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Abstract. How important are training details and datasets to recent op-
tical flow architectures like RAFT? And do they generalize? To explore
these questions, rather than develop a new architecture, we revisit three
prominent architectures, PWC-Net, IRR-PWC and RAFT, with a com-
mon set of modern training techniques and datasets, and observe signifi-
cant performance gains, demonstrating the importance and generality of
these training details. Our newly trained PWC-Net and IRR-PWC show
surprisingly large improvements, up to 30% versus original published re-
sults on Sintel and KITTI 2015 benchmarks. Our newly trained RAFT
obtains an Fl-all score of 4.31% on KITTI 2015 and an avg. rank of 1.7
for end-point error on Middlebury. Our results demonstrate the benefits
of separating the contributions of architectures, training techniques and
datasets when analyzing performance gains of optical flow methods. Our
source code is available at https://autoflow-google.github.io.
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1 Introduction

The field of optical flow has witnessed rapid progress in recent years, driven
largely by deep learning. FlowNet [10] first demonstrated the potential of deep
learning for optical flow, while PWC-Net [45] was the first model to eclipse classi-
cal flow techniques. The widely-acclaimed RAFT model [48] reduced error rates
on common benchmarks by up to 30% versus state-of-the-art baselines, outper-
forming PWC-Net by a wide margin. RAFT quickly became the predominant
architecture for optical flow [20,28,31,38,51,54,55,62] and related tasks [24,49].

The success of RAFT has been attributed primarily to its novel architecture,
including its multi-scale all-pairs cost volume, its recurrent update operator, and
its up-sampling module. Meanwhile, other factors like training procedures and
datasets have also evolved, and may play important roles. In this work, we pose
the question: How much do training techniques of recent methods like RAFT
contribute to their impressive performance? And, importantly, can these training
innovations similarly improve the performance of other architectures?

We begin by revisiting the 2018 PWC-Net [45], and investigate the impact of
datasets and training techniques for both pre-training and fine-tuning. We show
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Fig. 1. Left: Large improvements with newly trained PWC-Net, IRR-PWC
and RAFT (left: originally published results in blue; results of our newly trained
models in red). Right: Visual comparison on a Davis sequence between the original [46]
and our newly trained PWC-Net-it and RAFT-it, shows improved flow details, e.g.
the hole between the cart and the person at the back. The newly trained PWC-Net-it
recovers the hole between the cart and the front person better than RAFT.

that, even with such a relatively “old” model, by employing recent datasets and
advances in training, and without any changes to the originally proposed ar-
chitecture, one can obtain substantial performance gains, outperforming more
recent models [55,64] and resolving finer-grained details of flow fields (see, e.g.,
Fig. 1 and Table 1). We further show that the same enhancements yield similar
performance gains when applied to IRR-PWC, a prominent variant of PWC-Net
that is closely related to RAFT. Indeed, these insights also yield an improved ver-
sion of RAFT, which obtains competitive results on Sintel, KITTI, and VIPER
while setting a new state of the art on Middlebury. We denote architectures
trained with this new training by adding “-it“ after the architecture name; for
example, our newly trained RAFT will be abbreviated as RAFT-it.

We make the following contributions:

– We show that newly trained PWC-Net (PWC-Net-it), using ingredients from
recent training techniques (gradient clipping, OneCycle learning rate, and
long training) and modern datasets (AutoFlow), yields surprisingly compet-
itive results on Sintel and KITTI benchmarks.

– These same techniques also deliver sizeable performance gains with two other
prominent models, IRR-PWC and RAFT. Our newly trained RAFT (RAFT-
it) is more accurate than all published optical flow methods on KITTI 2015.

– We perform a thorough ablation study on pre-training and fine-tuning to
understand which ingredients are key to these performance improvements
and how they are manifesting.

– The newly trained PWC-Net and IRR-PWC produce visually good results
on 4K Davis input images, making them an appealing option for applications
that require fast inference with low memory overhead.
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Method Sintel.clean Sintel.final KITTI Running time

PWC-Net [45] 3.86 5.13 9.60% 30ms∗

PWC-Net+ [46] 3.45 4.60 7.72% 30ms∗

PWC-Net-it (Ours) 2.31 3.69 5.54% 21ms

IRR-PWC [17] 3.84 4.58 7.65% 180ms∗

IRR-PWC-it (Ours) 2.19 3.55 5.73% 25ms

RAFT [48] 1.94 3.18 5.10% 94ms∗

RAFT-A [44] 2.01 3.14 4.78% 107ms
RAFT-it (Ours) 1.55 2.90 4.31% 107ms

HD3[58] 4.79 4.67 6.55% 100ms∗

VCN [57] 2.81 4.40 6.30% 180ms∗

Mask-FlowNet [64] 2.52 4.14 6.11% 60ms∗

DICL [52] 2.12 3.44 6.31% -
Flow1D [55] 2.24 3.81 6.27% 79ms∗

RAFT+AOIR [31] 1.85 3.17 5.07% 104ms∗

CSFlow [38] 1.63 3.03 5.00% 200ms∗

SeparableFlow [62] 1.50 2.67 4.51% 250ms∗

Table 1. Results of 2-frame methods on public benchmarks (AEPE↓ for Sintel
and Fl-all↓ for KITTI). Bold indicates the best number and underline the second-
best. The running time is for 448×1024 resolution input (∗reported in paper); the
differences will be larger for higher resolution (c.f. Table 6). Newly trained PWC-Net,
IRR-PWC and RAFT are substantially more accurate than their predecessors. With
improved training protocols, PWC-Net-it and IRR-PWC-it are more accurate than
some recent methods [55,56] on KITTI 2015 while being about 3× faster in inference.

