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Abstract. Recent optical flow methods are almost exclusively judged
in terms of accuracy, while their robustness is often neglected. Although
adversarial attacks offer a useful tool to perform such an analysis, current
attacks on optical flow methods focus on real-world attacking scenarios
rather than a worst case robustness assessment. Hence, in this work, we
propose a novel adversarial attack – the Perturbation-Constrained Flow
Attack (PCFA) – that emphasizes destructivity over applicability as a
real-world attack. PCFA is a global attack that optimizes adversarial
perturbations to shift the predicted flow towards a specified target flow,
while keeping the L2 norm of the perturbation below a chosen bound.
Our experiments demonstrate PCFA’s applicability in white- and black-
box settings, and show it finds stronger adversarial samples than previous
attacks. Based on these strong samples, we provide the first joint ranking
of optical flow methods considering both prediction quality and adversar-
ial robustness, which reveals state-of-the-art methods to be particularly
vulnerable. Code is available at https://github.com/cv-stuttgart/PCFA.

Keywords: Optical Flow · Robustness · Global Adversarial Attack ·
L2 Constrained Perturbation

1 Introduction

Optical flow describes the apparent motion between subsequent frames of an im-
age sequence. It has numerous applications ranging from action recognition [42]
and video processing [46] to robot navigation [53] and epidemic spread analy-
sis [34]. Over the past decade, the quality of optical flow methods has improved
dramatically due to methodological advances: While early optical flow methods
were mostly variational [4, 6, 7, 16, 36], today’s top methods are based on neural
networks [17,19,29,37,39,49,50,52].

Up to date, theses methodological advances are mainly driven by the quality
scores on a few major benchmarks [2,3,9,14,18,23] that measure how well the cal-
culated flow matches a known ground truth. Given that optical flow is also used
in the context of medical applications [40,51] and autonomous driving [10,45], it
is surprising that robustness plays only a subordinated role in the development
of new methods. In fact, robustness is rarely assessed in the literature and only
few methods were developed with robustness as explicit goal [4, 21,22,35,43].
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Initial, ε2 = 0 ε2 ≤ 5 · 10−4 ε2 ≤ 5 · 10−3 ε2 ≤ 5 · 10−2
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Fig. 1. Robustness evaluation for RAFT [39]. Our Perturbation-Constrained Flow At-
tack trains flow-erasing perturbations δt, whose L2 norm is controlled via ε2.

A possible explanation for this blind spot is the ambiguity of the term ro-
bustness as well as its challenging quantification for optical flow methods. In this
work we therefore focus on an improved measure for quantifying the robustness
by means of adversarial attacks. Our choice is motivated by the recently demon-
strated vulnerability of optical flow networks to malicious input changes [30].
This vulnerability clearly suggests that adversarial robustness should comple-
ment the qualitative performance when evaluating optical flow methods.

Adversarial attacks for optical flow are a very recent field of research with
only two attacks available so far. While Ranjan et al. [30] proposed a local attack
in terms of a patch-based approach, Schrodi et al. [32] introduced a global attack
inspired by attacks for classification. This raises the question whether these two
attacks are sufficiently strong to meaningfully measure adversarial robustness.
Answering it is difficult, as clear definitions for attack strength and adversarial
robustness are currently missing in the context of optical flow.

In the context of classification, however, these quantities are already defined.
There, adversarial networks aim to find small perturbations to the input that
lead to its misclassification [15]. Hence, stronger attacks need smaller input per-
turbations to cause an incorrect class. While classification networks output a
finite amount of discrete classes, optical flow methods predict a field of 2D flow
vectors. Using a small perturbation makes it unlikely that one can create an
arbitrarily large deviation from the unperturbed flow. Therefore, a sensible defi-
nition for a strong attack is “an attack that finds the most destructive adversarial
perturbation from all perturbations under a specified bound”.

This subtle change in the definition of attack strength for optical flow sig-
nificantly influences the attack design: For a strong attack, an efficient way to
bound the input perturbation is required; see Fig 1. Previous attacks for opti-
cal flow either lack effective bounds for their adversarial perturbations [32], or
provide a weak adversarial attack [30] to enable real-world applicability. More
effective attacks are therefore required for a rigorous quantification of adversarial
robustness for optical flow. In this context, we make the following contributions:

1. We formalize a generic threat model for optical flow attacks and propose
measures for attack strength and adversarial robustness, to improve the com-
parability of robustness evaluations and among adversarial attacks.
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2. We present the Perturbation-Constrained Flow Attack (PCFA), a strong,
global adversarial attack for optical flow that is able to limit the perturba-
tion’s L2 norm to remain within a chosen bound.

