trackers
on background clutter and similar targets.
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(D Trackit3D ('P2B_ft (7Ground truth

Fig. 8. Qualitative results of our baseline Tracklt3D compared with the fine-tuned
P2B. We can observe our baseline’s advantage over P2B in many challenge scenarios,
e.g., a) similar objects, b) rotation, c¢) deformation and d) dark scene. The last row is
a failed case when the object is fully occluded.

Table 3. Performance of the RGBD variant of original 3D point cloud tracker, and
P2B++ and BAT++ have been finetuned on our training dataset.

Tracker |P2B++ [24]|BAT++ [33]|TrackIt3D
Success 24.5% 18.1% 31.1%
Precision| 28.2% 26.0% 35.0%

5.3 Ablation Study

Effectiveness of RGBD fusion. To validate the effectiveness of the proposed
RGBD fusion on 3D tracking, we apply it on P2B and BAT to instead their
original heads and obtains corresponding variants P2B++ and BAT++. Table[3]
shows the comparison between the variants with the RGBD fusion head and our
TrackIt3D. Specifically, there are striking improvements (at least 15.1% and
19.8%) in terms of Success and Precision compared with the finetuned P2B and
BAT, which proves that the RGBD fusion boosts the performance of point cloud
voting models. Also, performance of BAT++ is lower that the P2B+4 due to
its strong object prior with fixed size.

Different ways for 3D cross-correlation. Besides our default settings in
Sec. we consider other possible ways for 3D cross-correlation, e.g., 2D cor-
relation [I8], which is commonly used in 2D tracking, instead of 3D correlation.
The left section in Fig. [0 shows how we implement 2D correlation. Surprisingly,
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Table 4. Different ways for 3D cross-
Fig.9. Different ways for 3D cross- correlation (xcorr.). Methods for similarity
correlation. The left part is following 2D learning between search features and tem-
tracking pipeline. The right part is with- plate following 2D tracking method are il-
out calculating similarity map. * means lustrated in Fig. [0
convolution operation.

results in Table. [4| show that the 2D correlation setting outweighs our 3D corre-
lation on Precision, although it gives a lower Success. This may reveal that the
2D-based method is more robust to estimate an accurate target center, while it
is weaker on 3D BBox prediction as it omits the spatial correlation in 3D space.
We also try to remove the similarity map and template feature, as shown in
the right part of Fig. [0] The performance degrades without using the two parts.
Specifically, once removing the template feature, Success and Precision degrade
with 7% and 5%, which proves that the tracker loses the discriminative ability
without the reference feature.

6 Conclusions

In this paper, we investigate a novel topic to track generic objects with 3D
rotated BBox in RGBD videos. We first construct a novel benchmark Track-
it-in-8D with 300 RGBD videos for training and testing, which covers diverse
objects and challenging scenarios in 3D scenes. Also, this benchmark enables
generic 3D tracking in complex scenarios with novel target annotation and per-
formance evaluation. Furthermore, we propose an end-to-end method Tracklt3D
for tracking class-agnostic 3D objects. With effective RGBD fusion and 3D cross-
correlation, our baseline shows superior performance on this challenging task. We
hope this work will facilitate further research on generic 3D tracking.
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