2 Previous Work

Deep models for optical flow. FlowNet [10] was the first model to demonstrate the
potential of deep learning for optical flow, and inspired various new architectures.
FlowNet2 [18] stacked basic models to improve model capacity and performance,
while SpyNet [34] used an image pyramid and warping to build a compact model.
PWC-Net [45] used classical optical flow principles (e.g., [3,43,47]) to build an
effective model, which has since seen widespread use [2,8,19,22,35,41,63,65]. The
concurrent LiteFlowNet [16] used similar ideas to build a lightweight network.
TVNet [11] took a different approach with classical flow principles by unrolling
the optimization iterations of the TV-L1 method [61].

Many architectures have used a pyramid structure. IRR-PWC [17] introduced
iterative refinement, reusing the same flow decoder module at different pyramidal
levels. VCN [56] used a 4D cost volume that is easily adapted to stereo and optical
flow. HD3 [58] modeled flow uncertainty hierarchically. MaskFlowNet [64] jointly
modeled occlusion and optical flow. Improvements brought by each model over
the previous SOTA was often within 5% on Sintel (c.f., Table 1).

A recent, notable architecture, RAFT [48], built a full cost volume and per-
forms recurrent refinements at a single resolution. RAFT achieved a significant
improvement over previous models on Sintel and KITTI benchmarks, and be-
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came a starting point for numerous new variants [20,28,31,38,51,54,55,62]. To re-
duce the memory cost of the all-pairs cost volume, Flow1D used 1D self-attention
with 1D search, with minimal performance drop while enabling application to
4K video inputs [55]. SeparableFlow used a non-local aggregation module for
cost aggregation, yielding substantial performance gains [62].

Recent research on optical flow has focused on architectural innovations. Nev-
ertheless, most new optical flow papers combine new architectures with changes
in training procedures and datasets. As such, it can be hard to identify which
factors are responsible for the performance gains. In this paper, we take a differ-
ent approach, instead we examine the effects of different ingredients of modern
training techniques and datasets, but with established architectures. The results
and findings are surprising. Our newly trained PWC-Net and IRR-PWC are
more accurate than Flow1D while being almost 3× faster in inference, and our
newly trained RAFT is more accurate than all published optical flow methods
on KITTI 2015 while being more than 2× faster in inference than the previous
best SeparableFlow.

Datasets for optical flow. For pre-training the predominant dataset is Fly-
ingChairs [10]. Ilg et al. [18] introduced a dataset schedule that uses FlyingChairs
and FlyingThings3D [30] sequentially. This remains a standard way to pre-train
models. Sun et al. [44] proposed a new dataset, AutoFlow, which learns render-
ing hyperparameters and shows moderate improvements over the FlyingChairs
and FlyingThings3D in pre-training PWC-Net and RAFT. For fine-tuning, the
limited training data from Sintel and KITTI are often combined with additional
datasets, such as HD1K [23] and VIPER [36], to improve generalization. In this
paper, we show that PWC-Net and its variant, IRR-PWC, obtain competitive
results when pre-trained on AutoFlow and fine-tuned using recent techniques.

Training techniques for optical flow. While different papers tend to adopt slightly
different training techniques and implementation details, some have examined
the impact of recent training techniques on older architectures. Ilg et al. [18]
found that using dataset scheduling can improve the pre-training results of
FlowNetS and FlowNetC. Sun et al. [46] obtained better fine-tuning results with
FlowNetS and FlowNetC on Sintel by using improved data augmentation and
learning rate disruption; they also improved on the initial PWC-Net [45] by us-
ing additional datasets. Sun et al. [44] reported better pre-training results for
PWC-Net but did not investigate fine-tuning. Here, with PWC-Net, IRR-PWC
and RAFT, we show significantly better fine-tuning results.

Self-supervised learning for optical flow. Significant progress has been achieved
with self-supervised learning for optical flow [21,26,32,25,40,60], focusing more on
the loss than model architecture. UFlow [21] systematically studied a set of key
components for self-supervised optical flow, including both model elements and
training techniques. Their study used PWC-Net as the main backbone. Here we
focus on training techniques and datasets, systematically studying three promi-



Disentangling Architecture and Training for Optical Flow 5

nent models to identify factors that generalize across models. FOAL introduces
a meta learning approach for online adaptation [59].