3. With PCFA, we generate joint and universal global perturbations.
4. We experimentally demonstrate that PCFA finds stronger adversarial sam-

ples and is therefore better suited to quantify adversarial robustness than
previous optical flow attacks.

5. We provide the first ranking of current optical flow methods that combines
their prediction quality on benchmarks [9, 23] with their adversarial robust-
ness measured by the strongest configuration of PCFA.

2 Related Work

In the following, we mainly focus on related work in the field of optical flow.
Thereby, we cover the assessment of robustness, the use of adversarial attacks
as well as the design of neural networks. Further related work, also including
adversarial attacks for classification, is discussed in our short review in Sec. 3.

Robustness Assessment for Optical Flow. For assessing the robustness of
optical flow methods, different concepts have been proposed in the literature. On
the one hand, early optical flow methods investigated robustness with regard to
outliers [4], noise [6,8] or illumination changes [43]. On the other hand, the Ro-
bust Vision Challenge1 quantifies robustness as the generalization of a method’s
qualitative performance across datasets. In contrast, our work relies on a dif-
ferent concept. We consider adversarial robustness [15, 38], which is motivated
by the Lipschitz continuity of functions. The Lipschitz constant is frequently
used as a robustness measure for neural networks, where a small Lipschitz con-
stant implies that the output does only change to the same extend as the input.
While finding the exact Lipschitz constant for a neural network is NP-hard [44],
bounding it is feasible. For upper bounds on the Lipschitz constant, analytic
architecture-dependent considerations are required that are generally difficult –
especially for such diverse architectures as in current flow networks. In contrast,
finding lower bounds is possible by performing adversarial attacks [11]. Hence,
this work uses adversarial attacks to quantify robustness. Thereby, we aim to
find input perturbations that cause particularly strong output changes.

Adversarial Attacks for Optical Flow. To the best of our knowledge, there
are only two works that propose adversarial attacks tailored to optical flow net-
works. Ranjan et al. [30] developed the first adversarial attack, which causes
wrong flow predictions by placing a colorful circular patch in both input frames.
To be applicable in the real world, their patches are trained with many con-
straints (e.g. location and rotation invariances, patches are circular, coherent
regions), which comes at the cost of a reduced attack strength. Recently, Schrodi
et al. [32] introduced a less constrained global attack on optical flow. It is based
on the I-FGSM [20] attack for classification that was developed for speed rather

1 http://www.robustvision.net/

http://www.robustvision.net/
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than attack strength and does not effectively limit the perturbation size2. Both
attacks have their own merits, i.e. speed or real world applicability, but are con-
sequently not fully suitable for a rigorous robustness assessement. In contrast,
our novel PCFA has a different purpose: Unlike previous attacks, it does not
compromise attack strength, thus enabling an effective robustness quantifica-
tion.

In the context of vision problems similar to optical flow, Wong et al. [47] suc-
cessfully attacked stereo networks with I-FGSM [20] and its momentum variant
MI-FGSM [13]. Moreover, Anand et al. [1] proposed an approach to secure op-
tical flow networks for action recognition against adversarial patch attacks by a
preceding filtering step that detects, removes and inpaints the attacked location.

Neural Networks for Optical Flow. Regarding neural networks for optical
flow, related work is given by those approaches for which we later on evaluate
the robustness, i.e. the methods in [17, 19, 29, 37, 39]. These approaches are rep-
resentatives of the following three classes of networks: classical, pyramidal and
recurrent networks. Classical networks such as FlowNet2 [17] rely on a stacked
encoder-decoder architecture with a dedicated feature extractor and a subse-
quent correlation layer. More advanced pyramidal networks such as SpyNet [29]
and PWCNet [37] estimate the optical flow in coarse-to-fine manner using initial-
izations from coarser levels, by warping either the input frames or the extracted
features. Finally, state-of-the-art recurrent networks such as RAFT [39] and
GMA [19] perform iterative updates that rely on a sampling-based hierarchical
cost volume. Thereby GMA additionally considers globally aggregated motion
features to improve the performance at occlusions.