Similar study on other vision tasks. The field of classification has also started to
more closely examine whether performance improvements in recent papers come
from the model architecture or training details. Both [15] and [53] examined
modern training techniques on ResNet-50 [14] and observed significant perfor-
mance improvements on ImageNet [7], improving top-1 precision from 76.2 in
2015, to 79.3 in 2018, and finally to 80.4 in 2021. These gains have come solely
from improved training details, namely, from augmentations, optimizers, learn-
ing rate schedules, and regularization. The introduction of vision transformers
(ViT) [9] also led to a series of papers [39,50] on improved training strategies,
substantially improving performance from the initial accuracy of 76.5 up to 81.8.

Other recent papers took a related but slightly different direction, simulta-
neously modernizing both the training details and architectural elements but
cleanly ablating and analyzing the improvements. Bello et al. [4] included an
improved training procedure as well as exploration of squeeze-and-excite and
different layer changes. Liu et al. [27] used recent training details and iteratively
improves ResNet with modern network design elements, improving the accu-
racy from 76.2 to 82.0, which is competitive with similarly sized state-of-the-art
models. While these papers mainly studied a single model and often involved
modifying the backbone, we investigate three different models to understand
key factors that apply to different models, and the trade-offs between models.

3 Approach and Results

Our goal is to understand which innovations in training techniques, principally
from RAFT, play a major role in the impressive performance of modern optical
flow methods, and to what extent they generalize well to different architectures.
To this end, we decouple the contributions of architecture, training techniques,
and dataset, and perform comparisons by changing one variable at a time. More
specifically, we revisit PWC-Net, IRR-PWC and RAFT with the recently im-
proved training techniques and datasets. We perform ablations on various factors
including pre-training, fine-tuning, training duration, memory requirements and
inference speed.

3.1 Models Evaluated

The first model we evaluate is PWC-Net, the design of which was inspired by
three classical optical flow principles, namely pyramids, warping, and cost vol-
umes. These inductive biases make the network effective, efficient, and com-
pact compared to prior work. IRR-PWC [17] introduces iterative refinement
and shares the optical flow estimation network weights among different pyramid
levels. The number of iterative refinement steps for IRR-PWC is the number of
pyramid levels. RAFT is closely related to IRR but enables an arbitrarily large



6 Sun et al.

number of refinement iterations. It has several novel network design elements,
such as the recurrent refinement unit and convex upsampling module. Notably,
RAFT eschews the pyramidal refinement structure, instead using an all-pairs
cost volume at a single resolution.

Memory usage. For an H×W input image, the memory cost for constructing the
cost volume in RAFT is O((HW )2D), where D is the number of feature channels
(constant, typically 256 for RAFT and ≤ 192 for PWC-Net and IRR-PWC). To
reduce the memory cost for high-resolution inputs, Flow1D constructs a 1D cost
volume with cost of O(HW (H+W )D). By comparison, the memory needed for
the cost volume in PWC-Net and IRR-PWC is O(HWD(2d+1)2), where the
constant d is the search radius at each pyramid level (default 4). Note that (2d+
1)2 ≪ H+W ≪ HW for high-resolution inputs; this is particularly important
for 4K videos, which are becoming increasingly popular. We empirically compare
memory usage at different resolutions in Table 6.

3.2 Pre-training

Typical training recipes. A typical training pipeline trains models first on the
FlyingChairs dataset, followed by fine-tuning on the FlyingThings3D dataset,
and then further fine-tuning using a mixture of datasets, including small amount
of training data for the Sintel and KITTI benchmarks.

Since the introduction of PWC-Net in 2018, new training techniques and
datasets have been proposed. As shown in [46], better training techniques and
new datasets improve the pre-training performance of PWC-Net. We investigate
how PWC-Net and IRR-PWC performs with the same pre-training procedure,
and whether the procedure can be further improved.

Table 2 summaries the results of pre-training PWC-Net, IRR-PWC and
RAFT using different datasets and techniques. (To save space, we omit some
results for PWC-Net and RAFT and refer readers to [44].) We further perform
an ablation study on several key design choices using PWC-Net, shown in Ta-
ble 3. To reduce the effects of random initialization, we independently train the
model six times, and report the results of the best run. While the original IRR-
PWC computes bidirectional optical flow and jointly reasons about occlusion,
we test a lightweight implementation without these elements [17].

Pre-training datasets. Pre-training using AutoFlow results in significantly better
results than FlyingChairs for PWC-Net, IRR-PWC and RAFT. Figure 2 visually
compares the results by two PWC-Net models on Davis [33], and Middlebury [1]
sequences. PWC-Net trained on AutoFlow better recovers fine motion details
(top) and produces coherent motion for the foreground objects (bottom).

Gradient clipping. Gradient clipping is a heuristic to avoid cliff structures for
recurrent neural networks [13]. The update operator of RAFT uses a GRU block
that is similar to the LSTM block. Thus, RAFT training uses gradient clipping
to avoid exploding gradients. Gradient clipping also improves the performance
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First frame PWC-Net (FlyingChairs) PWC-Net (AutoFlow)

Fig. 2. Visual results of PWC-Net pre-trained using FlyingChairs and AutoFlow on
Davis and Middlebury input images. PWC-Net trained using AutoFlow recovers fine
details between the legs (top) and coherent motion for the girl and the dog (bottom).

of PWC-Net and IRR-PWC substantially and results in more stable training.
Removing gradient clipping from RAFT results in moderate performance degra-
dation. We perform an ablation study on the threshold of gradient clipping and
find that the training is robust to this parameter (Table 3).

Learning rate schedule. Before RAFT, nearly all optical flow models have been
trained using a piecewise learning rate, with optional learning rate disruption.
RAFT uses a OneCycle learning rate schedule, which starts from a small learn-
ing rate, linearly increases to the peak learning rate, and then linearly decreases
to the starting learning rate. Using the OneCycle learning rate improves the
performance of all three models (Table 2). Moving the position of the peak to-
ward the origin slightly improves the performance (Table 3). Note that, for other
published models, those that use gradient clipping and the OneCycle learning
rate, e.g., Flow1D and SeparableFlow, are generally better than those that do
not, e.g., VCN and MaskFlowNet. It would be interesting, though outside the
scope of this paper, to investigate the performance of VCN and MaskFlowNet
with recent techniques and datasets.

Training iterations. PWC-Net and IRR-PWC need large numbers of training
iterations. At the same number of training iterations, IRR-PWC is consistently
more accurate than PWC-Net. This is encouraging because we can perform an
ablation study using fewer iterations and then use the best setup to train the
model using more iterations. One appealing feature of RAFT is its fast conver-
gence, but we find that using more training iterations also improves RAFT. Note
that 3.2M iterations for RAFT takes about 11 days while 6.2M iterations take
PWC and IRR-PWC about 6 days to finish (using 6 P100 GPUs). It is interesting
that all three models show no sign of over-fitting after so many iterations.
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Other training details. We further test the effect of weight decay, random erasing
and vertical flipping. As shown in Table 3, the training is robust to the hyper-
parameter settings for the weight decay, random erasing and vertical flipping.

Model Dataset GC LR Iters
Sintel KITTI

clean final F-all AEPE

PWC-Net FlyingChairs ✗ Piecewise 1.2M 3.89 4.79 42.81% 13.59
- - - - 3.2M 2.99 4.21 38.49% 10.7
- AutoFlow ✓ OneCycle 1.2M 2.43 3.05 18.74% 6.41
- - - - 3.2M 2.17 2.91 17.25% 5.76
- - - - 6.2M 2.10 2.81 16.29% 5.55

IRR-PWC FlyingChairs ✗ Piecewise 1.2M 4.3 5.09 44.06% 15.5
- AutoFlow - - - 3.01 4.11 26.95% 9.01
- - ✓ - - 2.42 3.29 18.31% 6.31
- - - OneCycle - 2.24 2.93 17.87% 6.02
- - - - 3.2M 2.06 2.85 15.55% 5.14
- - - - 6.2M 1.93 2.76 15.20% 5.05

RAFT FlyingChairs ✗ Piecewise 0.2M 2.64 4.04 32.52% 10.01
- AutoFlow - - - 2.57 3.36 19.92% 5.96
- - ✓ - - 2.44 3.20 17.95% 5.49
- - - OneCycle - 2.08 2.75 15.32% 4.66
- - - - 0.8M 1.95 2.57 13.82% 4.23
- - - - 3.2M 1.74 2.41 13.41% 4.18

VCN C+T ✗ Piecewise 0.22M 2.21 3.62 25.10% 8.36
MaskFlowNet - - - 1.7M 2.25 3.61 23.14% -

Flow1D - ✓ OneCycle 0.2M 1.98 3.27 22.95% 6.69
SeparableFlow - - - 0.2M 1.30 2.59 15.90% 4.60

Table 2. Pre-training results for PWC-Net, IRR-PWC, RAFT and some recent
methods. The metric for Sintel is average end-point error (AEPE) and F-all is the per-
centage of outliers averaged over all ground truth pixels. Lower is better for both AEPE
and F-all. “-” means the same as the row above. C+T stands for the FlyingChairs and
FlyingThings3D dataset schedule. Gradient clipping (GC), OneCycle learning rate,
AutoFlow and longer training improve all three models consistently.

Recipes for Pre-training. Using AutoFlow, gradient clipping, the OneCycle learn-
ing rate and long training consistently improves the pre-training results for
PWC-Net, IRR-PWC and RAFT. It is feasible to use short training to eval-
uate design choices and then use longer training times for the best performance.