3 Adversarial Attacks: Foundations and Notations

Adversarial attacks uncovered the brittle performance of neural networks on
slightly modified input images, so called adversarial samples [15, 38]. Different
ways to train adversarial samples exist, which lead to different attack types. Tar-
geted attacks perturb the input to induce a specified target output. Compared
to untargeted attacks, they are considered the better choice for strong attacks,
since they can simulate the former ones by running attacks on all possible targets
and taking the most successful perturbation [11]. Global attacks [11, 13, 15, 20]
allow any pixel of the image to be disturbed within a norm bound, while patch
attacks [5, 30] perturb only pixels within a certain neighborhood. So called uni-
versal perturbations are particularly transferable and have a degrading effect on
multiple images rather than being optimized for a single one [12,24,30,32,33]. As
they affect a class of input images, their effect on a single image is often weaker.

2 FGSM [15] and I-FGSM [20] limit the perturbation size below ε∞ by performing only
so many steps of a fixed step size τ , that exceeding the norm bound is impossible. To
this end, the number of steps is fixed to N = ⌊ ε∞

τ
⌋, which comes down to a one-shot

optimization. Additionally, this “early stopping” reduces the attack strength as it
prevents optimizing in the vicinity of the bound.
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Since adversarial attacks were first used in the context of classification net-
works [15,38], many concepts go back to this field. Hence, we briefly review those
attacks before we discuss attacks for optical flow in more detail.

Classification. Szegedy et al. [38] provided the first optimization formulation
for a targeted adversarial attack to find a small perturbation δ ∈ Rm to the
input x ∈ Rm, such that a classifier C outputs the incorrect label t:

min ∥δ∥2 s.t. C(x+ δ) = t , and x+ δ ∈ [0, 1]m . (1)

Many adversarial attacks were proposed to solve problem (1), with varying focus
and applicability [5, 11, 13, 15, 20]. Among them, the following two methods are
most relevant to our work: The Fast Gradient Sign Method (FGSM) [15] method
is used for a fast generation of adversarial samples; More recent variations include
multiple iterations [20] and momentum [13]. In contrast, the C&W attack [11]
emphasizes perturbation destructivity by encouraging the target over all other
labels in the optimization (1), while minimizing the adversarial perturbation’s
L2 norm. For a broader overview of classification attacks, we refer to the review
article of Xu et al. [48].

Optical Flow. Given two subsequent frames It and It+1 ∈ RI of an image
sequence, optical flow describes the apparent motion of corresponding pixels in
terms of a displacement vector field over the image domain I = M ×N ×C,
where C is the number of channels per frame. Subsequently, we specify three
flow fields: the ground truth flow field fg = (ug, vg) ∈ RM×N×2, the unattacked
or initial optical flow f ∈ RM×N×2 that comes from a given flow network with
two input frames, and the perturbed or adversarial flow f̌ ∈ RM×N×2 from the
same network after adding adversarial perturbations δt, δt+1 ∈ RI to the inputs.

The local Patch Attack by Ranjan et al. [30] optimizes universal patches

argmin
δ

L(f̌ , f t) s.t. δt = δt+1 = δ , δ is patch and δ ∈ [0, 1]I (2)

over multiple frames. The cosine similarity serves as loss function L to minimize
the angle between f̌ and f t, targeting the negative initial flow f t = −f . To
make the circular perturbations location and rotation invariant, the respective
transformations are applied before adding the perturbation to the frames.

In contrast, the global flow attack by Schrodi et al. [32] uses J steps of I-
FGSM [20] to generate adversarial perturbations ∥δt, δt+1∥∞ ≤ ε∞ for single
frames as

δ(j+1)
z = δ(j)z − ε∞

J
· sgn(∇Iz+δ

(j)
z
L(f̌ , f t)) , z = t, t+ 1 , j = 1, . . . , J. (3)

For universal perturbations, it uses the loss function and training from [30].