3.3 Fine-tuning

To analyze fine-tuning, we use the training/validation split for Sintel proposed
in Lv et al. [29], where the sets have different motion distributions (Fig. 3), and
the training/validation split for KITTI proposed in Yang and Ramanan [56]. We
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Experiment Parameter
Sintel KITTI

clean final F-all AEPE

Gradient clipping threshold
0.5 2.37 3.12 18.46% 6.14
1.0 2.43 3.05 18.74% 6.41
2.0 2.60 3.31 21.25% 7.73

Peak of OneCycle LR
0.1 2.38 3.04 17.35% 5.77
0.2 2.43 3.05 18.74% 6.41
0.3 2.35 3.08 19.39% 6.66

Weight decay
0 2.43 3.05 18.74% 6.41
1e-8 2.31 3.09 18.07% 6.14
1e-7 2.46 3.17 18.10% 6.17

Vertical flip probability
0 2.43 3.05 18.74% 6.41
0.1 2.38 3.08 18.64% 6.14

Random erasing probability
0 2.43 3.05 18.74% 6.41
0.5 2.46 3.13 17.39% 5.78

Table 3. More ablation studies on pre-training PWC-Net using 1.2M training
steps. Default settings are underlined. Pre-training is robust to moderate variations on
the parameters settings for these training details.

follow [44] and use five datasets, Sintel [5] (0.4), KITTI [12] (0.2), VIPER [37]
(0.2), HD1K [23] (0.08), and FlyingThings3D [30] (0.12), where the number
indicates the sampling probability. We perform an ablation study on PWC-Net,
and then apply the selected training protocol to IRR-PWC and RAFT.

Training techniques. Table 4 summarizes the results of the ablation study on
PWC-Net. Better initialization tends to lead to better fine-tuning results, espe-
cially on the KITTI dataset. For the same initialization, longer training yields
more accurate results on the held-out validation set.

Removing gradient clipping results in a significant performance drop on the
validation sets, and switching from the OneCycle to the piecewise learning rate
results in moderate performance degradation too. We further further experiment
with adding the AutoFlow data to the fine-tuning process, and observe improve-
ments for both PWC-Net and IRR-PWC on the Sintel validation set, and a small
drop in performance on the KITTI validation set. Adding AutoFlow yields just
a small improvement for RAFT on Sintel (we discuss this result again below
with the in-distribution fine-tuning experiment).

Model comparison. Among the three models, RAFT has the best accuracy on
the validation set. The initialization of RAFT is almost as accurate as the fine-
tuned PWC-Net on the Sintel.final validation set using the training/validation
split [29]. While IRR-PWC has higher training errors on Sintel than PWC-Net,
the validation errors of the two models are similar. IRR-PWC has slightly worse
performance on the KITTI validation set than PWC-Net.
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Sintel KITTI 2015
Model Data Init Ft Training Validation Training Validation

clean final clean final F-all AEPE F-all AEPE

PWC-Net SKHTV 1.2M 1.2M (1.04) (1.45) 3.58 3.88 (5.58%) (1.44) 6.23% 1.92
- - 3.2M - (1.05) (1.55) 2.95 3.61 (5.44%) (1.40) 6.13% 1.80
- - 6.2M - (0.97) (1.42) 3.09 3.65 (4.99%) (1.31) 5.61% 1.62
No GC - - - (1.82) (2.43) 4.51 4.98 (11.77%) (3.06) 11.87% 3.79
Piecewise - - - (1.08) (1.62) 3.32 3.77 (5.49%) (1.42) 5.90% 1.78

PWC-Net SKHTV 6.2M 0M 1.78 2.55 3.33 3.83 16.50% 5.58 15.45% 5.44
- - - 6.2M (0.74) (1.08) 2.79 3.52 (3.96%) (1.08) 4.76% 1.52
- +A - - (0.80) (1.19) 2.76 3.25 (4.10%) (1.12) 4.89% 1.57

IRR-PWC SKHTV 6.2M 0M 1.58 2.49 3.27 3.79 15.4% 5.05 14.3% 5.02
- - - 6.2M (0.98) (1.47) 2.85 3.50 (4.52%) (1.21) 5.37% 1.59
- +A - - (1.01) (1.49) 2.64 3.28 (4.86%) (1.29) 5.39% 1.56

RAFT SKHTV 3.2M 0M 1.40 2.31 2.88 3.38 13.57% 4.19 12.74% 4.13
- - - 1.2M (0.66) (1.14) 1.96 2.81 (3.55%) (1.04) 3.96% 1.41
- +A - - (0.74) (1.15) 2.00 2.76 (3.86%) (1.09) 4.08% 1.39
Table 4. Ablation study on fine-tuning on Sintel and KITTI using the train-
ing/validation split for Sintel from [29] and for KITTI from [56]. GC stands for
gradient clipping and () indicates training errors. 0M for fine-tuning means that no
fine-tuning has been done (initialization). S,K,H,T,V and A denote Sintel, KITTI,
FlyingThings3D, HD1K, VIPER and AutoFlow datasets, respectively. Better initial-
ization, more training steps and adding AutoFlow improve the performance.

In-distribution fine-tuning. The training and validation subsets for Sintel pro-
posed by Lv et al. [29] have different motion distributions; the validation set
has more middle-to-large range motion, as shown in Fig. 3. To examine the
performance of fine-tuning when the training and validation sets have similar
distributions, we perform fine-tuning experiments using another split by [56]. As
summarized in Table 5, PWC-Net has lower errors than RAFT on the Sintel
validation set. As shown in Fig. 3, both the training and validation sets by [56]
concentrate on small motions, suggesting that RAFT is good at generalization
to out-of-distribution large motion for the Lv et al. split. This generalization
behavior likely explains why adding AutoFlow [44] does not significantly help
RAFT in the experiment above. The result also suggests that PWC-Net may be
a good option for applications dealing with small motions, e.g., the hole between
the cart and the man in the front in Fig. 1.

Recipes for Fine-tuning. Using better initialization and long training times helps
fine-tuning. Both gradient clipping and the OneCycle learning rate help fine-
tuning. Adding AutoFlow may help with generalization of the models.

3.4 Benchmark Results

We next apply the fine-tuning protocols above, with the full training sets from
KITTI and Sintel, and then test the fine-tuned models on the public test sets.
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Sintel KITTI 2015
Training Validation Training Validation

clean final clean final F-all AEPE F-all AEPE

PWC-Net 2.06 2.67 2.24 3.23 16.50% 5.58 15.45% 5.44
PWC-Net-ft (1.30) (1.67) 1.18 1.74 (4.21%) (1.14) 5.10% 1.51

IRR-PWC 1.87 2.53 2.09 3.44 15.4% 5.05 14.3% 5.02
IRR-PWC-ft (1.34) (1.88) 1.55 2.31 (4.94%) (1.29) 5.42% 1.65

RAFT 1.74 2.24 1.74 2.91 13.57% 4.19 12.74% 4.13
RAFT-ft (1.14) (1.70) 1.37 2.14 (5.06%) (1.61) 5.01% 1.40

Table 5. In-distribution fine-tuning using the training/validation split [56] for Sin-
tel. The training and validation sets share similar motion distributions (c.f.Fig. 3).

Fig. 3. Motion distributions for the Lv et al. [29] (left) and Yang and Ramanan [56]
(right) training/validation splits. There is a mismatch between training and validation
distributions for the Lv split, making it suitable for out-of-distribution fine-tuning test,
while the other split is more suitable for in-distribution test.

Fig. 4. Representative visual results on KITTI and Sintel test sets by the origi-
nal [46] and our newly trained PWC-Net (both fine-tuned). Our newly trained PWC-
Net can better recover fine details, e.g., the traffic sign (top) and the small birds and
the dragon’s right wing (green is correct, bottom).
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First frame Ground truth RAFT SeparableFlow RAFT-it (ours)

“Ambush 1” 0 (AEPE ↓) 25.69 13.06 24.12

“Market 4” 0 (AEPE ↓) 9.07 10.38 8.18

Fig. 5. Visual comparison on two challenging sequences from the Sintel test set. All
2-frame methods make large errors due to heavy snow on “Ambush 1”, while RAFT
models have larger errors. For the fast moving dragon under motion blur in “Mar-
ket 4”, the newly trained RAFT-it can better resolve the foreground motion from the
background than SeparableFlow and the previously trained RAFT [44].

Table 1 summarizes the 2-frame results of previously published PWC-Net, IRR-
PWC, and RAFT, our newly trained models, and several recent methods.

MPI Sintel. Our newly trained PWC-Net-it and IRR-PWC-it are substantially
better than the respective, published models, with up to a 1 pixel reduction in
average end-point error (AEPE) on the Sintel benchmark. As shown in Fig. 4,
PWC-Net-it can much better recover fine motion details than the published
one [46]. PWC-Net-it and IRR-PWC-it are even more accurate than some recent
models [56,64,55] on the more challenging final pass, while being about 3× faster
during inference.

Our newly trained RAFT-it is moderately better than the published RAFT [44,48].
Among all published 2-frame methods it is only less accurate than Separable-
Flow [62] while being more than 2× faster in inference. Figure 5 visually com-
pares SeparableFlow and our newly trained RAFT on two challenging sequences
from Sintel test. RAFT-it makes a larger error on “Ambush 1” under heavy
snow, but it correctly predicts the motion of the dragon and the background on
“Market 4”. To some degree, these comparisons with recent methods compare
the effect of innovations on architecture with training techniques, suggesting that
there may be large gains for innovations on training techniques.

KITTI 2015. The newly trained PWC-Net-it and IRR-it are substantially better
than the respective, published models, with more than 2 percent reduction in
average outlier percentage (Fl-all) on the KITTI 2015 benchmark. Both are also
more accurate than some more recent models [31,55,56,64].

Middlebury. At the time of writing, our newly trained RAFT-it is ranked first on
Middlebury for both end-point and angular errors, with the avg. rank being 1.7
and 3.9, respectively. It is the first deep learning based approach to outperform
traditional methods on Middlebury, such as NNF-Local [6] (avg. rank 5.8 and
7.4), which had been the top-performing method since 2013.



Disentangling Architecture and Training for Optical Flow 13

VIPER. Our newly trained RAFT-it obtains 73.6 for the mean weighted area
under the curve (WAUC) over all conditions, v.s. 69.5 by RAFT RVC [42].

3.5 Higher-resolution Input, Inference Time and Memory

We perform qualitative evaluations on 2K and 4K resolution inputs from Davis [33].
For 2K, all models produce similarly high quality flow fields, please see the sup-
plementals for images. In Fig. 6, we present optical flow results for the newly
trained IRR-PWC-it and PWC-Net-it on 4K DAVIS samples. Overall, the flows
are comparable, with IRR-PWC-it showing slightly better motion smoothness
on the jumping dog (top row in Fig. 6).