While we also develop a global attack like [32], we do not base it on I-FGSM
variants as they quickly generate non-optimal perturbations. Instead, we develop
a novel attack for optical flow, and explicitly optimize it for attack strength.
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4 A Global Perturbation-Constrained Adversarial Attack
for Optical Flow Networks

As motivated in the introduction, strong flow attacks require refined notions
for attack strength and adversarial robustness, which are discussed first. Based
on these refined notions, we present the Perturbation-Constrained Flow Attack
(PCFA) that optimizes for strong adversarial perturbations while keeping their
L2 norm under a specified bound. Moreover, with joint and universal perturba-
tions we discuss different perturbation types for optical flow attacks.

4.1 Attack Strength and Adversarial Robustness for Optical Flow

In the context of classification networks, a strong adversarial sample is one that
causes a misclassification while being small, see Problem (1). As optical flow
methods do not produce discrete classes but flow fields f ∈ RM×N×2, significantly
larger adversarial perturbations δt, δt+1 would be required to induce a specific
target flow f t. Further it is unclear whether a method can output a certain
target. What can be controlled, however, is the perturbation size. Therefore, a
useful threat model for optical flow is one that limits the perturbation size to ε
and minimizes the distance between attacked flow and target at the same time:

argmin
δt,δt+1

L(f̌ , f t) s.t. ∥δt, δt+1∥ ≤ ε , Iz + δz ∈ [0, 1]I , z = t, t+ 1 . (4)

Because the used norms and bounds are generic in this formulation, previous
flow attacks fit into this framework: The Patch Attack by Ranjan et al. [30]
poses a L0 bound on the patch by limiting the patch size, while the I-FGSM
flow attack by Schrodi et al. [32] can be seen as a L∞ bound on the perturbation.

Quantifying Attack Strength. Given that two attacks use the same tar-
gets, norms and bounds, they are fully comparable in terms of effectiveness. For
stronger attacks, the adversarial flow f̌ has a better resemblance to the target
f t. As the average endpoint error AEE (see Eq. (7)) is widely used to quantify
distances between optical flow fields, we propose to quantify attack strength as

AEE(f̌ , f t) for ∥δt, δt+1∥ ≤ ε = Attack Strength.

Quantifying Adversarial Robustness. To assess the general robustness of
a given method, the specific target is of minor importance. A robust method
should not produce a largely different flow prediction for slightly changed input
frames, which makes the distance between adversarial flow f̌ and unattacked
flow f a meaningful metric. This distance is small for robust methods and can
be quantified with the AEE. Therefore we propose to quantify the adversarial
robustness for optical flow as

AEE(f̌ , f) for ∥δt, δt+1∥ ≤ ε = Adversarial Robustness.
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This definition of adversarial robustness does intentionally not include a
comparison to the ground truth flow fg as in [29, 32] for two reasons. First,
a ground truth comparison measures the flow quality, which should be kept
separate from robustness because these quantities likely hinder each other [41].
Secondly, changed frame pairs will have another ground truth, but it is unclear
what this ground truth for the attacked frame pairs looks like. While construct-
ing a pseudo ground truth for patch attacks can be possible3, the required ground
truth modifications for global attacks are in general unknown. For those reasons,
we suggest to report quality metrics and adversarial robustness separately.

4.2 The Perturbation-Constrained Flow Attack

Starting with the threat model for optical flow (4), we opt for global perturba-
tions to generate strong adversarial samples. To obtain a differentiable formula-
tion, the perturbation is bounded in the L2 norm. Our Perturbation-Constrained
Flow Attack (PCFA) then solves the inequality-constrained optimization

argmin
δt,δt+1

L(f̌ , f t) s.t. ∥δt, δt+1∥2 ≤ ε2
√
2I, Iz+δz∈ [0, 1]I, z = t, t+1. (5)

We use the additional factor
√
2I to make the perturbation bound independent

of the image size I = M ×N ×C. This way, ε2 = 0.01 signifies an average
distortion of 1% of the frames’ color range per pixel. To solve (5), four aspects
need consideration: (i) How to implement the inequality constraint ∥δt, δt+1∥2 ≤
ε
√
2I, (ii) how to choose the loss function L, (iii) how to choose the target f t

and (iv) how to ensure the box constraint Iz + δz ∈ [0, 1]I , z = t, t+1.

Inequality Constraint. We use a penalty method with exact penalty func-
tion [27] to transform the inequality-constrained problem (5) into the following

unconstrained optimization problem for δ̂ = δt, δt+1:

argmin
δ̂

ϕ(δ̂, µ) , ϕ(δ̂, µ) = L(f̌ , f t) + µ|c(δ̂)| . (6)

The penalty function c linearly penalizes deviations from the constraint ∥δ̂∥2 ≤
ε̂2 = ε2

√
2I and is otherwise zero: c(δ̂) = max(0, ∥δ̂∥2−ε̂2) = ReLU(∥δ̂∥2−ε̂2). If

the penalty parameter µ ∈ R approaches infinity, the unconstrained problem (6)
will take its minimum within the specified constraint. In practice, it is sufficient
to choose µ large. The selected exact penalty function ϕ is nonsmooth at ∥δ̂∥2 =
ε̂2, which makes its optimization potentially problematic. However, formulating
the problem with a smooth penalty function would require to solve a series
of optimization problems and is therefore computationally expensive [27]. We
solve (6) directly with the L-BFGS [26] optimizer, which worked well in practice.

Moreover, in our implementation we use the squared quantities ∥δ̂∥22 ≤ ε̂22 for

the constraint to avoid a pole in the derivative of ∥δ̂∥2 at δ̂ = 0.

3 Ranjan et al. [30] generate a pseudo ground truth for their attack with static patches
by prescribing a zero-flow at the patch locations.
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Loss Functions. The loss function L should quantify the proximity of adver-
sarial and target flow. The average endpoint error (AEE) is a classical measure
to quantify the quality of optical flow as

AEE(f̌ , f t) =
1

MN

∑
i∈M×N

∥f̌i − f t
i ∥2 . (7)

However, its derivative is undefined if single components of the adversarial- and
target flow coincide, i.e. f̌i = f t

i . In practice, we rarely observed problems for
reasonably small perturbations bounds ε̂2, which prevent a perfect matching.
The mean squared error (MSE) circumvents this issue due to its squared norm

MSE(f̌ , f t) =
1

MN

∑
i∈M×N

∥f̌i − f t
i ∥22 , (8)

but is less robust to outliers as deviations are penalized quadratically. Previous
optical flow attacks [30,32] use the cosine similarity (CS)

CS(f̌ , f t) =
1

MN

∑
i∈M×N

⟨f̌i, f t
i ⟩

∥f̌i∥2 · ∥f t
i ∥2

. (9)

Since this loss only measures angular deviations between flows, it fails to train
adversarial perturbation where the adversarial flow or the target are zero.

Target Flows. In principle, any flow field can serve as target flow. Ranjan et
al. [30] flip the flow direction for a negative-flow attack f t = −f . However, this
target strongly depends on the initial flow direction. As input agnostic alterna-
tive, we propose the zero-flow attack with f t = 0. It is especially useful to train
universal perturbations that are effective on multiple frames.

Ensuring the Box Constraint.During the optimization, the perturbed frames
should remain within the allowed value range, e.g. return a valid color value.
All previous flow attacks use clipping that crops the perturbed frames to their
allowed range after adding δt, δt+1. The change of variables (COV) [11] is an
alternative approach that optimizes over the auxiliary variables wt, wt+1 instead
of δt, δt+1 as

δz =
1

2
(tanh(wz) + 1)− Iz , z = t, t+ 1 . (10)

This optimizes wt, wt+1 ∈ [−∞,∞]I , and afterwards maps them into the allowed
range [0, 1]I for the perturbed frames. Our evaluation considers both approaches.

4.3 Joint and Universal Adversarial Perturbations

Out of the box, the optimization problem (6) holds for disjoint perturbations, re-
sulting in two perturbations δt, δt+1 for an input frame pair It, It+1. Let us now
discuss optimizing joint perturbations for both input frames and universal per-
turbations for multiple input pairs; their difference is illustrated in Fig. 2. By at-
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Frame-Specific Universal

Disjoint

δt, δt+1 δt, δt+1

Joint

δt,t+1 δt,t+1

Fig. 2. Illustration of the differences between disjoint and joint as well as frame-specific
and universal adversarial perturbations for attacking optical flow networks.

tacking both frames or several frame pairs simultaneously, these perturbations
have to fulfill more constraints and hence typically offer a weaker performance.