Table 6 presents a comparison of inference times and memory consumption
on an NVIDIA V100 GPU. To account for initial kernel loading, we report the
average of 100 runs. For each model, we test three spatial sizes: 1024×448 (1K),
1920×1080 (Full HD/2K), and 3840×2160 (4K). PWC-Net and IRR-PWC show
comparable inference time. RAFT, in contrast, is 4.3× and 14.4× slower in 1K
and 2K, respectively. In terms of memory, PWC-Net and IRR-PWC , again,
show comparable performance. The increase in memory usage from 1K to 2K
is almost linear for PWC-Net and IRR-PWC. On the other hand, RAFT uses
more memory. Its footprint grows almost quadratically, by 3.8×, from 1K to 2K,
and at 4K resolution, RAFT leads to out-of-memory (OOM).

First frame PWC-it IRR-it

Fig. 6. Visual results on Davis 4K. We show only PWC-Net-it and IRR-PWC-it
results since RAFT runs out of memory on the 16GB GPU.

3.6 Discussion

What makes RAFT better than PWC-Net? Our results show that several factors
contribute to the performance gap between the published RAFT (5.10% Fl-all
on KITTI 2015, see Table 1) and PWC-Net (7.72%) methods, including training
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Inference Time (msec)↓ Peak Memory (GB)↓
1024×448 Full HD 4K 1024× 448 Full HD 4K

PWC-Net 20.61 28.77 63.31 1.478 2.886 7.610
IRR-PWC 24.71 33.67 57.59 1.435 2.902 8.578
RAFT 107.38 499.63 n/a 2.551 9.673 OOM

Table 6. Inference time and memory usage for 1024×448, Full HD (1920×1080) and
4K (3840×2160) frame sizes, averaged over 100 runs on an NVIDIA V100 GPU.

techniques, datasets and architecture innovations. Recent training techniques
and datasets significantly improve PWC-Net (5.54%) and IRR-PWC (5.73%).
The newly trained models are competitive with published RAFT (5.10%) per-
formance while maintaining their advantages in speed and memory requirements
during inference. These insights also yield a newly trained RAFT-it model that
sets a new state of the art on Middlebury at the time of writing. We conclude
that innovations on training techniques and datasets are another fruitful path to
performance gains, for both old and new optical flow architectures. After com-
pensating for the differences in training techniques and datasets, we can identify
the true performance gap between PWC-Net and RAFT that is solely due to
architecture innovations (5.54% vs. 4.31% Fl-all on KITTI 2015). Future work
should examine which specific architecture elements of RAFT are critical, and
whether they may be transferable to other models.

No model to rule all. Our study also shows that there are several factors to
consider when choosing an optical flow model, including flow accuracy, train-
ing time, inference time, memory cost and application scenarios. RAFT has the
highest accuracy and faster convergence in training, but is slower at test time
and has a high memory footprint. PWC-Net and IRR-PWC are more appealing
for applications that require fast inference, low memory cost and high-resolution
input. PWC-Net may be suitable for applications with small motions. Every
model entails trade-offs between different requirements; no single model is supe-
rior on all metrics. Thus, researchers may wish to focus on specific metrics for
improvement, thereby providing practitioners with more options.

4 Conclusions

We have evaluated three prominent optical flow architectures with improved
training protocols and observed surprising and significant performance gains.
The newly trained PWC-Net-it and IRR-PWC-it are more accurate than the
more recent Flow1D model on KITTI 2015, while being about 3× faster during
inference. Our newly trained RAFT-it sets a new state of the art and is the first
deep learning approach to outperform traditional methods on the Middlebury
benchmark. These results demonstrate the benefits of decoupling the contribu-
tions of model architectures, training techniques, and datasets to understand the
sources of performance gains.
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30. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: Proc. CVPR (2016) 4, 9

31. Mehl, L., Beschle, C., Barth, A., Bruhn, A.: An anisotropic selection scheme for
variational optical flow methods with order-adaptive regularisation. In: Interna-
tional Conference on Scale Space and Variational Methods in Computer Vision.
pp. 140–152. Springer (2021) 1, 3, 4, 12

32. Meister, S., Hur, J., Roth, S.: Unflow: Unsupervised learning of optical flow with
a bidirectional census loss. In: AAAI (2018) 4

33. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: CVPR (2016) 6, 13

34. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.
In: Proc. CVPR (2017) 3

35. Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M.J.:
Competitive collaboration: Joint unsupervised learning of depth, camera motion,
optical flow and motion segmentation. In: CVPR. pp. 12240–12249 (2019) 3

36. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 2213–2222 (2017) 4

37. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: IEEE In-
ternational Conference on Computer Vision, ICCV 2017, Venice, Italy, Octo-
ber 22-29, 2017. pp. 2232–2241 (2017). https://doi.org/10.1109/ICCV.2017.243,
https://doi.org/10.1109/ICCV.2017.243 9

https://doi.org/10.1109/ICCV.2017.243
https://doi.org/10.1109/ICCV.2017.243


Disentangling Architecture and Training for Optical Flow 17

38. Shi, H., Zhou, Y., Yang, K., Yin, X., Wang, K.: Csflow: Learning optical flow via
cross strip correlation for autonomous driving. arXiv preprint arXiv:2202.00909
(2022) 1, 3, 4

39. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How
to train your vit? data, augmentation, and regularization in vision transformers.
arXiv preprint arXiv:2106.10270 (2021) 5

40. Stone, A., Maurer, D., Ayvaci, A., Angelova, A., Jonschkowski, R.: Smurf: Self-
teaching multi-frame unsupervised raft with full-image warping. In: CVPR. pp.
3887–3896 (2021) 4

41. Stroud, J., Ross, D., Sun, C., Deng, J., Sukthankar, R.: D3d: Distilled 3d networks
for video action recognition. In: CVPR. pp. 625–634 (2020) 3

42. Sun, D., Herrmann, C., Jampani, V., Krainin, M., Cole, F., Stone, A., Jon-
schkowski, R., Zabih, R., Freeman, W.T., Liu, C.: TF-RAFT: A tensorflow im-
plementation of raft. In: ECCV Robust Vision Challenge Workshop (2020) 13

43. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their princi-
ples. In: CVPR. pp. 2432–2439. IEEE (2010) 3

44. Sun, D., Vlasic, D., Herrmann, C., Jampani, V., Krainin, M., Chang, H., Zabih,
R., Freeman, W.T., Liu, C.: Autoflow: Learning a better training set for optical
flow. In: CVPR (2021) 3, 4, 6, 9, 10, 12

45. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: CVPR (June 2018) 1, 3, 4

46. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: An
empirical study of cnns for optical flow estimation. IEEE TPAMI (2019) 2, 3, 4,
6, 11, 12

47. Szeliski, R.: Computer vision: algorithms and applications. Springer Science &
Business Media (2010) 3

48. Teed, Z., Deng, J.: RAFT: Recurrent all-pairs field transforms for optical flow. In:
Proc. ECCV (2020) 1, 3, 12

49. Teed, Z., Deng, J.: Raft-3d: Scene flow using rigid-motion embeddings. In: CVPR.
pp. 8375–8384 (2021) 1

50. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021) 5

51. Wan, Z., Mao, Y., Dai, Y.: Praflow rvc: Pyramid recurrent all-pairs field trans-
forms for optical flow estimation in robust vision challenge 2020. arXiv preprint
arXiv:2009.06360 (2020) 1, 4

52. Wang, J., Zhong, Y., Dai, Y., Zhang, K., Ji, P., Li, H.: Displacement-invariant
matching cost learning for accurate optical flow estimation. Advances in Neural
Information Processing Systems 33, 15220–15231 (2020) 3

53. Wightman, R., Touvron, H., Jégou, H.: Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476 (2021) 5

54. Xiao, T., Yuan, J., Sun, D., Wang, Q., Zhang, X.Y., Xu, K., Yang, M.H.: Learnable
cost volume using the cayley representation. In: ECCV. pp. 483–499. Springer
(2020) 1, 4

55. Xu, H., Yang, J., Cai, J., Zhang, J., Tong, X.: High-resolution optical flow from
1d attention and correlation. In: ICCV (2021) 1, 2, 3, 4, 12

56. Yang, G., Ramanan, D.: Volumetric correspondence networks for optical flow. In:
NeurIPS. vol. 32, pp. 794–805 (2019) 3, 8, 10, 11, 12

57. Yang, G., Zhao, H., Shi, J., Deng, Z., Jia, J.: SegStereo: Exploiting semantic in-
formation for disparity estimation. In: Proc. ECCV (2018) 3



18 Sun et al.

58. Yin, Z., Darrell, T., Yu, F.: Hierarchical discrete distribution decomposition for
match density estimation. In: The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (June 2019) 3

59. Yu, H., Sun, S., Yu, H., Chen, X., Shi, H., Huang, T.S., Chen, T.: Foal: Fast online
adaptive learning for cardiac motion estimation. In: CVPR. pp. 4313–4323 (2020)
5

60. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: Unsupervised learning of
optical flow via brightness constancy and motion smoothness. In: ECCV. pp. 3–10.
Springer (2016) 4

61. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l 1 optical
flow. In: DAGM (2007) 3

62. Zhang, F., Woodford, O.J., Prisacariu, V.A., Torr, P.H.: Separable flow: Learning
motion cost volumes for optical flow estimation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 10807–10817 (2021) 1, 3, 4, 12

63. Zhao, H., Gan, C., Ma, W.C., Torralba, A.: The sound of motions. In: CVPR. pp.
1735–1744 (2019) 3

64. Zhao, S., Sheng, Y., Dong, Y., Chang, E.I.C., Xu, Y.: Maskflownet: Asymmet-
ric feature matching with learnable occlusion mask. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2020) 2, 3, 12

65. Zhao, X., Pang, Y., Zhang, L., Lu, H., Zhang, L.: Suppress and balance: A simple
gated network for salient object detection. In: ECCV. pp. 35–51. Springer (2020)
3


	Disentangling Architecture and Training for Optical Flow