Joint Adversarial Perturbations. In case of joint adversarial perturbations,
a common perturbation δt,t+1 is added to both input frames. In its current
formulation, the COV box constraint is only possible for disjoint perturbations.

Universal Adversarial Perturbations. Training universal instead of frame-
specific perturbations is straightforward using our optimization (6). Additional
projection operations to ensure the norm bound as in other schemes [12,24,30,32,
33] are unnecessary, because PCFA directly optimizes perturbations of limited
size. Similar to [33], we refine adversarial perturbations on minibatches. With
this scheme, we train disjoint δt, δt+1 and joint δt,t+1 universal perturbations.

4.4 Design Overview and Comparison to Literature

Tab. 1 summarizes our method design-wise and compares it to the other optical
flow attacks from the literature. PCFA is the first attack that allows an effective
L2 norm bound for the perturbation. In the evaluation, we provide an extensive
analysis of its performance for different perturbation types, losses and targets.

Table 1. Comparison of adversarial optical flow attacks, configurations as stated in
the respective publications. Clip = Clipping, A = AAE, M = MSE, C = CS.

Attack Type ∥δ∥∗
Perturbation Types

Losses Box Constr.
δt, δt+1 δt,t+1 δt, δt+1 δt,t+1

Patch Att. [30] Patch L0 – – – ✓ C Clip
I-FGSM [32] Global L∞ ✓ – ✓ – C Clip
PCFA (ours) Global L2 ✓ ✓ ✓ ✓ A, M, C Clip, COV
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5 Experiments

Our evaluation addresses three distinct aspects: First, we identify the strongest
PCFA configuration by evaluating loss functions, box constraints and targets,
and compare the resulting approach to I-FGSM [32]. Secondly, we assess the
strength of PCFA’s joint and universal perturbations in white- and black box
attacks, which includes a comparison with the Patch Attack from [29]. Finally,
based on PCFA’s strongest configuration, we perform a common evaluation of
optical flow methods regarding estimation quality and adversarial robustness.

At https://github.com/cv-stuttgart/PCFA we provide our PCFA implemen-
tation in PyTorch [28]. It is evaluated it with implementations of FlowNet2 [17]
from [31], PWCNet [37], SpyNet [29] from [25], RAFT [39] and GMA [19] on the
datasets KITTI 2015 [23] and MPI-Sintel final [9]. A full list of parameters and
configurations for all experiments is in the supplementary material, Tab. A1.

5.1 Generating Strong Perturbations for Individual Frame Pairs

In the following we consider disjoint non-universal perturbations δt, δt+1 on the
KITTI test dataset. This allows us to (i) identify the strongest PCFA config-
uration, to (ii) show that PCFA can be used to target specific flows, and to
(iii) compare its strength to I-FGSM [32]. We solve PCFA from Eq. (6) with 20
L-BFGS [26] steps per frame pair.

Loss and Box Constraint. Tab. 2 summarizes the attack strength AEE(f̌ , f t)
for all combinations of losses and box constraints on the targets f t ∈ {0,−f}
with ε2 = 5 · 10−3 for RAFT. Compared to clipping, the change of variables
(COV) always yields a stronger attack, i.e. a smaller distance to the target when
using the same loss. Despite its problematic derivative, the average endpoint
error (AEE) reliably outperforms the other losses, while the cosine similarity
(CS) that is used in all previous flow attacks [30,32] performs worst. Also, the CS
loss fails on the zero-flow target where perturbations keep their initial values (cf.
Supp. Tab. A2). Since AEE with COV yields the strongest attack independent
of the target, we select this configuration for the remaining experiments.

Targets. Next, we investigate how well PCFA can induce a given target flow
for different perturbation sizes. Fig. 1 depicts the perturbed input frames, nor-
malized adversarial perturbations and resulting flow fields for a zero-flow attack

Table 2. PCFA attack strength AEE(f̌ , f t) on the KITTI test dataset for different loss
functions, targets and box constraints on RAFT. Small values indicate strong attacks.

f t = 0 f t = −f

AEE MSE CS AEE MSE CS

Clipping 3.76 10.51 32.37 22.48 38.57 129.44
COV 3.54 7.46 32.37 18.84 34.82 86.00

https://github.com/cv-stuttgart/PCFA


Perturbation-Constrained Adversarial Attack for Optical Flow Robustness 11

Initial Flow ε2 = 5 · 10−4 ε2 = 5 · 10−3 ε2 = 5 · 10−2

FlowNet2

SpyNet

RAFT

Fig. 3. Visual comparison of PCFA with zero-flow target on different optical flow meth-
ods for increasing perturbation sizes ε2. White pixels represent zero flow.

Zero-Flow Negative-Flow Bamboo2-41 [9]

f Init.
Target

FlowNet2

SpyNet

RAFT

Fig. 4. Visual comparison of PCFA attacked flows with different targets for multiple
optical flow methods. Choosing ε2 = 10−1 allows to come close to the respective target.

with increasing perturbation size on RAFT. Similarly, Fig. 3 and Supp. Fig. A1
show resulting flow fields for the other networks. Evidently, a perturbation with
larger L2 norm ε2 reaches a better resemblance between the adversarial flow pre-
diction and the all-white zero-flow target. This is expected, as larger deviations
in the input should result in larger output changes. However, it is remarkable
that changing color values by 5% on average (ε2 = 5 · 10−2) suffices to erase the
predicted motion. Moreover, not only the zero-flow but also other targets can be
induced with PCFA. This is illustrated in Fig. 4 and Supp. Fig. A2. Note that
the final proximity to the target mainly depends on its initial distance to the
predicted flow field, as close targets are easier to reach.

Comparison of PCFA and I-FGSM. Next, we compare the performance
of PCFA and I-FGSM [32] on all networks over a range of perturbations ε2 ∈
{5·10−4, 10−3, 5·10−3, 10−2, 5·10−2}. We configure I-FGSM as in [32] and iterate
until ε2 is reached, even though it still optimizes for L∞. Fig. 5 shows the attack
strength over the average perturbation norm, Supp. Fig. A3 the corresponding
adversarial robustness. While small perturbations δt, δt+1 hardly minimize the
distance between adversarial and zero-target flow in Fig. 5, large perturbations
produce almost perfect target matches with a distance of 0. For each tested opti-
cal flow network (color coded) our PCFA (solid) achieves smaller distances than
I-FGSM (dashed) – independent of the perturbation size. Hence, PCFA is the
global attack of choice to generate strong disjoint image-specific perturbations
for optical flow networks.
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Fig. 5. Attack strength with zero-flow target over perturbation size, for PCFA (solid)
and I-FGSM [32] (dashed) on different flow networks. Smaller is stronger.

Table 3. Zero-target proximity for different perturbations, examples in Supp. Fig. A4.

Perturbation Type FlowNet2 SypNet PWCNet RAFT GMA

Frame-Specific
δt, δt+1 3.22 4.54 4.28 3.76 3.59
δt,t+1 4.16 5.84 3.82 5.35 4.78

Universal
δt, δt+1 22.03 14.57 19.13 28.88 28.49

δt,t+1 20.49 14.19 18.99 28.53 27.17

5.2 Joint and Universal Perturbations

Next we investigate PCFA’s potential to generate more general, i.e. joint and uni-
versal, perturbations. Moreover, to assess the transferability of network-specific
joint universal perturbations, we apply them to all tested networks.

Joint and Universal Perturbations (White Box). In the white box setting,
the perturbations are trained and tested on the same model and data. We eval-
uate the attack strength of perturbation types as target proximity AEE(f̌ , f t)
for a zero-flow attack with ε2 = 5 · 10−3 trained on the KITTI test dataset. For
comparability, clipping is used as COV only works for disjoint perturbations.
In Tab. 3, frame-specific perturbations clearly show a better target resemblance
than universal ones for all networks, as they are optimized for frame-specific de-
structivity rather than transferability. Further, disjoint perturbations are more
effective than joint ones when they are frame-specific. However, for universal
perturbations the situation is reversed. This is surprising as disjoint perturba-
tions can adapt to both inputs, which should allow an even better target match.
While joint perturbations might add static structures to simulate zero-flow, we
reproduced this observation also for a negative-flow target (cf. Supp. Tab. A3).

Transferability of Adversarial Perturbations (Black Box). To conclude
the PCFA assessment, we train universal joint perturbations in a black box man-
ner. Per network, we optimize δt,t+1 for 25 epochs (batch size 4) on the training
set, before they are applied to the test set for every network. Tab. 4 shows the ad-
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Table 4. Transferability of KITTI universal perturbations between training and test
dataset and between different networks, measured as adversarial robustness AEE(f̌ , f).
Large values denote a better transferability, smaller values indicate higher robustness.

Test
Train FlowNet2 SpyNet PWCNet RAFT GMA

FlowNet2 [17] 3.29 2.69 2.22 1.17 1.12
SpyNet [29] 0.60 2.25 0.57 0.46 0.42
PWCNet [37] 1.53 2.19 2.99 0.85 0.75
RAFT [39] 2.88 1.87 2.52 3.52 3.19
GMA [19] 3.12 2.14 2.97 3.95 3.81

Table 5. Adversarial robustness with universal perturbations from Patch Attack [30]
and PCFA, with the setup from Tab. 4. Perturbations from the KITTI training set are
applied to the generating network on the KITTI test set, cf. Fig. 6 for perturbations.

Attack FlowNet2 SpyNet PWCNet RAFT GMA

Patch Attack [30] 0.99 1.38 1.37 0.76 0.95
PCFA (ours) 3.29 2.25 2.99 3.52 3.81

versarial robustness w.r.t. universal perturbations for KITTI (see Supp. Tab. A4
for Sintel). Here, we observe great differences between the transferability. While
SpyNet’s perturbation reliably disturbs the predictions for all networks, pertur-
bations for RAFT or GMA mutually cause strong deviations but hardly affect
other networks. Fig. 6 and Supp. Fig. A5 further suggest that networks with
transferable perturbations mainly consider well generalizing, robust features. In
contrast, fine-scaled, non-transferable patterns only affect today’s top methods
RAFT and GMA. Finally, we compare the effectiveness of the global PCFA to
the Patch Attack by Ranjan et al. [30] with a diameter of 102 px in Tab. 5. As
both attack setups perturb a similar amount of information per frame (see sup-
plementary material for details), this supports the initial conjecture that fewer
constraints help to increase PCFA’s effectiveness.

KITTI

Sintel

FlowNet2 [29] SpyNet [17] RAFT [39]

Fig. 6. Normalized universal perturbations for different network architectures learned
from the respective training datasets. Top row: KITTI. Bottom row: Sintel.
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Fig. 7. Joint evaluation of optical flow methods by prediction quality and adversarial
robustness on KITTI (left) and Sintel (right), more attacks in Supp. Fig. A6.

5.3 Evaluating Quality and Robustness for Optical Flow Methods

Finally, we jointly evaluate the optical flow quality and adversarial robustness.
For quality, we take the official scores from KITTI and Sintel. For robustness,
we apply PCFA’s strongest configuration (Sec. 5.1, δt, δt+1 with AAE and COV)
and report the deviation from the initial flow on the respective test datasets for a
zero-flow target, ε2 = 5·10−3. Fig. 7 visualizes quality and adversarial robustness
on different axes. On both datasets, we observe methods with good robustness
(low adversarial robustness scores) to rank bad in terms of quality (high error)
and vice versa. Further, we can identify methods with similar scores: Current net-
works like RAFT and GMA (recurrent) have good quality but little robustness,
FlowNet2 (encoder-decoder) and PWCNet (feature pyramid) balance both, and
SpyNet (image pyramid) leads in robustness but has the worst quality. These re-
sults indicate that flow networks are subject to a trade-off between accuracy and
robustness [41], which also sheds new light on the development of high-accuracy
methods that cannot sustain their top rank w.r.t. robustness.

6 Conclusions

This work describes the Perturbation-Constrained Flow Attack (PCFA), a novel
global adversarial attack designed for a rigorous adversarial robustness assess-
ment of optical flow networks. In contrast to previous flow attacks, PCFA finds
more destructive adversarial perturbations and effectively limits their L2 norm,
which renders it particularly suitable for comparing the robustness of neural net-
works. Our experimental analysis clearly shows that high quality flow methods
are not automatically robust. In fact, these methods seem to be particularly vul-
nerable to PCFA’s perturbations. Therefore, we strongly encourage the research
community to treat robustness with equal importance as quality and report both
metrics for optical flow methods. With PCFA we not only provide a systematic
tool to do so, but with our formal definition of adversarial robustness we also
provide a general concept that allows to compare both methods and attacks.
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